
474 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 2, APRIL 2006

Conceptual Design of the CMS Trigger Supervisor
Ildefons Magrans de Abril, Member, IEEE, Claudia-Elisabeth Wulz, and João Varela

Abstract—The Trigger Supervisor is an online software system
designed for the CMS experiment at CERN. Its purpose is to
provide a framework to set up, test, operate and monitor the
trigger components on one hand and to manage their interplay
and the information exchange with the run control part of the
data acquisition system on the other. The Trigger Supervisor is
conceived to provide a simple and homogeneous client interface to
the online software infrastructure of the trigger subsystems. The
functional and nonfunctional requirements, the design, the opera-
tional details, and the components needed in order to facilitate a
smooth integration of the trigger software in the context of CMS
are described.

Index Terms—CMS, online software, trigger supervisor.

I. INTRODUCTION

THE experiment CMS (Compact Muon Solenoid) at the
Large Hadron Collider (LHC) of CERN, the European

Organization for Nuclear Research in Geneva, is a detector de-
signed to find answers to some of the fundamental open ques-
tions in physics today [1]. The LHC provides counter-rotating
proton or heavy-ion beams with high energies, which are made
to collide in CMS and the other experiments located along the
accelerator ring, producing a large number of particles. The
trigger and the data acquisition are vital components of the CMS
experiment. The two systems are responsible for the selection
and recording of collision events. Since millions of collisions
occur each second and only a small fraction of these can pro-
vide insight into new physics, events have to be selected on-
line according to their properties. The trigger system is com-
posed of subsystems and is organized in two basic sequential
levels. The Level-1 Trigger (L1T) [2] consists of custom de-
veloped and largely programmable electronics, the High-Level
Trigger (HLT) is a large computer farm [3], which has access to
the complete event data. Apart from recording events, the data
acquisition system (DAQ) [3] also provides the Run Control and
Monitoring System (RCMS) framework [4] for the experiment.

The L1T has to make the decision to accept or reject a colli-
sion event for each crossing of the particle bunches which cir-
culate in the LHC. The bunch crossing interval for protons is
25 ns. Depending on luminosity, several interactions of proton

Manuscript received July 20, 2005; revised November 25, 2005.
I. Magrans de Abril is with the Institute for High Energy Physics of the

Austrian Academy of Sciences, Vienna, Austria, and also with the Electronic
Engineering Department, Universidad Autónoma de Barcelona, Barcelona,
Spain (e-mail: ildefons.magrans@cern.ch).

C.-E. Wulz is with the Institute for High Energy Physics of the Austrian
Academy of Sciences, Vienna, Austria, and also with the University of Tech-
nology, Vienna, Austria (e-mail: claudia.wulz@cern.ch).

J. Varela is with LIP—Laboratório de Instrumentação e Física Exp.
de Partículas, Lisboa, Portugal, and also with CERN, Geneva, Switzer-
land, and IST—Instituto Superior Técnico, Lisboa, Portugal (e-mail:
joao.varela@cern.ch).

Digital Object Identifier 10.1109/TNS.2006.872631

constituents occur at each crossing. At the nominal LHC de-
sign luminosity of cm s the interaction rate is therefore
close to 1 GHz. The maximum output bandwidth allocated to the
L1T is 100 kHz, in accordance with the input capacity limit of
the HLT processor farm. The highest rate at which events can be
archived by the online computer farm is of the order of 100 Hz.

The L1T has local, regional and global components. To-
gether with the HLT they make up the trigger subsystems. At the
bottom end, the Local Triggers for calorimetry and muons, also
called Trigger Primitive Generators (TPG), are based on energy
deposits in calorimeter trigger towers and track segments in
muon chambers, respectively. Regional Triggers combine their
information and determine trigger objects such as electron or
muon candidates in limited spatial regions, for example in sec-
tors of CMS. Subsequently, the Global Calorimeter and Global
Muon Triggers determine the four highest-rank calorimeter and
muon objects across the entire experiment. The Global Trigger,
the top entity of the level-1 hierarchy, makes the decision to
reject an event or to accept it for further evaluation by the HLT.
This decision is based on algorithm calculations performed by
the Global Trigger logic (GTL) [5], [6] on one hand, and on
information from the Trigger Control System (TCS) [7], which
takes into account operating conditions and feedback from the
CMS subsystems, on the other. Depending on physics search
priorities, Global Trigger algorithms have to be selected. The
set of algorithms running concurrently at a given time is called
trigger menu. Logically the TCS belongs to the Global Trigger,
and its central electronics board is physically located in the
Global Trigger crate. The TCS allows different subsystems
to be operated independently if required. For this purpose the
experiment is subdivided into 32 partitions. A partition repre-
sents a major component of a subsystem. Each partition must
be assigned to a partition group, also called a TCS partition.
Within such a TCS partition all connected partitions operate
concurrently. For commissioning and testing up to eight TCS
partitions are available, which each receive their own level-1
accept decision (L1A) signals. During normal physics data
taking there is only one single TCS partition.

In contrast to the Global Trigger including the TCS, the Re-
gional and the Local Triggers, the Trigger Supervisor (TS) is
an online software system. Its purpose is to set up, test, op-
erate and monitor the trigger components on one hand, and to
manage their interplay and the information exchange with the
run control and monitoring part of the data acquisition system
on the other. It is conceived to provide a simple and homoge-
neous client interface to the online software infrastructure of the
trigger subsystems. Facing a large number of trigger subsystems
and potentially a highly heterogeneous environment resulting
from different subsystem Application Program Interfaces (API),
it is crucial to simplify the task of implementing and maintaining
a client that allows operating several trigger subsystems either
simultaneously or in standalone mode.

