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ABSTRACT: The CMS experiment uses information from its electromagnetic and hadronic
calorimeters and muon detectors to decide whether to read out the whole detector. For such a
task to be successful, all trigger primitives pushed through the trigger decision tree must be flaw-
lessly aligned in time for operation at 40 MHz. Both calorimeters in CMS use the Synchronization
Link Board for this purpose. In this article we report on the test results of this board using the
bunched beams available in the H4 electron beam line at CERN.

KEYWORDS: Calorimeters; Data acquisition concepts; Modular electronics; Trigger concepts and
systems (hardware and software).

∗Corresponding author.

c© 2008 IOP Publishing Ltd and SISSA http://www.iop.org/EJ/jinst/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/44186771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Andre.David@cern.ch


2
0
0
8
 
J
I
N
S
T
 
3
 
P
0
5
0
0
4

Contents

1. Introduction 1

2. CMS Level-1 Trigger 1

3. The SLB test setup 3

4. Results 4
4.1 Beam time structure 4
4.2 Energy threshold settings 6
4.3 Accumulators in neighboring trigger tower 7

5. Conclusions 8

1. Introduction

The trigger system for the Compact Muon Solenoid (CMS) experiment at the CERN LHC will have
to select 100 interesting events out of 32 million bunch crossings taking place every second [1],
each one with an average 20 interactions piled up.

This is achieved using a two-level architecture. The Level-1 (L1) Trigger reduces the event
rate down to 100 kHz using coarse information from the calorimeter and muon systems, by select-
ing signatures of muons, electrons, photons, jets and missing energy. Then the High Level Trigger
(HLT) performs the final selection of events, reconstructing detailed information as needed, includ-
ing hits in the silicon tracker in a commodity PC farm.

This article briefly reviews the Level-1 Trigger architecture of CMS and then focuses on re-
sults from the first bunched beam operation, at the CERN SPS, of the Synchronization Link Boards
(SLB) connecting the Electromagnetic and Hadronic calorimeters (ECAL and HCAL) to the Re-
gional Calorimeter Trigger (RCT).

2. CMS Level-1 Trigger

The CMS L1 Trigger [1] can be broadly divided into two branches, as depicted in figure 1. One
of these is the Calorimeter branch, where data from the ECAL and HCAL detectors have to be
combined by the RCT. After the RCT processing, the Global Calorimeter Trigger (GCT) calculates
missing transverse energy and all interesting trigger candidate objects derived from calorimeter
information (electron, photon and jet candidates).

Because of the high rates involved, the trigger and data acquisition systems are pipelined.
All systems use the same clock derived from the LHC acceleration system, which also sets the
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Figure 1. Overview of the CMS Level-1 trigger system. On the left the Calorimeter branch and on the
right the Muon branch. Merging of data from different Calorimeter trigger data sources at the Regional
Calorimeter Trigger has to be properly synchronized, whichis accomplished using the SLB [2 – 4].

beam structure, but because of cable and internal delays, different parts of the detector will be
out of phase with respect to each other. Since the different detectors and the trigger might have
different delays, the trigger data being pushed by sub-detectors like the ECAL and HCAL need to
be synchronized before entering to the Trigger system. For this purpose a method for calorimeter
trigger synchronization was developed and a dedicated mezzanine card, the Synchronization Link
Board (SLB), was designed [2-4].

The synchronization task encompasses two aspects: clock phase compensation and pipeline
length equalization. Clock phase synchronization is achieved by having the SLB sit between the
sub-detector and Trigger systems, its outputs being drivenby the same clock as the RCT inputs.
Pipeline length equalization is then achieved by delaying data in an output FIFO, whose latency is
automatically determined by the difference in time of arrival of the orbit signals from the Trigger
and the sub-detectors.

An important feature of the SLB for checking synchronization of the ECAL and HCAL with
the RCT during runtime is its built-in timing accumulators.Each accumulator histograms the
timing of the trigger data produced by a trigger channel withrespect to the start of orbit. These
accumulators are 1024 LHC bunch crossings long and each bin is 11-bit wide (counting up to
2047). The accumulators also have a variable threshold, such that it is possible to count only
trigger primitives whose transverse energy is above a certain value.

A procedure based on the correlation of the patterns recorded in these accumulators, which
will be used to synchronize the more than 7000 trigger data channels of both ECAL and HCAL is
described in [4].
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Figure 2. Top panel: physical view of an ECAL supermodule in the CERN SPS H4 beamline, where the
electron beam comes from the left. Bottom panel: logical layout of an ECAL half-barrel supermodule,
showing the 68 trigger towers, each merging information from 25 lead-tungstate crystals.

