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A. ELECTRON DENSITY MEASUREMENTS WITH A LASER INTERFEROMETER

A laser interferometer has been used to study the time and spatial decay of a pulsed

P.I.G. discharge. 1 The electron density decay is studied in a range from above 1014 cm-3-3

to below 1013 cm -3. It is concluded from the dependence of the decay on gas pressure

and magnetic field that the electron density and temperature both decay initially by radial

diffusion. After a time of 100-200 microseconds, electron-ion collisions become an

important cooling mechanism, and the electron temperature drops rapidly. The decay

rates after 200 microseconds are consistent with the radiative-collision calculations of

Bates, et al. 2

The interferometer used in the study has been described elsewhere.3 Briefly, it can

-3
measure phase shifts in the optical and near infrared of less than 2w X 10 - radians. In

12 -3
the present plasma, electron densities are thus measured with an accuracy of 10 cm-3

The time response of the interferometer was measured to be less than 5 microseconds.
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Fig. IX- 1. The P. I. G. discharge.
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The discharge tube is shown in Fig. IX-1. Cathodes have been placed outside the

discharge region so that the laser beam can pass along the axis of the tube. A current

pulse containing approximately one joule was fired 100 times per second by means of a

delay line. To make the pulse reproducible the gas was pre-ionized by running a weak

(10 ma) DC discharge.

Examples of the time and spatial dependence of the electron density are shown in

Fig. IX-2. As can be seen the density closely follows the Bessel function predicted by

elementary diffusion theory.
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The rate of change of the electron density is plotted in Fig. IX-3 for several pres-

that the initial decay is by diffusion. In addition, the magnetic field dependence (not

shown) indicates that diffusion across the field dominates diffusion along the field, a

conclusion which is supported by numerical estimates of decay rates.

To obtain a detailed picture of the decay of the plasma, it is necessary to consider
both temperature and density decay. As the density decay in the early afterglow is
both temperature and density decay. As the density decay in the early afterglow is
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primarily due to diffusion, the density decay equation is

D
a In n am

at A2

Here Dam is the coefficient for ambipolar diffusion across the magnetic field:

D
D = a (2)am W W.

1+e 1
V .V.
el ia

where w and w. are the electron and ion cyclotron frequencies, v. is the ion-atome 1 la

collision frequency, and v ei is a spatially averaged electron-ion collision frequency.
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Following Golant and Zhilinskii, V ei is

the center of the discharge tube.

Calculations of the electron and ion

found to be 0. 38 times the collision frequency at

cooling rates were made. 1 It was found that the
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ion-atom collision frequency is so high that the ions are at practically the atom temper-

ature. The important electron cooling mechanisms are diffusion and electron-ion col-

lisions. Recombination plays no part at these densities and temperatures. The rate of

electron temperature decay is given by

a lnT D am2 1 - (W e/Vei) 2 a
Sam - + - gv (3)LA + 2 +/V ) 2 2at 2 2 3 c c. 3 g ei'A 1 + (W e/V ei) 1 + e 1

Sei ia

The terms in the brackets on the right-hand side of Eq. 3 arise in the order presented

from (a) the temperature dependence of the ambipolar diffusion coefficient; (b) the tem-

perature dependence of the electron mobility; and (c) the flow of diffusion currents in the

space-charge fields. The term containing "a" arises from the volume field and that con-

taining "b" arises from sheath fields. Both "a" and "b" are weak functions of the plasma

parameters; for the present plasma they are about 2. 1 and 0. 16 respectively. The col-

lisional cooling term is proportional to g = 2me/MA.
As diffusion is important for both the density and the temperature decays, it is con-

venient to combine Eqs. 2 and 3:

a In (T3/2/n) D 1 - ( e/vei) 2  aam + + b - 3 (4)0t 2  l+ + e---- -
at A 2 2 1 + ( e/vei) 2 + e i 2 -ei'

V eivia

The right-hand side of this equation can be either positive or negative. In the limiting

case that it is zero, T3/2/n is a constant during the decay. In this case, the density

decay equation becomes

aInn /Dam n 2/3

at A- 2 ) (5)

where the subscript zero indicates initial conditions.

Examples of the decay rates of the plasma are plotted in Fig. IX-4 for a magnetic

field of 800 gauss. It is observed that the initial decay of the plasma follows Eq. 5,

indicating that the right-hand side of Eq. 4 is indeed approximately zero. This conclusion

will be verified numerically below.

Because the initial decay follows Eq. 5, it is possible to determine the electron tem-

perature. The value of (Dam)o can be obtained from plots such as Fig. IX-4. If the

initial temperature is independent of pressure, one obtains

(Da) oP
(D am) = (6)am o &. w.

e 1
p+ i

ei v. /p
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p=0.052 TORR
0 1

nL (CM 2 )

Plasma decay rates at

data are fitted to lines

a magnetic field of 800 gauss.

for which T3/2/n is constant.

