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A. OSCILLATIONS OF AN INHOMOGENEOUS PLASMA

This report indicates the usefulness of operator methods for dealing with problems

involving Vlasov's equation in its more general linearized form, that is, when applied

to inhomogeneous bounded anisotropic plasmas. Although these operator methods have

been successfully applied by Laplace (in working with diffusion theory), their use seems

almost to have been restricted only to quantum theory where they are used in full detail.

The first application of operational techniques to plasma physics is probably the work

of Buchsbaum and Hasegawa (B. H.).1 In the present report we shall derive some gen-

eralizations of their work and indicate how to generalize their theory to one that is cor-

rect to all orders of temperature. First, we shall indicate how to derive the fundamental

equation; second, we shall use this equation to explain the structure of the Tonks-Dattner

resonances and those recently observed in microwave emission by Mitani, Kubo, and

TanakaZ and in microwave absorption by Buchsbaum and Hasegawal; and third, we shall

explain the rules for obtaining partial differential equations that are correct to all orders

of temperature. Important extensions such as damping and coupling to outside waves

are in progress.

1. Derivation of the Fundamental Equation
8f -, af e V -\ =0 which we linearize

We start with the Vlasov equation t-+ v-- mE+ X 0 which we linearize
Sm c v

ax av
according to the usual Landau prescription f(f, , t) = g(') f o() + fl ( ' X ,' t), in which we

have assumed that the unperturbed distribution function separates into a spatial part g(2),

and a Maxwell-Boltzmann distribution function f (v). The particle density of the inhomo-

geneous plasma is given by N(x) = Nog(x). The fields are given by

E(x,t) = 0 + E l(, t); B(x, t) = Bo + Bl(x,t). (1)

Setting the zero-order electric field equal to zero has been discussed but physically

meaningful results appear to be obtained; probably the best justification is that we arrive

at correct results by so doing. We choose the z axis along the constant external mag-

netic field B and cylindrical coordinates in velocity space v = (v1 cos , v 1 sin k, vi1 ). If

we consider one component in the Fourier time spectrum we find that, using the above

simplifications, we can write the Vlasov equation in the linearized form

*This work was supported principally by the Joint Services Electronics Program

(Contract DA36-039-AMC-03200(E).

QPR No. 79



(X. GASEOUS ELECTRONICS)

+ia - p cos 8 p sin fl = Avjfg( x ) (cos Ex+sin E (2)

where

S(1/2Tr)3/2 W/wb 
2 v2

a= , P A = f= exp- 2
b b 4eLDV 2vT

Here, wb is the cyclotron frequency; LD, wp, and V T are the Debye length, plasma fre-

quency, and thermal velocity; LD p = VT; w = 4 rNoe 2/m, etc. Equation 2 is formally0 4,3
identical to an equation found in Allis, Buchsbaum and Bers and can also be consid-

ered a kind of "inhomogeneous SchrSdinger equation" with the Hamiltonian

8 8H = ia - cos 4 --- p sin 4 . (3)

Then we can formally integrate Eq. 2 and (after imposing the condition that the perturbed

distribution function be axially symmetric in velocity space) obtain the expression

+00

f ) = Avf exp sin - p cos im- n m

n, m
-00

G(x) e i ( m + n + 1 ) 4  F(x) e i ( m + n + i)4

lm+n+a+l + m+n-1+a (4)

where Jk stands for Bessel functions of first kind and order k and

F(') = g(') E +(); G(-) = g(2) E (); E (R) = ( Ex iE ) (5)

a a8
Since and - are commuting operators, we see that Glauber's lemma allows us

to write

exp p(sin8-x p cos ~) Jn( iYJm -

= Jn(iP _) J( exp(p sin -L) exp(- cos P). (6)

If we recall the property of the displacement operator exp(x 0 V) M(x) = M(x+ X ),O O
we can write the exact integral of the linearized Vlasov equation in the form