3. The SLB test setup

In order to validate the SLB cards, in particular its synchronization functionalities, we have used
the CMS ECAL Collaboration Test Beam stand at the CERN SPS H4 beam line. Figure 2 (top)
shows an ECAL barrel supermodule in the H4 beam area stand. The electron beam momentum is
tunable between 10 and 120 GeV/c. Results reported in this article correspond to data taken with a
beam momentum of 50 GeV/c, for which the beam spot 1σ contour covers only one supermodule
crystal.

Figure 2 (bottom) shows the structure of an ECAL barrel supermodule which comprises 1700
lead-tungstate crystals grouped into 68 trigger towers (TT) of 25 crystals each. It is the data from
each TT that are sent through the trigger path and synchronized and accumulated by the SLB.
Trigger data are generated by adding, in the front-end electronics, the energy of the 25 crystals.
Whenever there is a positive trigger decision, the individual crystal data are then read out by data
concentrator cards. The readout system used at the H4 test beam is described in [5].

In order to test the operation of the accumulator histograms— the crucial part for monitoring
the bunch synchronization of the calorimeter trigger data —we have taken data with the ECAL
barrel final readout electronics, including the SLB cards, during a week when the SPS proton beam
was bunched in a 25 ns LHC-like structure. For this, every SPSorbit (924 bunches long) nominally
had one train of 48 bunches with beam. Figure 3 shows a measurement of the beam current as a
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Figure 3. SPS bunched-beam timing structure as measured by the beam monitors. The beam bucket intensity
is plotted as a function of the 25 ns bucket number, showing a non-trivial structure. (Courtesy of the CERN
AB-OP group)

function of 25 ns “buckets”, as provided by the CERN AB Department, which shows that there are
also particles coming outside the nominal 48 bunch train.

4. Results

4.1 Beam time structure

The presence of the 25 ns structure in the beam timing patterncreates a distinctive feature in the
SLB accumulators, which can record up to 1024 consecutive bunch crossings. The contents of
one such accumulator is shown in figure 4 (top). There we see the same pattern repeated twice
inside the 1024 bins. This was done on purpose to be able to make full use of the 1024 bins of the
accumulators, profiting from the fact that the SPS orbit is shorter than that of the LHC. In order to
quantify the delay between the similar patterns and the degree to which they are similar, we have
calculated a sliding normalized self-correlation coefficient of the accumulator contents, using:

C(∆b) =
∑1023

i=∆b

[

Ai −A∆b···1023
][

Ai−∆b−A0···1023−∆b
]

√

∑1023
i=∆b

[

Ai −A∆b···1023
]2

∑1023
i=∆b

[

Ai−∆b−A0···1023−∆b
]2

,

whereAi represents the value of the accumulator in bini andAx···y = 1
y−x+1 ∑y

i=xAi, is a simple
average. This self-correlation is depicted in figure 4 (bottom) as a function of the delay,∆b. We
can see that there is a trivial maximum for∆b = 0, with C(0) = 1. Furthermore, there is a second
maximum at∆b= 924 (insert figure4) exactly one SPS revolution period, withC(924) = 0.9971±
0.007. For very large values of∆b the number of bins contributing to the self-correlation is so small
that the self-correlation values fluctuate significantly.
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Figure 4. The top panel shows the contents of the SLB accumulator histogram for the beam structure
depicted in figure 3. The bottom panel plots the self-correlation which shows a non trivial maximum at a
delay of 924 bunch crossings (inset,) or a full SPS orbit period.

In order to quantify the precision with which the timing of the second maximum is extracted,
we can look at the weighted distance between the self-correlation value at the maximum and its
closest neighbors:D1(∆b) = Min

{

|C(∆b)−C(∆b±1)|
/

σC(∆b)−C(∆b±1)
}

, where the calculation
of σC(∆b)−C(∆b±1) takes into account the correlations between the individualself-correlation values.
This distance can be seen as a significance or how many “sigmas” the values are away from each
other. Using the accumulator statistics shown in figure 4, wefind D1(924) = 13.1. The significance
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Figure 5. Contents of an SLB accumulator normalized to the intensity of the beam when different energy
thresholds are applied. Note that going from 1 to 8 in the energy threshold, the noise before 15 and after 95
bunch crossings is completely removed.

can be translated into an estimation of the error in∆b for which the maximum occurs usingσ∆b =

1/D1 (∆b). We obtain∆b= 924.00±0.08 for the second maximum in the self-correlation function.