0018-9499/$20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44187041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DE ABRIL et al.: CONCEPTUAL DESIGN OF THE CMS TRIGGER SUPERVISOR 475

An intermediate node, lying between the client and the trigger
subsystems, which offers a simplified API to perform control,
monitoring and testing operations, will ease the design of this
client. This layer provides a uniform interface to perform hard-
ware configurations, monitor the hardware behavior or to run
tests in which several trigger subsystems participate. In addi-
tion, this layer coordinates the access of different users to the
common trigger resources.

The operation of the trigger will necessarily be within the
broader context of the experiment operation. In this context, the
RCMS online framework will be in charge of offering a control
window from which an operator can run the experiment, and in
particular the trigger system. On the other hand, it is also nec-
essary to be able to operate the trigger system independently of
the other experiment subsystems. This independence of the TS
will be mainly required during the commissioning and mainte-
nance phases. Once the TS is accessed through RCMS, a scien-
tist working on a data taking run will be presented with a graph-
ical user interface offering choices to configure, test, run and
monitor the trigger system. Configuring includes setting up the
programmable logic and physics parameters such as energy or
momentum thresholds in the trigger hardware. Predefined and
validated configuration files are stored in a data base (DB) and
are proposed as defaults. Tests of the trigger system after config-
uration are optional. Once the TS has determined that the system
is configured and operational, a run may be started through
RCMS and the option to monitor can be selected. For commis-
sioning periods more options are available in the TS, namely the
setting up of different TCS partitions and separate operations
of subsystems. It is remarked that all components of the trigger
may be operated without the TS and RCMS in case of their tem-
porary unavailability. In such a case, however, compatibility and
consistency of operations have to be assured manually to a large
extent.

The design of the hardware management system for a large
experiment like CMS should cope with the following com-
plexity dimensions.

• Number: O hardware modules.
• Evolution: The preparation and operation of high-energy

physics experiments typically spans a period of many
years. During this time the hardware and software envi-
ronments evolve.

• Human: despite the necessary and highly hierarchic struc-
ture in a collaboration of more than 2000 people, different
subgroups might implement solutions based on hetero-
geneous platforms and interfaces. Therefore, this would
increase the cost of design and maintenance of a central
control system.

The described solution for the trigger system of CMS can be
an example for other experiments.

II. REQUIREMENTS

A. Functional Requirements

The TS is conceived to be a central node that offers a high-
level API to facilitate the setting of a concrete configuration of
the trigger system, to launch tests that involve several subsys-
tems or to monitor a number of parameters in order to check the

correct functionality of the trigger system. In addition, the TS
will provide an access point to the online software infrastructure
of each trigger subsystem. The TS framework is being designed
as an open framework capable of adopting new functionalities
required by specific subsystems.

1) Configuration: The first functionality offered by the
TS will be the configuration of the trigger system. This
functionality will hide from the controller the complexity of
operating the different trigger subsystems in order to set up a
given configuration.

2) HLT Synchronization: In order to properly configure the
HLT, it is necessary to provide a mechanism to synchronize
the propagation of the trigger system configuration to the HLT.
This synchronization is also necessary for the HLT to verify the
Level-1 Trigger decision by properly configured simulations of
the trigger boards.

3) Test: The TS will offer an interface to test the trigger
system. Two different test services will be provided: the self test,
intended to check each trigger subsystem individually, and the
interconnection test service, intended to check the connection
among subsystems. Interconnection and self test operations in-
volve not only the trigger subsystems but also the subdetectors
themselves (Section III-B3).

4) Monitoring: The TS interface must enable the moni-
toring of the necessary information that assures the correct
functionality of the trigger subsystems (e.g., measurements of
trigger rates and efficiencies, simulations of the Level-1 Trigger
hardware running in the HLT), subsystem specific monitoring
data (e.g., data read through spy memories), and information
for synchronization purposes.

5) User Management: During the experiment commis-
sioning the different subdetectors will be tested independently,
and many of them might be tested in parallel. In other words,
several run control sessions, running concurrently, will need
to access the trigger system. Therefore, it is necessary that the
TS coordinates the access to the common resources (e.g., the
TCS, the trigger subsystems and the configuration data base).
In addition, it is necessary to control the access to the trigger
system hierarchically in order to determine which users/entities
(controllers) can have access to it and what privileges they
have. A complete access control protocol has to be defined that
will include identification, authentication, and authorization
processes. Identification includes the processes and procedures
employed to establish a unique user/entity identity within a
system. Authentication is the process of verifying the identi-
fication of a user/entity. This is necessary to protect against
unauthorized access to a system or to the information it con-
tains. Typically, authentication takes place using a password.
Authorization is the process of deciding if a requesting user/en-
tity is allowed to have access to a system service. A hierarchical
list of users with the corresponding level of access rights as
well as the necessary information to authenticate them will be
maintained in the configuration data base. The lowest-level
user is only allowed to monitor. A medium-level user, such as a
scientist responsible for the data taking during a running period
of the experiment, may manage partition setups, select prede-
fined trigger menus and change thresholds, which are written
directly into registers on the electronics boards. In addition

476 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 2, APRIL 2006

to all the previously cited privileges the highest-level user or
super user is allowed to reprogram logic and change internal
settings of the boards. In addition to coordinating the access of
different users to common resources, the TS must also ensure
that operations launched by different users are compatible.

