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Abstract

A tool for classifying ghost tracks together with the results ob-
tained with Brunel v31r8 is described.
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1 Introduction

The efficiency of the majority of the LHCb tracking algorithms is limited
by the ghost rate in the detector that can be tolerated. This is particulary
true for luminosities greater than the nominal LHCb running value of 2 ×
1032 cm−2s−1. In this note a tool that classifies ghost tracks is presented.
This tool allows the origin of ghost tracks to be better understood. Thus,
it is hoped thus better strategies for identifying and removing ghosts can be
developed.

This note is structured as follows. First, the proposed classification scheme
and its implementation is discussed. This is followed by a discussion of the
results found running the tool on Brunel v31r8.

2 Classification Scheme

Based on studies of the origin of ghost tracks the following categorization
scheme is proposed. Nota Bene, the scheme proposed is not unique: some
tracks can be placed in more than one of the categories. Therefore, the
categories have been ranked according to how informative they are. Each
track is checked against each category in turn until the first match is found.
The categories are:

Spillover and noise: 70% of the LHCbIDs assigned to the track are not
related to any MCParticle 1.

Decay in flight: 70% of the LHCbIDs assigned to the track are due to a
kaon or pion and its daughter muon.

Conversion: 70% of the LHCbIDs assigned to the track are due to an
electron pair produced by a photon conversion within the detector.

EM: 70% of the LHCbIDs assigned to the track are due to an electron.

Hadronic interaction: Two or more of the MCParticle that give LHCbIDs
assigned to a track originate in hadronic interactions in the detector.

1Clusters from both spillover and noise have no associated MCParticle. In fact the
noise rates simulated in the tracking detectors are low. Hence, all the tracks in the category
are due to spillover.
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Phi decay products: 70% of the LHCbIDs assigned to the track are due
to a K± pair produced in a decay of a φ.

Ghost Parent: One or more of the ancestors tracks [1] used to construct
the track is a ghost.

After this generic procedure has been run algorithm specific categorizations
are considered:

Inconsistant parts Many of the LHCb tracking algorithms build tracks in
independent projections before combining these to give space tracks. It
can be that the LHCbIDs corresponding to each projection are consis-
tant but that two projections are not related to the same MCParticle.
In the case of the VELO tracking this corresponds to the hits in the
r and φ projections being from different MCParticles. In the case of
the T seeding this corresponds to the hits in the x and stereo layers
being from different MCParticles. This category is also used to flag
a ghost in the produced by the track matching and the forward track-
ing where the T and VELO seed tracks are not related to the same
MCParticle.

Combinatoric In the VELO r tracking combinations of three co-linear r
hits are considered valid track candidates. If the three hits assigned to
the track are from unrelated MCParticles then this is categorized as
combinatoric.

Finally, the tool can return two trivial cases: if no classification was possible
or if the tool has been called for a real track.

3 Implementation

The categorization scheme described above has been implemented as a Gaudi
tool with the interface given below:

1 stat ic const In t e r f a c e ID
2 I ID ITrackGhos tC l a s s i f i c a t i on ( ” ITrackGhos tC l a s s i f i c a t i on ” , 0 , 0 ) ;
3

4 class IT ra ckGhos tC l a s s i f i c a t i on : virtual public IAlgTool {
5

6 public :
7

8 typedef std : : vec to r<LHCb : : LHCbID> LHCbIDs ;
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9 /// Retr i eve i n t e r f a c e ID
10 stat ic const In t e r f a c e ID&
11 i n t e r f a c e ID ( ) { return I ID ITrackGhos tC l a s s i f i c a t i on ; }
12

13 /∗∗
14 ∗ In format ion on what a ghost t rack i s . . . .
15 ∗ @param LHCb : : Track to l i n k
16 ∗ @param LHCb : : GhostInfo f i l l e d with ghost i n f o
17 ∗ @return StatusCode
18 ∗/
19 virtual void StatusCode i n f o ( const LHCb : : Track& aTrack ,
20 LHCb : : GhostTrackInfo& t i n f o ) const= 0;
21