+oo
+n e i ( m + n + l )f Av^ I im-I Jn iP x J ,1 vn xay m+n+ a + 1G(x+ Psin , y- Pcos4)

n, m
-- 0O

+ m+n+ 1F(x+ sin, y- p cos4) (7)

Heretofore no approximations have been made: Eq. 7 is the exact integral of the
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linearized Vlasov equation. Since we have an infinite series, we have to limit the num-

ber of terms to be kept in the expansion and we choose to keep those terms that are lin-

ear in temperature. This greatly simplifies the algebra and also, from the structure

of the differential equations so obtained, permits their extension when all powers of tem-

perature are taken into account. Keeping terms linear in temperature means that only

terms in 0, ~ p 2, and p3 need be kept in the expansion. When we do this the equations

obtained have denominators of the form w ± nwb , with only n = 0, 1, 2. The expansion

is valid when the Larmor radius is small compared with the wavelength, or the scale

length of the density gradient, and it is clear that dropping terms above P3 makes the

solution invalid in the neighborhood of cyclotron harmonics above the second. The solu-

tion is found to be correct for ob = 0. The exact criterion of validity in terms of the fre-

quency is not yet understood, but in terms of temperature the equations are valid up to

linear terms only.

To calculate the charge density -e f d3vfl , we have to perform integrals of the per-

turbed distribution function in velocity space.

The c integrals are easily performed because of well-known orthogonality relations.

The vjl integral is also easily done and amount to multiplication by 1& V and changing

f into exp -v/2v. The v1 integrals amount to evaluating integrals of the sort 5

0 s x \

00 (dx) xs-1 ea'x 2 -Yx = (2a') 3/2 r(s) exp )_ Dy(2a)-1/2a,

where T is the gamma function, and Ds is a parabolic cylinder function of order -s.

If we perform all of the tediously lengthy algebra of the expansions, we arrive at an

expression for Poisson's equation div E = 4rp in the form

div E = (j 1 +l72) div gE + i(E 2 +XK72) (rot gE) "~, (8)

where ,3 is a unit vector along B o , div, V2, and rot are the usual divergence, Laplacian,

and curl operators and also

=' b E wb P2 c 1 w 2 2

(9)
22

3VT

S2 bX 2 b Tp V D
2 w (2 2 2)(42-2 ' LD p

This equation has already been obtained by Buchsbaum 6 and Hasegawa; in their paper

they were restricted to one dimension in which the curl term was absent. For the case

QPR No. 79



(X. GASEOUS ELECTRONICS)

- O, Eq. 8 becomes

4 2

div = E -Xv) div gE, = 3L - , E ( 1). (10)
oo 00 o

Equation 8 will be called the fundamental second-order equation. It is simply a
kinetic interpretation of Poisson's equation. The calculation of the conductivity current
and use of the full set of Maxwell's equation will be carried out. We shall now be con-
cerned with some consequences and generalizations of Eq. 8.

2. Consequences of the Fundamental Second-Order Equation

We now show that Eq. 8 duplicates the results of other existing theories whenever

these are based on Vlasov's equation, but find some disagreement when they are based

on the method of moments, with their chain broken with some ad hoc assumption.

We compare therefore our fundamental equation with results from the theory of the

cold, homogeneous, and unbounded plasma as derived by Allis, Buchsbaum, and Bers4

with Bohm-Gross 7 dispersion relation which applies to the hot homogeneous and

unbounded plasma (which is also correct to order T); and with some of Bernstein's 8

result. The last comparison involves the eigenfrequency spectrum that is still to be

derived.

