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RESEARCH OBJECTIVES AND SUMMARY OF RESEARCH

1. Communications

The work of the group is focused on the dual problems of ascertaining the best per-
formance that can be attained with a communication system, and developing efficient
techniques for actually achieving performance substantially this good.

a. Bounds on Error Probability

Bounds on the minimum error probability achievable through coding as a function of
channel, transmission rate and code constraint length are important for at least two rea-
sons: they provide a standard against which practical coding schemes can be compared,
and they contribute insight towards the design of new coding schemes and associated dig-
itial modems.

A large number of new error probability bounds have been contributed over the past
year, including upper bounds for Gaussian noise channels, general time discrete ampli-

tude continuous channels,1 discrete channels with memory, and networks of channels.
New lower bounds for discrete memoryless channels, and a number of upper and lower

bounds for block coding with instantaneous feedback on discrete memoryless channels, 2

have also been developed.

Work is continuing on error probability bounds for networks of channels, channels
with memory, and continuous channels. Finally, work is starting on developing bounds
for restricted classes of codes on discrete memoryless channels.
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b. Instrumentation

The problem of coded system design breaks naturally into questions of coding-
decoding and modulation-demodulation. The inter-relation between these two aspects

This work was supported in part by the National Science Foundation (Grant GP-2495),
the National Institutes of Health (Grant MH-04737-04), and the National Aeronautics and
Space Administration (Grants NsG-334 and NsG-496).
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has been clarified in recent work1,2 and continues as an active subject of theoretical and
experimental investigation. In particular, a data-acquisition system has been designed
and procured which will permit a variety of sequential decoding algorithms to be tested
on signals produced by actual communication systems. For example, the bubble-tank
facility provides a convenient time-and-frequency dispersive channel for the study of
adaptive decoders that estimate propagation characteristics as well as the transmitted

message.3 The decoding experiments will be performed on the Project MAC PDP-6
computer; a special-purpose compiler language will be developed for use in these exper-
iments.

Equipment complexity and computational speed are the central problems in decoder
implementation. A theoretical study of the computational requirements with sequential
decoding is discussed in the present report. An improved method of decoding Bose-
Chaudhuri-Hocquengem codes is also reported.
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c. Vocoded Speech

The proper role of coding in conjunction with speech communication is not clear. A
preliminary investigation of the deterioration of vocoder intelligibility as a function of
noise statistics should be completed by June 1965. Concurrently, an attempt will be
made to devise an efficient coding-decoding scheme appropriately matched to listener
tolerance. The vocoder is being simulated on the 7094 computer.

d. Optical Communications

A theoretical and experimental study directed toward extending modern communica-
tion theory to the treatment of optical communication systems has been initiated. One
aspect of the investigation is devoted to the statistical description of the channels that
might be used at optical frequencies. These descriptions are sought so that the per-
formance limitations of the channels can be determined. Another aspect is the deter-
mination of practical means by which these performance limits may be approached. This
determination involves the statistical description of devices that might be employed in
optical systems. A collateral phase of the investigation is the development of an equip-
ment facility for experimental studies.

The equipment facility now consists of a 5-mw Helium-Neon gas laser, a propagation
path which simulates a long-range free space channel, and a photomultiplier tube which
serves as a receiver. The facility includes the electronic equipment necessary for proc-
essing the received data at energy levels for which quantum effects are important. The
statistical characteristics of this system have been determined by analysis and measure-

ment. 1

The design of dielectric filters for optical communication systems has also been
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investigated. 2 The synthesis of a planar dielectric filter with a prescribed transfer
characteristic was the central problem considered. This problem reduces to the deter-
mination of the required filter permittivity as a function of position. In most previous
studies, only layered filters are considered. That is, the permittivity is constrained
to be a staircase function of position. The more general nonlayered problem was treated
through recourse to the mathematical techniques of inverse scattering theory.

R. G. Gallager, R. S. Kennedy, J. M. Wozencraft
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2. Digital Machines and Automata

During the past year, work has been concentrated in two areas: (i) the development
of techniques for detecting and correcting faulty behavior in finite-state machines;
(ii) the relationships between given information processing requirements and the amounts
of time and equipment needed to implement them.

Two major advances have been made in the first area. First, a method has been

developed I for determining experimentally whether a given sequential circuit is operating
correctly, or whether it has suffered one of a certain broad class of malfunctions.
Although this method does not necessarily lead to minimum-length experiments, it does
yield relatively short experiments and is easy to apply. Second, progress has been made
on the problem of providing error-detection capabilities through a combination of coding
and redundant circuitry. Some of this work is described later in the present report.