6) Hierarchical Start Up Mechanism: In order to maximize
subsystem independence and client decoupling (Section II-B3),
a hierarchical start up mechanism must be available (Section
III-B5 describes the operational details). As will be described
later, the TS is organized in a tree-like structure, with a central
node and several leaves. The first run control session or con-
troller will be responsible for starting up the TS central node,
and in turn this will offer an API that provides start up of the
TS leaves and the online software infrastructure of the corre-
sponding trigger subsystem.

7) Logging Support: The TS must provide logging mecha-
nisms in order to support the users carrying out troubleshooting
activities in the event of problems. Logbook entries must be
time-stamped and should include all necessary information such
as the details of the action and the identity of the user respon-
sible. The log registry is available online and is also recorded
for offline use.

8) Error Handling: An error management scheme, compat-
ible with the global error management architecture, will be nec-
essary. It must provide a standard error format, and remote error
handling and notification mechanisms.

9) User Support: A graphical user interface (GUI) will be
provided. This will allow a standalone operation of the TS. It
will also help the user to interact with the TS framework and
to visualize the state of a given operation or the monitoring in-
formation. From the main GUI it will be possible to open spe-
cific GUIs for each trigger subsystem. Those will be based on a
common skeleton that will be fulfilled by the trigger subsystem
developers following a given methodology described in a docu-
ment that will be provided.

An adequate online help facility shall be available to help the
user operate the TS, since many of the users of the TS will not
be experienced and may not have received detailed training.

B. Nonfunctional Requirements

1) Low-Level Infrastructure Independence: The design of
the TS should be independent of the online software infrastruc-
ture (OSWI) of any subsystem as far as possible. In other words,
the OSWI of a concrete subsystem should not drive any impor-
tant decision in the design of the TS. This requirement is in-
tended to minimize the TS redesign due to the evolution of the
OSWI of any subsystem.

2) Subsystem Control: The TS should offer the possibility
of operating a concrete trigger subsystem. Therefore, the design
should be able to provide at the same time a mechanism to co-
ordinate the operation of a number of trigger subsystems, and a
mechanism to control a single trigger subsystem.

3) Controller Decoupling: The TS must operate in different
environments: inside the context of the common experiment
operation, but also independently of the other CMS subsystems,
such as, during the phases of commissioning and maintenance of
the experiment, or during the trigger subsystem integration tests.
Due to the diversity of operational contexts, it will be useful to

facilitate the access to the TS through different technologies:
RCMS, Java applications, web browser or even batch scripts. In
order to allow such a heterogeneity of controllers, the TS design
must be totally decoupled from the controller, and the following
requirements should be taken into account:

• the logic of the TS should not be split between a concrete
controller and the TS itself;

• the technology choice to develop the TS should not de-
pend on the software frameworks used to develop a con-
crete controller.

In addition, the logic and technologic decoupling from the con-
troller will increase the evolution potential and decrease the
maintenance effort of the TS. It will also increase development
and debug options, and will reduce the complexity of operating
the trigger system in a standalone way.

4) Multi User: During the commissioning and maintenance
phases, several run control sessions will be running concur-
rently. Each of them will be responsible for operating a different
TCS partition. In addition, the TS should allow standalone op-
erations (not involving the RCMS framework), for instance, to
execute tests or monitor the trigger system. Therefore, it will be
necessary to facilitate that several clients can be served in par-
allel by the TS.

5) Remote Operation: The CMS experiment is developed
and will be operated by more than one hundred institutions lo-
cated all over the world. Unlike in the past, most scientists can
in general not be present in person at the experiment location
during data taking and also during commissioning, but have to
operate and supervise their systems remotely. The possibility to
program and operate the trigger components remotely is espe-
cially important because the trigger directly affects the quality
of the recorded data.

6) Interface Requirements: In order to facilitate the integra-
tion, the implementation and the description of the controller-TS
interface a web service based approach [8] should be followed.
The chosen communication protocol to send commands and
state notifications should be the same as for most CMS subsys-
tems, and especially the same as already chosen for run con-
trol, data acquisition and slow control. Therefore Simple Ob-
ject Access Protocol (SOAP) [9] and the representation format
Extensible Markup Language (XML) [10] for exchanged data
should be selected. The format of the transmitted data and the
SOAP messages is specified using the XML schema language
[11], and the Web Services Description Language (WSDL) [12]
is used to specify the location of the services and the methods
the service exposes. To overcome the drawback that XML uses
a textual data representation, which causes much network traffic
to transfer data, a binary serialization package provided within
the CMS online software project and I2O messaging [13] could
be used for devices generating large amounts of real-time data.

Due to the long time required to finish the execution of con-
figuration and test commands, an asynchronous protocol will be
necessary to interface the TS. This means that the receiver of the
command will reply immediately acknowledging the reception,
and that this receiver will send another message to the sender
once the command is executed. An asynchronous protocol may
improve the usability of the system because the human computer

DE ABRIL et al.: CONCEPTUAL DESIGN OF THE CMS TRIGGER SUPERVISOR 477

Fig. 1. Architecture of the Trigger Supervisor. A central node and customizable leaves for each subsystem are the core elements.

interface will not block until the completion of the requested
operation. The available operations in each node of the TS tree
can be seen as a set of different finite state machines. A GUI
must be provided with the TS, which shows the operator, for
each started operation, the current state, the available actions
that can be executed from that state, and a time bar that displays
the expected time for completion of a given action.

The OSWI of the trigger subsystems will likely be installed
inside a private network. Therefore, it will be necessary to pro-
vide access to such networks.