A discussion of this timing method in the context of the LHC operation is presented in ref-
erence [4]. The precision is dependent of the accumulated statistics and trigger data alignment
is considered to be obtained if the significance is greater than five. At LHC low luminosity
(1032cm−2s−1), this is achieved per trigger tower after few minutes of LHC running [4].

4.2 Energy threshold settings

The next interesting quantity that can be studied is the amount of trigger primitives accumulated
for different energy threshold values. For this study, we have taken data with different energy
thresholds applied to a certain SLB accumulator and then compared their contents by normalizing
them to the integrated beam intensity. Figure 5 shows the effect of applying different threshold
values to the trigger primitives contributing to the accumulators. The threshold values are defined
units of 160 MeV.

When comparing the accumulator contents with the thresholdat 1 and 8 (160 and 1280 MeV,
respectively), one can easily see that the background before 15 and after 95 bunch crossings disap-
pears. This means that for energy values below 160 MeV there is still a considerable contamination
from electronics noise.
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Figure 6. Layout of an ECAL barrel supermodule in terms of its trigger towers. In the top, the accumulator
histograms for the 68 trigger towers, showing non-empty accumulators inside the dotted area, which was
exposed to beam. One can also see the serial numbers of the SLBcards reading out 8 TT each, except for
the last one. Bottom: trigger tower numbering for the regionof interest. TT 59 in the center had crystals
1432 and 1451 irradiated during these studies. These correspond to a symmetric and an asymmetric position
with respect to the neighboring trigger towers, 55 and 58.

4.3 Accumulators in neighboring trigger tower

The counts registered in the accumulators as a function of the energy threshold depend on the
distribution of the energy deposits in the corresponding trigger towers.

The electron beam used in the SPS H4 beam line has, at 50 GeV/c,a spatial dispersion of
the order of a crystal’s size. On the other hand more than 90% of the electromagnetic shower en-
ergy is contained in a 3×3 crystal matrix. In consequence, when the beam in centered in crystals
close to the boundary between two trigger towers, the electron energy deposit is shared between
the two towers. For each event, the fraction of this energy sharing depends on the electron impact
coordinates.

Therefore, when the beam is pointing to a crystal close to thetower’s boundary, it is expected
to observe counts in the SLB accumulators of the towers neighbor to the central tower (the tower
where the beam is impinging). This can be seen in figure 6 (top), where the towers left and below
of the central one also show some activity.

For this study we chose a specific trigger tower (59) and centered the beam in 2 crystals,
corresponding to a symmetric (crystal 1432) and an asymmetric (crystal 1451) position relative to
the neighboring towers (55 and 58) as shown in figure 6 (bottom).

With the beam centered in crystal 1432 we expect that the number of counts in TT55 and
TT58 to be the roughly the same. Figure 7 (left) plots the ratio of the number of counts in the
neighboring towers (55 and 58) to the central tower (59), as afunction of energy threshold up to
about 5 GeV. The dependence on the energy threshold is similar in both cases reflecting symmetri-
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Figure 7. Evolution of the ratio of counts registered in neighboring towers (55 and 58) with respect to the
number of counts registered in the tower (59) in which the beam is centered for different energy thresholds
applied to the SLB accumulators. Left: the case in which the irradiated crystal is equally distant from the
neighboring towers. Right: the case in which the crystal is closer to trigger tower 58.

cal energy leakage in the two neighbor towers. The counts in the neighbor towers are at the level of
40% of those of the central tower, for the lowest threshold. This can be explained by the fact that
the neighbor towers are outside the 3×3 window of shower containment for electrons hitting the
center of crystal 1432, and therefore are only sensitive to electrons with impact coordinates biased
towards those towers. The fact that the two ratios are not at the exact same level (45% and 35%)
for the lowest threshold can be due to an asymmetry of the beamprofile (larger dispersion in the
horizontal direction).

When centering the beam on crystal 1451, which is a close neighbor to TT58 and is two
crystals away from the TT55 boundary, we expect a large number of counts in TT58 and the number
of counts in TT55 to be heavily suppressed. This is shown in figure 7 (right). The fact that the ratio
T55/T59 is independent of the energy threshold is indicative that in this case the T55 counts might
be due to beam bremsstrahlung or to particles in the tails of the horizontal beam profile distribution.

5. Conclusions

The operation of the trigger link synchronization boards for the CMS calorimeters has been suc-
cessfully validated in the bunched electron beam test setupat the SPS H4 beam line. The accumu-
lators in these boards have a crucial role in monitoring the trigger data bunch synchronization in
the calorimeter trigger of CMS.
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