22 /∗∗
23 ∗ In format ion on a l i s t o f LHCbIDs
24 ∗ @param LHCbIDs : : c o n s t i t e r a t o r s t a r t
25 ∗ @param LHCbIDs : : c o n s t i t e r a t o r stop
26 ∗ @param LHCb : : GhostInfo f i l l e d with ghost i n f o
27 ∗ @return StatusCode
28 ∗/
29 virtual void StatusCode i n f o (LHCbIDs : : c o n s t i t e r a t o r & s t a r t ,
30 LHCbIDs : : c o n s t i t e r a t o r & stop ,
31 LHCb : : GhostTrackInfo& t i n f o ) const= 0;
32 } ;

The tool has two methods that can be called. The first takes a LHCb::Track
as an input. The second takes iterators that define a range of LHCbIDs. This
allows the tool to be used in cases — such as the pattern recognition where
no LHCb::Track object has yet been built. In both cases the result of
the categorization is filled into a LHCb::GhostTrackInfo object 2. This
contains both the result of the categorization procedure and also a map
containing the raw information on which MCParticles were linked to the
track.

Fig. 1 shows the class diagram for tools inheriting from this interface. A
concrete base class (GhostTrackClassificationBase) provides the generic
part of the categorization procedure together with member functions for ma-
nipulation of the raw MCParticle map. If only the generic categorization
is required this base class can be called directly. On the otherhand if an al-
gorithm specific classification is need a specialized implementation inheriting
from the base class can be made. This has been provided for the current
2-D, Velo 3-D, T-seeding and long tracking algorithms.

The following code fragments illustrate how to use the tool:

1 #include ‘ ‘ MCInterfaces / IGhos tTrackC la s s i f i c a t i on . h ’ ’
2 #include ‘ ‘ GaudiKernel / toStream . h ’ ’ // turns enums to s t r i n g s
3

4 // get the t o o l
5 IGho s tTrackC la s s i f i c a t i on ∗ gTool =
6 t o o l<IGho s tTrackC la s s i f i c a t i on > ( ‘ ‘ LongGhos tC la s s i f i c a t i on ’ ’ ) ;

2The header file is located in the MCEvent package.
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Figure 1: Class diagram for the ghost track classification tool.

7

8 // c a l l i t
9 LHCb : : Track ∗ aTrack ;

10 LHCb : : GhostTrackInfo t I n f o ;
11 StatusCode sc = gTool−>i n f o ( aTrack , t I n f o ) ;
12

13 // get the c l a s s i f i c a t i o n
14 std : : cout << ‘ ‘ C l a s s i f i e d as ’ ’
15 << Gaudi : : U t i l s : : t oS t r i ng ( t i n f o . c l a s s i f i c a t i o n ()) << std : : endl ;

4 Results

he performance of the algorithm has been studied using 13000 Bd → J/ψ(µ+µ−)KS(π
+π−)

events generated for the DC’ 06 production and reconstructed with Brunel
v31r8. Fig 2-7 show the results of running the algorithm for the Velo 2-D,
Velo 3-D, Tsa seeding, Forward Tracking, Track Matching and Dowstream
tracking. It can be seen that:

• For all algorithms there is a sizeable fraction of ghost tracks that are
due to electromagnetic interactions of photons and electrons within the
detector.

• For the Velo 2-D tracking it can be seen that the largest source of
ghosts is tracks with three hits that originate from different sources
(combinatoric).

• The only algorithm where the contribution from spillover is sizeable is
the Tsa seeding. This was known from previous studies [2].
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• In the case of the ’long’ tracking algorithms the biggest source of ghosts
is random matches of the T and Velo parts

• More work is needed to improve the classification scheme. In particular
for the Velo 3-D and Tsa seeding the number of tracks which are not
classified is high.
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Figure 2: R dotchart [3] showing the composition of ghost tracks in % for
the Velo 2-D tracking [4].
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Figure 3: R dotchart [3] showing the composition of ghost tracks in % for
the Velo 3-D tracking [4].
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Figure 4: R dotchart [3] showing the composition of ghost tracks in % for
the Tsa seeding [2].
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Figure 5: R dotchart [3] showing the composition of ghost tracks in % for
the forward tracking [5].
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Figure 6: R dotchart [3] showing the composition of ghost tracks in % for
the track matching [6].
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Figure 7: R dotchart [3] showing the composition of ghost tracks in % for
the downstream tracking [7].
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