In the second area, progress has been made on the problem of determining the
amounts of time required to compute functions with Turing machines. The computations

performed by a restricted class of Turing machines can now be described2 by a gener-
alization of the finite-internal-state concept, and this technique makes it possible to
obtain good lower bounds on the computation times of such machines. In particular, it
can be shown that for this class of Turing machines the reduction from two tapes to one
can require a squaring of the computation time.

During the coming year, effort will be devoted to characterizing the class of modular
threshold functions and applying these functions to the problem of error detection in com-
binational logic. Further investigation of computational complexity questions is antici-
pated, with the ultimate goal of developing more reasonable measures of complexity than
that provided by Turing machine computation time. Finally, consideration will be given
to the general problem of relating the structure of machines to the processing require-
ments that they must meet.

F. C. Hennie III
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A. DECODING BOSE -CHAUDHURI-HOCQUENGHEM CODES

1. Introduction

The outstanding problem of coding theory is to devise codes for combatting disturb-

ances that are typical of communication channels. To be useful a code must admit a

decoding scheme that is practically realizable, a requirement that has been the severest

impediment to use of complicated codes in operational communication systems.

The channel disturbance that has been most studied is that of uncorrelated, equi-

probable errors. Substantial attempts have been made to apply algebraic theory to the

construction of codes to combat such disturbances. The minimum distance of a code,I

that is, the minimum number of places in which any two code words differ, has been a

central concept and the primary criterion of goodness, for when a code has minimum

distance d it is theoretically capable of correcting any number of errors t such that

2t < d - 1.

The outstanding success of this algebraic approach has been the class of binary

(2-symbol) codes discovered by Bose and Ray-Chaudhuri, 2 ' 3 and independently by

Hocquenghem. 4 This class contains many good codes with a wide range of lengths, rates,

and minimum distances. Peterson5, 6 soon discovered an efficient decoding algorithm

for such codes, which was suitable for implementation on a special-purpose digital com-

puter. Bartee and Schneider 7 actually constructed such a machine.

Gorenstein and Zierler 8 succeeded in generalizing these codes to the nonbinary case;

we shall henceforth call all codes of this type, binary or nonbinary, BCH codes. They

were able to outline an efficient error-correction procedure for these codes, consisting

essentially of three steps: d - 1 parity checks are formed from the received symbols;

the locations of the errors are then found by manipulations with these parity checks; and

since the parity checks are linear functions of the error values, the t unknown error

values are given by the solution of t linear parity-check equations.

Errors occur in a communication channel when the detection apparatus at the

receiver 'guesses' that a certain symbol was sent, when it was not. It has been recog-

nized that the performance of a channel could be improved by allowing the detection appa-

ratus not to guess at all whenever the evidence does not clearly indicate one symbol as

the most probable. 9 ' 10 The output of the detection apparatus in such an event is called

an erasure, or deletion; we shall consider erasures as errors (possibly of value zero)

whose locations are known.

A code of minimum distance d is theoretically capable of simultaneously cor-

recting t errors and s erasures whenever 2t + s - d - 1. A technique for correcting

erasures and errors with binary BCH codes is mentioned by Peterson,11 but this tech-

nique does not generalize to nonbinary codes.

In this report we resolve the general error-erasure correction problem by
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introducing a set of parity checks modified according to the positions of the erasures so

as not to check the erased symbols. We show, in a generalization of Gorenstein and

Zierler's work, that these 'modified cyclic parity checks' can be used to find the loca-

tions of the errors, and hence to correct simultaneous erasures and errors for general

BCH codes.

In this development, as in Gorenstein and Zierler's, the rank of a certain matrix

indicates the number of errors in a received word. As we try changing one symbol,

therefore, the behavior of this rank can tell us whether or not that symbol is in error,

and by how much, so that, in principle, a kind of step-by-step decoding becomes possible.

We show,that, because of the special form of this matrix, explicit solutions for the val-

ues of erasures and errors can be obtained in a form that is attractive to implement.

In particular, we demonstrate procedures for the correction of erasures with no errors

which are simpler than the solution of s equations in s unknowns.

2. Preliminary Definitions

BCH codes are conveniently described in the language of the theory of finite fields,

which has been well developed for this purpose by Peterson. A finite, or Galois, field

with pM elements (written GF(pM)) exists if p is a prime, and M is any integer; p is

called the characteristic of the field. In any field there is a zero element 0, a unit ele-

ment 1, and at least one primitive element a, such that any other nonzero element P

can be expressed as a power of a. The order of P is the least integer e such that pe = 1;

a primitive element a has order pM - 1. If M is a factor of N, the elements of GF(pM )

are included in GF(pN), and the former is said to be a subfield of the latter, or the latter

an extension field of the former.