-
o

1o

0

K

0.05 0.10 0.15 0.20

PRESSURE, p (TORR)

Fig. IX-5. Pressure dependence of the decay.

-1
As the initial decay is such that vei is constant, a plot of (D am) against p yields a

straight line, as shown in Fig. IX-5. The value of v ei (and hence of T) can be obtained

14 -3
from this figure; it is found that at a density of 2X10 cm the temperature is 1.4 ev.

The absolute diffusion rate at this density and temperature, and at a pressure
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4 -1
of 0. 1 Torr, is 3. 6 X 10 sec , in excellent agreement with the measured decay rate

(see Fig. IX-4).

Once the electron temperature is determined, it is possible to check the consistency

of the approximation that Eq. 4 is zero. One finds (for example) at a pressure of
14 -3

0.1 Torr, n = 2 X 10 cm , and T = 1.4 ev, that the set of terms arising from diffusion
4 -1

has a value +1.0 x 10 sec , and that the electron-ion collision term has the value
4 -1 4 - --1.7 X 10 sec . These terms thus add up to a net cooling rate of 0. 7 X 10 sec , con

siderably less than the initial diffusion rate. The approximation was indeed a good one.

This cancellation is a fortuitous one for the experimental conditions discussed, and does

not hold, for example, at a magnetic field of 400 gauss.

As the decay proceeds, the diffusion terms decrease and the collisional term remains

approximately constant. Thus, after a short while the collisional term dominates the

diffusion terms; in such a case the temperature can be shown 1 to drop much more

rapidly than the density. Once this occurs, radiative-collisional recombination becomes

important because of the strong temperature dependence of the recombination coeffi-

cient. 2 It is found that for times later than 200-300 microseconds after the start of the

afterglow, the decay rates are consistent with the recombination calculations of Bates

et al.2 The bending of the decay curves of Fig. IX-4 away from the straight lines is

thus apparently an indication of the onset of recombination.

Similar data was obtained at 400 gauss, although the initial temperature decay was

more rapid than at 800 gauss; otherwise, the decay was qualitatively the same. At

0 gauss the temperature decays very rapidly by diffusion, and recombination becomes

important almost immediately.

Detailed verification of above conclusions requires time resolved measurements of

the electron temperature in addition to the electron density measurements which have

been described. Temperature measurements have not been made.

E. B. Hooper, Jr.
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B. ION CYCLOTRON RESONANCE IN A RADIOFREQUENCY DISCHARGE -

HIGH Q MODE

The ion cyclotron experiment described previously1 has been altered slightly and, as

a result, now operates in a high Q mode. This mode is strongly influenced by impurities

and, thus far, has only been observed when the electrode is not oxide-coated. Alignment

of the magnetic pickup probe with the electrode is another factor strongly influencing

operation in this mode. The best resonance curves are obtained when the pickup is in

such a position that it interferes least with the streaming of electrons along lines of B

from points on the electrode.

Signals from the pickup are detected by a radio receiver tuned to the applied fre-

quency (4 Mc). The automatic volume control (AVC) voltage of the receiver is traced,

as a function of B , on an oscilloscope face. Within experimental accuracy, the reso-

nance occurs exactly at the ion cyclotron point

eB
o
O3 1.P+ = M-- =

The discharge gas is always hydrogen and only resonance of the atomic ion (proton) has

been investigated.

A model has been developed 2 which accounts for a majority of effects observed. Two

of the more interesting features, which are still unexplained, are:

Fig. IX- 6. Resonance curves at different
applied voltages. Peak-to-
peak applied voltage of 600 -
425 volts in steps of 25 volts.
Hydrogen pressure, 18 p.

Fig. IX-7. Resonance curves at different
applied voltages; 1000, 800,
600, and 500 volts peak-to-
peak. Hydrogen pressure,
16 1/2 ii.
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Fig. IX-8. Resonance curves at different Fig. IX-9. Pressure required for obser-
hydrogen pressures. Pres- vation of a sharp resonance vs
sure decreased 19 L -14p in length of discharge. Applied
steps of 1 @, top to bottom. voltage, 500 volts peak-to-
Applied voltage, 500 volts peak.
peak-to-peak.

1. This mode is observed only when the applied RF voltage is above a certain
threshold. Resonance curves are sharpest (Q = 30) just above this threshold. This is
illustrated in Figs. IX-6 and IX-7.

2. This mode is observed only for a rather narrow pressure range. This pressure
range is determined by the position of the (electrically insulating) end wall which limits
the length of the discharge. This is illustrated in Figs. IX-8 and IX-9.

A possible explanation of these two effects is the varying percentages of atomic
versus molecular ions and neutral particles. This matter requires further investigation.

J. J. Nolan, Jr.
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