To compare with Allis, Buchsbaum, and Bers we first set T = 0 and also g = 1.
Equation 8 becomes

div E = E1 div gE + iE2 (rot gE) 3 3 (11)

which can be written

a [(1-Elg)Ex -iE 2 gE ] + [(1-Elg)E +iEgEx] = 0. (12)

This can be written div D = 0, where D. = E..Ej', Ex = E 1 - E g , and E = -E =
1 ljj xx yy 1 xy yx

-iE 2 g. These according to Eq. 9 can be written

E E p E1 -E =-i - (13)xx yy 2 2' xy yx 2 2 '
- b b

which, apart from notation, are the same as Allis' Eqs. 2. 20 when we set g(x) = 1; and
2as might be expected g(x) multiplies 2 when the plasma is inhomogeneous. We also
P 10confirm Allis, Buchsbaum, and Bers' statement concerning the validity of cold-plasma

theory to the first cyclotron frequency interval only: to obtain the second harmonic we

have to give up the cold-plasma assumption.

Bohm and Gross' well-known dispersion relation is w = + 3k2V . This formula is
p T
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a consequence of magnetohydrodynamic theory. If we evaluate the singular integral k2=

2 G(v) -1/2 -3/2 22 2
S dv+0 G(v) , G(v) (2Tr) / 2  exp -v/2vT) in the sense of a principal

-co v- w/k
value integral (If G(x) does not vanish at x = x and x is in the range of integration then

P dx G(x)(x-x o ) = lim + dx G(x) (x-x - , where E > 0,) k =
a €-0 a x +

P dv G(v) (v-w/k) , then it can be seen that the correct Bohm-Gross formula

is 2 = 2 + 3k 2 V T(p/W) 2  This result is easily obtained by Fourier-analyzing the elec-

tric field in Eq. 10 which then becomes simply

I = E + X2k 2  (14)
o o

which agrees with the correct Bohm and Gross formula.

We consider next the solutions of Eq. 8 when applied to the slab geometry -L - x < L

and for the infinite cylinder geometry under the situations Wc = 0 and wc c 0 and for the

homogeneous plasma (g(1)=l) and the inhomogeneous plasma, where g- 1 (x) = 1 + ~y /2o

This profile is in reasonable agreement with experiment and leads to analytical solutions

in closed form. The partial differential equations for the homogeneous plasma are quite

simple and only the results will be stated. (The eigenfrequencies are obtained by setting

the electric field (current) equal to zero at the boundary wall.)

For g(x) = 1 and c = 0 no eigenfrequency exists when w < w . The eigenfunctions
S2 p

are sines and cosines of argument kx, k 2 = (1-E )/X . For w > p these are given by
00 p

= 1 + 1 + (2n+1) 2  n= 0, 1, 2 ... (15)

or by the same expression with (2n+l) IT/2 replaced by nir. For small LD/L Eq. 15
2

2 2 2 r T
reduces to w = w + 3(2n+1) 4 2 which apart from the factor of 3 on the right-hand

side is a formula previously obtained by Weissglas. The case wb * 0 does not present
2 2 2

further complications. Then it is seen that the resonances exist only when w > c + o .
4 p c

These are extraordinary waves. The eigenfunctions are sines and cosines of argument
22L

kx, k = - (E-1). Their resonances are given by

1

2i- 2 + 5b + p32 + 12 L (2n+l 2) (16)

where n = 0, ±1, etc. and we could also have nw instead of (2n+1) rr/2; apart from
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notation, Eq. 16 agrees with an equation previously derived by Bernstein. 8 It is impor-
tant to notice that for ow = 0 the resonances exist only for w > w , whereas for # * 0

2 2 2 p
these waves exist only for w > w + wb which corresponds to the experimentally observed
fact that the Tonks-Dattner (wb=O) waves are trapped between the wall and the high-
density regions, whereas the Buchsbaum-Hasegawa waves exist in the other region, that
is, they are trapped in the high-density regions.