III. DESIGN

The TS architecture is composed of a central node in charge
of coordinating the access to the different subsystems, namely
the trigger subsystems and subsystems concerned with the in-
terconnection test service (Section III-B3), and a customizable
TS leaf (Section IV-B) for each of them that will offer the cen-
tral node a well defined interface to operate the online software
infrastructure of each subsystem. Fig. 1 shows the architecture
of the TS.

Each node of the TS can be accessed independently, ful-
filling the requirement outlined in Section II-B2. The available
interfaces and location for each of those nodes are defined in a
WSDL document. Both the central node and the TS leaves are
based on a single common building block, the control cell. Each
subsystem group will be responsible for customizing a control
cell and keeping the consistency of the available interface with
the interface described in the corresponding WSDL file.

The presented design is not driven by the available interface
of the OSWI of a concrete subsystem (Section II-B1). There-
fore, this will improve the evolution potential of the low-level
infrastructure and the TS. Moreover, the design of the TS is
logically and technologically decoupled from any controller
(Section II-B3). In addition, the distributed nature of the TS
design will facilitate a clear separation of responsibilities and
a distributed development. The common control cell software

framework could be used in a variety of different control
network topologies (e.g., N-level tree or peer to peer graph).

CMS has developed a C++ based cross-platform data acquisi-
tion framework [14], [15] called XDAQ. The OSWI of all sub-
systems is based on this distributed programming framework.
Therefore, an obvious option is to develop the TS using this
framework. The following reasons justify this choice.

• The software frameworks used in both the TS and the
subsystems are homogeneous.

• For a faster messaging protocol, I2O messages could be
used instead of being limited to messages according to the
SOAP communication protocol.

• Monitoring and security packages are available.
• XDAQ development is practically finished, and its API is

considered already stable. The launch of the final produc-
tion version is imminent.

A. Control Cell

The architecture of the TS is characterized by its tree
topology, where all tree nodes are based on a common building
block, the control cell. Fig. 2 shows the architecture of the con-
trol cell. The control cell is a program that offers the necessary
functionalities to coordinate the control operations over other
software systems, for instance the OSWI of a concrete trigger
subsystem, an information server, or even another control
cell. Each cell can work independently of the rest (fulfilling
the requirement of Section II-B2), or inside a more complex
topology. The following points describe the components of the
control cell.

• Control Cell Interface (CCI): This is the external interface
of the control cell. Different protocols will be available.
An HTTP interface will be provided using the XDAQ fa-
cilities; this will facilitate a first entry point from any web
browser. A second interface based on SOAP will also be
provided in order to ease the integration of the TS with
the run control or any other controller that requires a web
service interface. Future interface extensions are foreseen
(e.g., an I2O interface will be implemented). Each control

478 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 2, APRIL 2006

Fig. 2. Architecture of the control cell, the common building block of all TS
nodes.

cell will have an associated WSDL document that will de-
scribe its interface. The information contained in that doc-
ument instructs any user/entity how to properly operate
with the control cell.

• Access Control Module (ACM): Each module is respon-
sible for identifying and authenticating every user or en-
tity (controller) attempting to access, and for providing
an authorization protocol. The access control module will
have access to a user list, which will provide the necessary
information to identify and authenticate, and the privi-
leges assigned to each controller. Those privileges are
used to check whether or not an authenticated controller
is allowed to execute a given operation.

• Task Scheduler Module (TSM): This is the most com-
plex module of the control cell. This module is in charge
of managing the command requests and forwarding the
answer messages. The basic idea is that a set of avail-
able operations exist that can be accessed by a given con-
troller. Each operation corresponds to a finite state ma-
chine (FSM). The default set of operations is customiz-
able and extensible. The TSM is also responsible for pre-
venting the launching of operations that could enter into
conflict with other running operations (e.g., simultaneous
self test operations within the same trigger subsystem, in-
terconnection test operations that cannot be parallelized).
The extension and/or customization of the default set of
operations could change the available interface of the con-
trol cell. In that case, the corresponding WSDL should be
updated.

• Shared Resources Manager (SRM): This module is in
charge of coordinating access to shared resources (e.g.,
the configuration data base, other control cells, or a trigger
subsystem online software infrastructure). Independent
locking services for each resource are provided.

• Error Manager (ERM): This module will provide the man-
agement of all errors not solved locally, which have been

generated in the context of the control cell, and also the
management of those errors that could not be resolved in
a control cell immediately controlled by this one. Both the
error format and the remote error notification mechanism
will be based on the global CMS distributed error han-
dling scheme.

The control over what operations can be executed is dis-
tributed among the ACM for user access level control (e.g.,
a user with monitoring privileges cannot launch a self test
operation), the TSM for conflictive operation control (e.g., to
avoid running in parallel operations that could disturb each
other), and inside the commands code of each operation (e.g.,
to check that a given user is allowed to set up the requested
configuration). More details are given in Section III-B1.

B. Trigger Supervisor Services

The Trigger Supervisor services are the final functionalities
offered by the TS. These services emerge from the collabora-
tion of several nodes of the TS tree. In general, the central node
will always be involved in all services coordinating the opera-
tion of the necessary TS leaves. The goal of this section is to
describe, for each different service, what the default operations
are in both the central node of the TS and in the TS leaves, and
how the services emerge from the collaboration of these dis-
tributed operations. It is remarked that a control cell operation
is always a FSM.

1) Configuration: This service is intended to facilitate the
hardware configuration of the trigger system, which includes
the setting of registers or look-up tables and downloading the
trigger logic into the programmable logic devices of the elec-
tronics boards. The configuration service requires the collabo-
ration of the central node of the TS and all the TS leaves. Each
control cell involved will implement the operation represented
in Fig. 3.

