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A. BOUNDS ON MULTIPLE-THRESHOLD FUNCTIONS

This report presents some preliminary results regarding multiple-threshold func-

tions. 1, Z A lower bound on the number of thresholds required to realize all functions

of n variables will be derived.

Multiple-threshold functions will be defined as follows.

DEFINITION 1: A Boolian function f(x 1, .. . , xn) is k-threshold threshold realizable

iff there exists a set of real numbers w . . . . . wn, T1' . . . . . Tk such that

j 1 wix i -

kH
j=
j=l

Tj) > 0 f(x, ... x ) = q

T. < 0 f (x I ..... xn ) = ,
i wixi -

where q = 0 or 1. Thus a given set of wi and T. define one function with q = 1 and the

complement of that function with q = 0. It is also clear that if a function is realizable

with k thresholds it is realizable with m thresholds for m greater than k.

It is of substantial theoretical and practical interest to determine the minimum num-

ber of thresholds required to realize any function of n variables. We shall give a lower

bound for this minimum number. To the author's knowledge no one has exhibited an

n-variable function that requires more than n thresholds. We will show that for suf-

ficiently large n such functions must exist.

We see that
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r w x. - T = 0 (2)j= 1

will be satisfied iff Eq. 3 holds.

n

w.x. - T. 0 for some j, 1 < j < k. (3)

i= 1

Consider an (n+k)-dimensional space (called the realization space) with axes labeled

w, ... , wn  1' ' . . . . . Tk. Each point in this space corresponds to multiple-threshold

realizations of a function and its complement. Both these realizations require k or
fewer thresholds. Using the vectors W = (w I , ... ,w n ) and X = (x .. . ,x n), we can
write Eq. 3 as

W-X-T. 0. (4)

For any particular X, Eq. 4 is the equation of a hyperplane passing through the origin

of the realization space.

For a givenX, the k hyperplanes defined by Eq. 5 below divide the realization space

into a finite number of regions, the exact number depending on the relative orientations
of the hyperplanes.

W-X-T.= 0 1 j <k (5)

The coordinates of any point on any hyperplane are such that

k
(W X-T) = 0. (6)

j=1

The coordinates of a point that is not on any hyperplane (internal to a region) are such
that either

k
I (W.X-Tj) > 0

j=l

or (7)

k
S(W . X-T.) < 0.

j= 1

Furthermore, the coordinates of all points internal to a given region will yield the same
sign for the product in Eq. 7.
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Now let Xbe a vector in n-dimensional switching space. Each of the Zn possible X's

generates k hyperplanes. Thus all 2 X vectors generate k2 n hyperplanes, which divide

the realization space into a finite number of regions. The coordinates of a point internal

to a given region specify a Boolian function and its complement, both of which require

k or fewer thresholds for their realizations. The coordinates associated with all points

in a given region correspond to realizations of the same two functions. It is possible,

however, that different regions of the realization space may correspond to the same two

functions.

Let S(k, n) be the maximum number of regions into which the realization space can

be divided by k2 n hyperplanes, all passing through the origin. Then 2S(k, n) is an upper

bound to T(k, n), the number of n-variable Boolian functions that are realizable with k or

fewer thresholds. Using a result of Cameron,3 we have

n+k-l

S(k, n) = 2 k (kh -1) (8)

=O0

This gives

THEOREM 1:

n+k-l

T(k, n) < 4 (k2n) . (9)

P= 0

Employing a bound of Winder 4 and then using Stirling's approximation, we have

4 (k2n) n+k-l ek n+k-l

T (k, n) < < ( + k - 1 (10)
(n+k-1)! 1

Let K(n) be the smallest number of thresholds required to realize all 2 n functions

of n variables. K(n) must be such that

)n+K(n)-l1
eK(n) n  

2 n
2 K> T(K(n),n) > 2 (11)

qr- (n + K(n) - 1

Using the fact2, 5 that K(n) > n and K(n) < 2 n and a series of manipulations on the left-

most term of Eq. 11, we can establish

THEOREM 2:

n-2
K(n) > 2 for n > 2. (12)

n

Thus for values of n > 8, K(n) > n, and hence there must exist functions of 8 variables
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that require more than 8 thresholds.

Also, with reference to Spann 6 we have shown the following.

THEOREM 3: For n > 10 the class of Modular Threshold functions does not contain

all functions.

I would like to thank Dr. D. Haring of the Electronic Systems Laboratory of M. I. T.

for bringing Winder's correspondence to my attention.

R. N. Spann
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