The inhomogeneous case g-l (x) = 1 + yx 2/L- has been treated by Buchsbaum and
Hasegawa, but only for w < < 2w . The eigenfunctions are parabolic cylinder func-
tions:

dG+ (n+-lZ2) G = 0
dZ

where G(Z) = g(Z) E(Z), and

/ 1/4
1 L(E 1-1) _L2X21

n = - 1 , x Z. (17)2 X11N7 4y

Therefore

G = A[Dn(Z)+Dn(-Z)I ,  (18)

Here, D n is a parabolic cylinder function of order n. The condition that the total elec-
trostatic energy in the plasma be finite restricts the solution to a parabolic cylinder
function of integral order, in which case a dispersion relation of the form of Eq. 16 can
be derived and is given by

2 = 2 + 5 b + (p-w3b + 36yw4- L (2n+1)2 (19)

The two formulas would give the same results if y were equal to Tr2/12 = 0. 82; however,
y is by far smaller, approximately 0. 02 for a cylinder of 2. 5-cm radius, T = 4. 9 ev,
and this alters the spacing of the resonances significantly, thereby making the agreement
with experiment much better.

The proper treatment of the cylinder problems with the curl term included is very
complicated and we shall limit ourselves to cases in which g(") depends only on r and
the electric field is purely radial. In this case the curl term drops out and we can write

d2G  1 dG 1 - 1 2d2G +dG +  I -" G= 0,
d2  r dr 2 2 2 2

where G(r) = g(r) Er (r). By setting r Eq. 18 reduces

where G(r) = g(r) Er(r). By setting r2 = lro /2 = Z1/2v Eq. 18 reduces
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to a Whittaker equation; proper behavior at the origin gives the solution in terms of a

transformed Whittaker function:

y/2 1/2r2 1/2r2Z -y 1/ y /Zr y 1 Zr
E(r) = - 1 + y o Ar exp 2X r F  1 - k, 2; 1 r 0 ,

r o lol

(21)

r E -1
where IF1 is a confluent hypergeometric function, k=l 41 Equation 19 was care-

1 4Ni? 9
fully compared with experimental measurements by Gruber and Bekefi. They actually

measured the electric fields inside the plasma and the agreement between theory and

2.0 -

NONUNIFORM PLASMA THEORY

1.5 -

1.0 -
UNIFORM PLASMA THEORY--

0.5 -

ub/

Solid line shows the locus of the first zero of the electric field (after Gruber

and Bekefi 9 ) oscillations as function of w/w. Open circles represent the

first zero of the hypergeometric function; crosses are computed under the
assumption of a uniform plasma y = 0, g(x) = 1. Agreement with experiment
is very good even for the uniform plasma. 'It can be seen that the uniform
plasma predictions deviate from the experimental results when the zero
falls near the wall.
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experiment is good. Their results will be published elsewhere 9 (see Fig. X-1 for the

result of one of their measurements). In some limiting cases asymptotic expansions of

2 5/2

1 3/2

,4r) .o -,o IQ. 29
0 1/2- c c ) 0 o o 0

0.1 0.9-1 I-1 2 0. I (I I )I //I0.
P

-2 -3/2 C 0
R =1cm

-3 -5/2 N =1010 /cm
3

-2
LD E 1.2 x 10 cm

- -4 -72 T = 2.5 eV

7 =2.5

- = 5.6 x 10
P

-6 -11/2

-7 -13/2

-8 -15/2

-9 -17/2

-10 -19/2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

=u2/ 2 2
P

Fig. X-2. Frequency spectrum of the Tonks-Dattner resonance.

transformed Whitaker functions can be used; if we perform this expansion and match the

conditions at the wall, we obtain an expression similar to Eq. 16, except that (2n+l) 7r/2

is replaced by 1/12 + (n+1)7r.

The Tonks-Dattner case is also solved along similar lines. In this case we set G =

gE in div E = (o-XV7) div gE, set r2 = x and G = x-1/2R and obtain

dx2  ( 1- Eo)/4 2

d2R+ 2 x R = 0 (22)
dx 4r %

which is the equation for the Rutherford scattering of S-waves whose solutions are known.