Due to the asynchronous interface, it is also necessary to
define transition states such as “Configuring” and “Enabling,”
which indicate that a transition is in progress. All commands
are executed while the FSM is in a transition state. If applicable,
an error state is invoked from the transition state. Fig. 4 shows
how the different nodes of the Trigger Supervisor collaborate in
order to fully configure the trigger system.

A key—a name that uniquely identifies the configuration of
a given system—is assigned to each node. Each key maps into
a primary key in the data base table that contains the configu-
ration information of the system. The sequence of steps that a
controller of the TS should follow in order to properly use the
configuration service is as follows.

• Send a “ ” command to
the central node of the TS.

• Once the operation reaches the “Not configured” state,
the next step is to send a “ ” com-
mand, where “TS_key” identifies a set of “trigger_keys,”
one per trigger subsystem that is to be configured. The
“ ” command initiates the configu-
ration operation in the relevant TS leaves. The configure
command in the configuration operation of each TS leaf
will check whether or not the user is allowed to set the

DE ABRIL et al.: CONCEPTUAL DESIGN OF THE CMS TRIGGER SUPERVISOR 479

Fig. 3. Configuration operation. Such an operation has to be implemented by each control cell.

Fig. 4. Configuration service. A configuration is identified by a unique key.

configuration identified by a given “trigger_key.” This
means that each trigger subsystem has the full control
over who and what can be configured. This also means
that the list of users in the central node of the TS will be
replicated in the TS leaves.

• Once the configuration operation of the TS leaves reaches
the “Configured” state, the configuration operation in the
central node of the TS jumps to the “Configured” state.

• Send an “ ” command. This fourth step is just a
switch-on operation.

From the point of view of the trigger system, everything is
ready to run the experiment once the configuration operation
reaches the “Enabled” state.

Each trigger subsystem will have the responsibility to cus-
tomize the configuration operation of its own control cell and
thus will have to implement the commands of the FSM. The
central node of the Trigger Supervisor owns the data that relates
a given trigger key to the trigger subsystem keys.

The presented configuration service is flexible enough to
allow a full or a partial configuration of the trigger system.
In the second case, the “TS_key” identifies just a subset of
“trigger_keys,” one per trigger subsystem that is to be config-
ured, and/or each “trigger_key” identifies just a subset of all the
parameters that can be configured for a given trigger subsystem.
As will be shown in Section III-D, the configuration data base
is common to both the central node of the TS and the TS leaves.
Each trigger subsystem will be responsible for populating the
configuration data base and to assign key identifiers to sets of
configuration parameters.

2) Reconfiguration: This section complements Section
III-B1. A reconfiguration of the trigger system may become
necessary, for example if thresholds have to be adapted due
to a change in luminosity conditions. The new configuration
table must be propagated to the filter farm, as it was required
in Section II-A2. The following steps show how a controller
of the TS should behave in order to properly reconfigure the
trigger system using the configuration service.

• Once the trigger system is configured, the configuration
operation in the central node of the TS will be in the
“Enabled” state.

• Send a “ ” command. The following
steps show how this command behaves.
—Stop the generation of L1A signals.
—Send a “ ” command as in

Section III-B1, and
—Jump to the state “Configured.”

• The controller is also responsible for propagating the con-
figuration changes to the filter farm hosts in charge of
the HLT and the trigger simulation through the configu-
ration/conditions data base.

• Send an “ ” command: This signal will be sent
by the controller to confirm the propagation of configu-
ration changes to the filter farm hosts in charge of the
HLT and the trigger simulation. This command will be
in charge of resuming the generation of L1A signals.

Run control is in charge of coordinating the configuration of
the TS and the HLT. There is no special interface between the
central node of the TS and the HLT.

480 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 2, APRIL 2006

Fig. 5. Typical scenario of an interconnection test. The interconnections of the Trigger Primitive Generators and the Global Trigger logic are tested.

Fig. 6. Interconnection test operation. Each control cell must implement this type of operation.

3) Testing: The TS will offer two different test services: the
self test service and the interconnection test service. The fol-
lowing sections describe both.

The self test service is intended to check that each individual
subsystem is able to operate as foreseen. If anything fails during
the test of a given subsystem, an error report is returned, which
can be used to define the necessary corrective actions. The self
test service can involve one or more subsystems. In the second,
more complex case, the self test service requires the collabora-
tion of the central node of the TS and all the corresponding TS
leaves. Each control cell involved will implement the same self
test operation. The self test operation running in each control
cell is a FSM with only two states: “halt” and “tested.” This is
the sequence of steps that a controller of the TS should follow
in order to properly use the self test service.

• Send a “ ” command. Once the
self test operation is initiated, the operation reaches the
“halt” state (initial state).

• Send a “ ” command, where the
parameter “LogLevel” specifies the level of detail of
the error report. An additional parameter “type,” in the
“ ” command, might be used to distinguish
among different types of self test.

The behavior of the “ ” command depends on whether
it is the self test operation of the central node of the TS, or a
self test operation in a TS leaf. In the central node of the TS, the
“ ” command is used to follow the above sequence for
each TS leaf, and collect all error reports coming from the TS
leaves. In the case of a TS leaf, the “ ” command will
implement the test itself and will generate an error report that
will be forwarded to the central node of the TS. It is important to
note that the error report will be generated in a standard format
specified in a XML Schema Document (XSD).

The interconnection test service is intended to check the con-
nections among subsystems. In each test, several trigger subsys-
tems and subdetectors can participate as sender/s or receiver/s.

Fig. 5 shows a typical scenario for participants involved in an in-
terconnection test. The example shows the interconnection test
of the Trigger Primitive Generators and the Global Trigger logic.