\ ( r 1- r 2  r 1 -  i r 2

R = A (ix) 1 + i oI oZ X F1 + iF , 2, (23)
o 0 /P0 442 o + io 42r o roo
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which also has an asymptotic expansion

2r o r2N- r E r2
lim R - s o o n

Jr2 2r2 2r2o 4 r

2r E

o o1-

where ko = arg r 1+ i- o ). We evaluate ko and set R(ro )  0 to obtain
o 4k7

1/2 r (/) 2  1 /2 2
1 2o + o l43 n L + = n +w-, n = 0, ±1,±2,...

21 W LD LD 4 LD 2

(24)

This equation can be solved numerically by plotting the left-hand side versus W /w 2
p

The abscissa of the intersection of this curve with the straight lines n + 1/2 are the reso-

nances looked for. Part of this plot for 0. 1 < (w/w )2 < 0. 9 is found in Fig. X-2.

3. Partial Differential Equations Correct to All Orders of Temperature

Our theory has been hampered by two restrictions, one which we tacitly imposed

when we restricted to two dimensions having propagation across B : k = 0. The other
2

consisted in keeping only terms of order less than T 2 . It is important to get rid of these

restrictions, principally the first one. Both of them, however, will be lifted simulta-

neously. To achieve this we rewrite Eq. 8 in the form

a ( i__X72) gEx- i(E 2 + Xv 2) gEy}
x 1 2 2 + 22

+ - E 7 gEy + i 2 + 2) gEj = 0. (25)

If in this equation we set g(2) = 1 and assume that the plasma is infinite, we can set

according to Fourier analysis V 2 = -k2 = -(kx+k2). So that Eq. 25 really reduces to
\x y

the proper components of the dielectric tensor of the homogeneous unbounded medium

like

2 2 42w 3L wk
p Dp

E 1- + (26)
xx 2 2

wb (w2-')(4~b2)

These are correct to order T. Equation 26 and other similar equations for Eyx xy'

etc., are an important check on the validity of the theory developed thus far; but this

means much more. For, if we keep in mind the operator procedures used above, we
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see that the physical interpretation of the terms g-l1 E - X21 V2, ±i( 2 +X 2
) is that they

are the components of the dielectric tensor operators of the bounded plasma, that is,

2 2 4V2
w 3LWV

A 1 p Dp
xx g( ,etc. (27)xx 2 2

g(x) - b 2 2

Therefore we propose the following rules:

The solution of the linearized Vlasov equation and substitution of the distribution

function in Poisson's equation gives rise to a partial differential equation which when

correct to order Tn is of order 2 n + 1. This equation can be written down as well as

the conductivity current by use of the following four rules.

RULE ONE: Take the dielectric tensor derived for the infinite homogeneous medium

and change the unit term into l/g(2); at the same time change the wave vector k into

-iV; to obtain the dielectric tensor operator

i b P A jl IWb PEiE 1, , , L k --- iL

RULE TWO: Construct the vector T.j() = g(K) Ej(t), where E.j() is the j component

of the electric field at point - and g(x) - N()/N .

RULE THREE: Contract both tensors obtained in one and two to obtain the displace-

ment vector D i() = ijg(X) E (Z). The equation D , i = 0 or div D = 0 corresponds to

Poisson's equation.

In order to obtain the electromagnetic fields inside the plasma, we still have to cal-

culate J(x), the conductivity current. We can infer from the structure of the kinetic

equations, as well as Maxwell's, that all that we have to do is to take the dielectric ten-

sor operator and construct from it the conductivity tensor operator oij as given by

RULE FOUR: r ]) from which the conductivity current is given by

J (x) = 1 g(x) Em(X.
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B. RADIOFREQUENCY DIPOLE RESONANCE PROBE