The interconnection test service requires the collaboration of
the central node of the TS and some of the TS leaves. Each
control cell involved will implement the operation represented
in Fig. 6.

This is the sequence of steps that a controller of the TS should
follow in order to properly use the interconnection test service.

• Send a “ ” command.
• Once the operation reaches the “Not tested” state, the next

step is to send a “ .” This com-
mand implemented in the central node of the TS will do
the following steps:
—Retrieve from the configuration data base the relevant

information for the central node of the TS.
—Send a “ ” command to

sender/s and receiver/s.
—Send “ ” command to sender/s and

receiver/s.
—Wait for “Ready_for_test” signal from all senders/

receivers.
• Once the operation reaches the “Ready” state, the next

step is to send a “ ” command.
• Wait for results.
This is the sequence of steps that the TS leaves acting

as senders/receivers should follow when they receive the
“ ” command from the central node
of the TS.

• Retrieve from the configuration data base the relevant in-
formation for the leaf (e.g., which role: sender or receiver,
test vectors to be sent or to be expected).

• Send a “Ready_for_test” signal to the central node of the
TS.

• Wait for the “ ” command.

DE ABRIL et al.: CONCEPTUAL DESIGN OF THE CMS TRIGGER SUPERVISOR 481

Fig. 7. Start up service. Three steps identified by keys have to be executed.

• Do the test, and generate the test report to be forwarded
to the central node of the TS (if the TS leaf is a receiver).

In contrast to the configuration service, the central node of the
TS can already check whether a given user can launch intercon-
nection test operations. However, the TSM of each TS leaf will
still be in charge of checking whether acting as a sender/receiver
is in conflict with an already running operation. Each subde-
tector must also customize a control cell in order to facilitate the
execution of interconnection tests that involve the TPG modules.

4) Monitoring: The monitoring service will be imple-
mented by an operation running in a concrete TS leaf or as
a collaborative service where an operation, running in the
central node of the TS, is monitoring the monitoring operations
running in a number of TS leaves.

The basic monitoring operation is a FSM with just two states:
“monitoring” and “stop.” Once the monitoring operation is ini-
tiated, the monitoring process is started. At this point, any con-
troller can retrieve items by sending “ ” commands. A more
advanced monitoring infrastructure will be offered in a second
development phase where a given controller will receive mon-
itoring updates following a “ ” approach. This second ap-
proach facilitates the implementation of an alarm mechanism,
part of which can be incorporated in the general alarm system
provided through the RCMS framework.

The proposed monitoring scheme depends on the monitoring
infrastructure provided by XDAQ. Therefore, both consumer
and producers must be implemented with this framework.

5) Start Up: From the point of view of a controller (run con-
trol session or standalone client), the whole trigger system is
one single resource, which can be started by sending three com-
mands. Fig. 7 shows how this process is carried out. This ap-
proach will simplify the implementation of the client.

The first client that wishes to operate with the TS must follow
these steps.

• Send a “ ” command to the job control
(JC) daemon in charge of starting up the central node of
the TS, where ‘TS_URL’ identifies the Uniform Resource
Locator from where the compiled central node of the TS
can be retrieved.

• Send a “ ” com-
mand to the central node of the TS in order to properly
configure it. Steps 1 and 2 are separated to facilitate an
incremental configuration process.

• Send a “ ” com-
mand to the central node of the TS. This command
will send the same sequence of three commands
to each TS leaf, but now the command parameters
are retrieved from the configuration data base reg-
ister identified with the “TS_start_key” index. The
“ ” command
that is received by the TS leaf is in charge of starting up
the corresponding online software infrastructure.

The release of the TS nodes is also hierarchic. Each node
of the TS (i.e., TS central node and TS leaves) will maintain
a counter of the number of controllers that are operating on it.
When a controller wishes to stop operating a given TS node,
it has to demand the value of the reference counter from the
TS node. If it is equal to 1, then the controller will send a
“ ” command and will wait for the answer. When
a TS node receives a “ ” command this will
behave like the controller outlined above in order to release the
unnecessary software infrastructure.

C. GUI

Together with the basic building block of the TS or control
cell, an interactive graphic environment to interact with it will
be provided. It will feature a display to help the user/developer to
operate the control cell, and will cope with the requirement out-
lined in Section II-A9. Two different interfaces will be provided.

482 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 2, APRIL 2006

• HTML: The control cell will provide an HTTP interface
that will allow full operation of the control cell and visu-
alization of the state of any running operation. The HTTP
interface will provide an additional entry point to the con-
trol cell (Section III-A), bypassing the ACM, in order to
offer a larger flexibility in the development and debug
phases.

• Java: A generic controller developed in Java will provide
to the user an interactive window to operate the control
cell through a SOAP interface. This Java application will
also be an example of how to interact with the monitoring
operations offered by the control cell, and graphically rep-
resent the monitored items. This Java controller can be
used in the future by run control as an example of how to
interact with the TS.

D. Configuration/Conditions Data Base

A common configuration/conditions data base approach, as
it is shown in Fig. 1, will be used by all the trigger subsystems
and the TS. Different sets of firmware for the trigger electronics
boards and default parameters such as thresholds will be prede-
fined and stored in the data base. The information will be vali-
dated with respect to the actual hardware limitations and com-
patibility between different components.

The general CMS data base infrastructure, which the TS will
use, includes the following components.

• HW infrastructure: Servers.
• SW infrastructure: Likely based on Oracle, scripts and

generic GUIs to populate the data bases, methodology to
create customized GUIs to populate subsystem specific
configuration data.