In Quarterly Progress Report No. 74 (pages 91-98) Bekefi and Smith presented a the-

ory for the dipole resonance probe. They derived an expression for the complex suscep-

tance, B (= j Xcomplex admittance), for a probe-plasma system in which the sheath region

around the conducting dipole sphere was taken to be a vacuum and the surrounding plasma

extended to infinity. By using a computer, their solution for the susceptance has been

evaluated for several values of the parameters f and v c , f is the ratio of the radius of

the sheath cavity to the probe radius, and vc is the collision frequency normalized to

plasma frequency. Figure X-3 shows the first two multipole contributions to the probe

admittance for f = 1. 2 and v = 0. 1. The octopole contribution (f=3) is ~0. 2 of the dipolec
contribution (f=I). Also, the octopole resonance occurs at a higher frequency than the

dipole resonance and the octopole antiresonance occurs at a lower frequency than the

dipole antiresonance. The half-width of the conductance peak is approximately equal

to v for the dipole mode. Contributions from the monopole mode and the octopole modec
will tend to broaden the observed half-width because their resonant frequencies differ

from that of the dipole. It is found that, by increasing the value of f, the magnitude of

the admittance decreases and the susceptance curve moves upward and remains positive

except at the resonant frequency where it dips down to touch the zero axis. This happens

because of the assumption of a vacuum sheath around the probe. As the sheath size

increases (f increases), the probe response will approach the free-space value of a

capacitor.

Measurements are being made with the apparatus shown in Fig. X-4 to determine

the actual behavior of the complex admittance of spherical dipole probes. By allowing

gas to flow into the side arms while the pumping mechanism is left open to the sphere,

the gas pressure in the sphere can be maintained a factor of 30-40 below the pressure

in the side arms. The gas is broken down in the side arms at a pressure of -30 microns
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Fig. X-3. Real and imaginary parts of the
admittance of a spherical dipole
as a function of frequency for
f= . 2 and v =0. 1.
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Fig. X-4. Schematic diagram of the experiment.
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Fig. X-5. Schematic diagram of the probe construction.
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Fig. X-6. Measured real and imaginary parts of the admittance for a 1. 75-inch probe.
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and the resulting plasma is made to enter the low-pressure region of the sphere by

making the pump the anode. Plasma densities of 10+8/cc with electron temperatures of

~4 ev at a background gas pressure of a fraction of a micron are typical using argon.

The probes used (Fig. X-5) consist of two brass hemispheres separated by a plexi-

glas wafer and vacuum-sealed with an epoxy resin. The edge of each hemisphere has

been rounded to reduce the effect of fringing fields. The probes are coated with a thin

coating of Insl-X to prevent DC current from flowing.

Two representative plots of the conductance and susceptance for a 1. 75-inch diameter

probe are shown in Fig. X-6. For Fig. X-6a the plasma density and electron tempera-

ture as measured by a guard-ring Langmuir probe are

+8
n = 1. 38 X 10 /cc and T = 3. 41 ev.e

The admittance plot shows a resonance at 57.5 Mc and an antiresonance at 96 Mc.

Assuming that the dipole mode is the dominant mode in this case, we can solve the equa-

tions given by Bekefi and Smith 1 for the resonant and antiresonant frequencies and arrive

at values for o and f. The result is = 2rr X 104 Mc and f = 1. 22; w as measured by
p p p

the Langmuir probe is 27r X 105 Mc. Using the measured value of 3. 41 ev for the elec-

tron temperature, one finds that the sheath thickness in this case is 4. 2 XD

For Fig. X-6b the plasma density and electron temperature are 3. 28 X 10 /cc and

4. 21 ev, respectively. Figure X-6b has a double peak which indicates that in this case

a monopole mode in addition to the dipole mode was probably excited. Using the

Langmuir probe value for the density and assuming that the resonance at 82. 5 Mc is due

to the dipole mode, one gets f = 1. 18. The sheath thickness in this case is 4. 78 XD.
More data are being taken to determine the relationship between sheath thickness,

probe size, and Debye length. The resonance probe can then be used to determine the

electron density and temperature and the collision frequency in low-density plasmas.

J. A. Waletzko
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