Each trigger subsystem should provide the specific data base
structures for storing configuration data, access control infor-
mation and interconnection test parameters. Custom GUIs to
populate these structures should also be delivered.

IV. DELIVERABLES AND CONFIGURATION MANAGEMENT

The development of the TS will require the distribution of its
implementation among the trigger subsystems and the TS. The
skeleton of the basic control cell, presented in Section III-A,
will be delivered to every trigger subsystem. Each subsystem
will be responsible for its customization. A set of configuration
management actions will be proposed in order to improve the
communication of the system evolution and the coordination
among trigger subsystem development groups. Configuration
management is the discipline applying technical and adminis-
trative controls to identification and documentation of physical
and functional characteristics of configuration items, changes
to characteristics of those configuration items, recording and re-
porting of change processing and implementation of the system.
The term “software configuration management” will be used
in the TS context in the following, in order to distinguish it
from the detector and trigger hardware detector configuration
management.

A. Skeleton

The following software packages will be provided to each
trigger subsystem.

• Generic control cell: common SW skeleton to be cus-
tomized by every subsystem (Section III-A).

• Pluggable set of default operations: FSMs for configura-
tion, monitoring and testing and proposed API of com-
mands to be filled by subsystems (Section III-B).

• Skeleton of a customizable GUI (Section III-C)

B. Development Methodology

A template TS leaf, which has to be customized by each sub-
system, is provided. Fig. 8 shows three different scenarios for
the customization of the TS leaf, as a function of the available
online software infrastructure. The OSWI is the software system
running locally on the corresponding trigger subsystem server.
This contains the driver that facilitates access to the VME crate.

The scenarios for the customization of the TS leaf are as
follows.

• Web service access to the OSWI: in this case the cus-
tomization of the control cell will use the web service API
to access the hardware.

• XDAQ-based OSWI: in this case one can either use the
SOAP API to access the XDAQ services or bind the con-
trol cell and the OSWI to the same XDAQ executive. In
the second case, it is possible to use the XDAQ infospace
for the communication between the control cell and the
OSWI.

• C++ API: in this third case the available OSWI is a set
of classes that facilitates the access to the hardware. The
control cell must run locally in the corresponding trigger
subsystem server.

In any of the three scenarios, the SOAP interface of the cor-
responding TS leaf can change. Each trigger subsystem has to
keep a consistent WSDL file that properly specifies this API.

The customization flexibility of the control cell facilitates the
evolution of the underlying OSWI and the integration of several
different interfaces (i.e., SOAP, I2O, C++), whilst keeping a
well defined interface with the central node of the TS.

C. Software Configuration Management

The online software infrastructure of the trigger system will
evolve during the development phase, but also during the instal-
lation, the commissioning and the operational phases. An ac-
curate and centralized control over the evolution of the system
configuration has the following advantages.

• It facilitates the exact replication of the trigger system.
• It improves the communication of the software evolution.
• It facilitates the coordination among trigger subsystem

groups.
• It eases the resource sharing among trigger subsystem

groups.

An exhaustive software configuration management would re-
quire tracking several parameters. On the other hand, a more

DE ABRIL et al.: CONCEPTUAL DESIGN OF THE CMS TRIGGER SUPERVISOR 483

Fig. 8. Integration scenarios. Three scenarios for the customization of a TS leaf are possible.

suitable and realistic approach is to adopt different actions in a
progressive way.

A common CVS (Concurrent Versions System) repository for
all the online software infrastructure of the trigger has been cre-
ated, which facilitates the production and coordination of trigger
software releases. A generic Makefile has been adopted to ho-
mogenize the build process of the trigger software. This allows a
more automatic deployment of the trigger online software infra-
structure, and prepares it for integration with the online software
framework of the DAQ.

V. SUMMARY AND CONCLUSION

The requirements for the Trigger Supervisor have been iden-
tified and a suitable architecture has been developed. It is com-
posed of a central node in charge of coordinating the access to
the different subsystems, and a customizable TS leaf for each
of them, which offers a well defined interface to the central
node. The concept is not driven by the design of the online soft-
ware infrastructure of a concrete subsystem in order to improve
the evolution potential of the low-level infrastructure. Moreover,
the design is logically and technologically decoupled from any
controller.

A distributed development will be necessary. Each subsystem
will be responsible for customizing its own TS leaf. A set of
configuration management actions have been presented in order
to improve the communication of the system evolution and the
coordination among trigger subsystem development groups. A
working prototype of the TS containing the principal compo-
nents but operating with only one subsystem has been provided.
It will be further developed for integration tests of the trigger
electronics and a first data taking run of the CMS experiment
with cosmic rays in the year 2006.

The problem of a distributed online software system affects
large experiment collaborations in general. Therefore, the
described system architecture, development methodology and
configuration management actions can be used as a solution
that is applicable to other experiments.

ACKNOWLEDGMENT

The authors would like to thank the many collaborators
contributing to the trigger online software infrastructure for
their comments and fruitful discussions with them; S. Cittolin,
J. Gutleber, L. Orsini, and W. H. Smith for valuable sug-
gestions; the CMS-internal reviewers J. Mans, C. Tully, and
the chairpersons of the CMS Publications Committee and
Trigger/DAQ Editorial Board, R. Tenchini and S. Erhan, for
their help in bringing the manuscript into its final form. Last,
but not least, the authors would like to thank M. Magrans de
Abril for imaginative and open-minded ideas.

REFERENCES

[1] The CMS Collaboration, CMS Tech. Proposal, CERN LHCC 94-38,
1994.

[2] The CMS Collaboration, The Trigger and Data Acquisition Project, The
Level-1 Trigger, CERN LHCC 2000-038, vol. I, 2000.

[3] The CMS Collaboration, The Trigger and Data Acquisition Project, Data
Acquisition and High-Level Trigger, CERN LHCC 2002-26, vol. II,
2002.

[4] V. Brigljevic et al., “Run control and monitor system for the CMS exper-
iment,” presented at the Computing in High-Energy and Nuclear Physics
Conf., La Jolla, CA, Mar. 24–28, 2003.

[5] C.-E. Wulz, “Concept of the first level global trigger for the CMS exper-
iment at LHC,” Nucl. Instrum. Meth. A, vol. 473, pp. 231–242, 2001.

[6] A. Taurok, H. Bergauer, and M. Padrta, “Implementation of the first level
global trigger for the CMS experiment at LHC,” Nucl. Instrum. Meth. A,
vol. 473, pp. 243–259, 2001.

[7] CMS L1 Trigger Control System, CMS Trigger/DAQ Group, CERN
CMS Note 2002/033, 2002.

[8] Web Services Activity [Online]. Available: http://www.w3.org/2002/ws/
[9] Simple Object Access Protocol (SOAP) 1.1 [Online]. Available:

http://www.w3.org/TR/soap
[10] Extensible Markup Language (XML) [Online]. Available: http://www.

w3.org/XML
[11] XML Schema [Online]. Available: http://www.w3.org/XML/Schema
[12] Web Services Description Language (WSDL) 1.1 [Online]. Available:

http://www.w3.org/TR/wsdl
[13] I2O Special Interest Group, Intelligent I/O (I2O) Architecture Specifi-

cation v2.0, 1999.
[14] J. Gutleber and L. Orsini, “Software architecture for processing clusters

based on I2O,” Cluster Comput., vol. 5, no. 1, pp. 55–64, 2002.
[15] J. Gutleber, S. Murray, and L. Orsini, “Toward a homogeneous architec-

ture for high-energy physics data acquisition systems,” Comput. Phys.
Commun., vol. 153, no. 2, pp. 155–163, 2003.

	toc
	Conceptual Design of the CMS Trigger Supervisor
	Ildefons Magrans de Abril, Member, IEEE, Claudia-Elisabeth Wulz,
	I. I NTRODUCTION
	II. R EQUIREMENTS
	A. Functional Requirements
	1) Configuration: The first functionality offered by the TS will
	2) HLT Synchronization: In order to properly configure the HLT,
	3) Test: The TS will offer an interface to test the trigger syst
	4) Monitoring: The TS interface must enable the monitoring of th
	5) User Management: During the experiment commissioning the diff
	6) Hierarchical Start Up Mechanism: In order to maximize subsyst
	7) Logging Support: The TS must provide logging mechanisms in or
	8) Error Handling: An error management scheme, compatible with t
	9) User Support: A graphical user interface (GUI) will be provid

	B. Nonfunctional Requirements
	1) Low-Level Infrastructure Independence: The design of the TS s
	2) Subsystem Control: The TS should offer the possibility of ope
	3) Controller Decoupling: The TS must operate in different envir
	4) Multi User: During the commissioning and maintenance phases,
	5) Remote Operation: The CMS experiment is developed and will be
	6) Interface Requirements: In order to facilitate the integratio

	Fig.€1. Architecture of the Trigger Supervisor. A central node a
	III. D ESIGN
	A. Control Cell

	Fig.€2. Architecture of the control cell, the common building bl
	B. Trigger Supervisor Services
	1) Configuration: This service is intended to facilitate the har

	Fig.€3. Configuration operation. Such an operation has to be imp
	Fig.€4. Configuration service. A configuration is identified by
	2) Reconfiguration: This section complements Section III-B1 . A

	Fig.€5. Typical scenario of an interconnection test. The interco
	Fig.€6. Interconnection test operation. Each control cell must i
	3) Testing: The TS will offer two different test services: the s

	Fig.€7. Start up service. Three steps identified by keys have to
	4) Monitoring: The monitoring service will be implemented by an
	5) Start Up: From the point of view of a controller (run control
	C. GUI
	D. Configuration/Conditions Data Base
	IV. D ELIVERABLES AND C ONFIGURATION M ANAGEMENT
	A. Skeleton
	B. Development Methodology
	C. Software Configuration Management

	Fig.€8. Integration scenarios. Three scenarios for the customiza
	V. S UMMARY AND C ONCLUSION

	The CMS Collaboration, CMS Tech. Proposal, CERN LHCC 94-38, 1994
	The CMS Collaboration, The Trigger and Data Acquisition Project,
	The CMS Collaboration, The Trigger and Data Acquisition Project,
	V. Brigljevic et al., Run control and monitor system for the CMS
	C.-E. Wulz, Concept of the first level global trigger for the CM
	A. Taurok, H. Bergauer, and M. Padrta, Implementation of the fir

	CMS L1 Trigger Control System, CMS Trigger/DAQ Group, CERN CMS N
	Web Services Activity [Online] . Available: http://www.w3.org/20
	Simple Object Access Protocol (SOAP) 1.1 [Online] . Available: h
	Extensible Markup Language (XML) [Online] . Available: http://ww
	XML Schema [Online] . Available: http://www.w3.org/XML/Schema
	Web Services Description Language (WSDL) 1.1 [Online] . Availabl
	I2O Special Interest Group, Intelligent I/O (I2O) Architecture S
	J. Gutleber and L. Orsini, Software architecture for processing
	J. Gutleber, S. Murray, and L. Orsini, Toward a homogeneous arch