In this language, code words of length n are represented by sequences of n 0 ele-
N

ments from GF(p ), which we shall write as f = (fl' 2  'fn ). If we define the column
o

vector of descending powers of X, X(a,b) (Xa Xa- Xb where X is an indeter-

minate and T indicates the transpose, then the dot product f X(no-, 0) is a polynomial

in X of degree n - 1, which we call f(X). Similarly, if we define a, (Pa, m(a-1)
mbT (a,b) M

... , ImbT, where p, is any element of GF(p N ) or of an extension or subfield GF(pM

- m(n -i)
thereof, we can define f(pm) f P l,0) i o

O i 1
BCH codes of length n o consist of the set of all f such that f(P ) = 0, for all m such

that m 0 -- m - m 0 + d - 2, where m and d are arbitrary integers and P is a field ele-

ment of order n . It will be found that d is the minimum distance of the code. Informa-
o

tion on the number of words in some binary BCH codes (p=2, N=1) has been given by

Peterson. Commonly P = a, a primitive element of GF(pM ), and mo equals zero or one.

Transmission of a code word through a noisy channel results in a reception
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represented by the vector = (rl , r 2 . rn ). If no errors occur, r = f. If t errors
o

occur, there will be t places in which T differs from f. If s erasures occur, then

there will be s places in which r generally differs from f, but in the case of erasures

these places will be known to the receiver, rather than unknown as in the case of errors.
n -i

If the jth error is in the ith place, then we shall call X. P 3 the locator of the error,
3 th thand e r. - f. the value of the error. Similarly, if the k erasure is in the i place,1 1 n -i

then we shall call Yk- o the locator of the erasure, and dk r - f. the value of the
k1 1

erasure (possibly zero). The decoding problem is to find the ej, Xj, and dk , 1 < j -< t,

1 < k < s, when r and the Yk are known. The decoding algorithm that we shall give

solves this problem whenever 2t + s < d - 1.

The starting point in decoding BCH codes is to calculate from r a set of parity

checks that depend only on the error-erasure pattern, and not on the particular code

word sent. In this case the appropriate parity checks Sm are defined by

S r(pm), m 0<m <m +d-2
m o o

n
Srim(n -i)

i= 1

It follows from the definitions of e j, Xj, dk , and Yk that

t s

r(P m f(pm) + eX + dk m
j=1 k= 1

But f(p m ) = 0, m < m < m + d - 2, whatever the code word f. Therefore

t s

Sm = eX + dkY .

j=1 k=l

We shall find it convenient in the sequel to define the column vectors S (Sa ,
T -/a a-1 bT (a,b) a

S... , m a < b < m + d - 2, X (ab) (X.,X a -
... and Y ka,b)

(Ya Ya- .... yb)T Evidently,

t s

S = e.X. + dY
S(a, b) e j(a, b) dkY k(a, b)

j=1 k=l

Finally, let us consider the polynomial a-(Z) defined by

(Z) - (Z-Z 1 )(Z-Z 2 ). . (Z-ZL)
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where Z is an indeterminate and Z 1, Z 2, ... ZL are members of a field. Clearly

a(Z) = 0 if and only if Z equals one of the Z . Expanding o(Z), we get

0-(Z) = ZL - (Z1+Z+ + )ZL-I + ... + (-1)L( 1 Z 2Z .ZL).

The coefficient of (-I)L-1Z

symmetric function aL-_ of Z1,

as the row vector ( o ', 0 I ....
=c()

in this expansion is defined as the L-f t h elementary

Z 2  Z L ; note that -o is always one. We define
(-1) L L); then the dot product

(L, 0)

3. Modified Cyclic Parity Checks

The Sm are not the only parity checks that could be formed; in fact, any linear com-

bination of the S is also a valid parity check. We look for a set of d - s - 1 independent
m

parity checks that, unlike the Sm, do not depend on the erased symbols but still retain

the general properties of the Sm

Define a d(Z) E (Z-Y 1 )(Z-Y2)... (Z-Ys), and let -d then be the vector of the symmetric

functions adk of the erasure locators Yk' as above. We define the modified cyclic parity

checks T by

T .S
n d (m +n+s, m +n)

0 0 o~)

Since we must have m 0 - m + n and m + n + s - m + d - 2, the range of n is 0 < n <

d - s - 2. In the case of no erasures, T = Sn m +nn
Now, since

t

S(m +n+s,m +n) =
0 j=1

t=

s

e jXj(mo+n+s, mo+n) + dkk(m +n+s, m +n)

k= 1

m +n_
e.X. 0eXj j(s, 0) +

k= 1

m + n_
dk Yk Yk(s, 0)'

n = d S(m o +n+s, m +n) =

t

j=1

m +n _
e j d Xj(s, 0)

k= 1

m +n

dk Yk d Yk(s, 0)

t

j=l

m 0m +n
e.X. d(X )X + d Yk

k= 1

t

= E.X n

j=l
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m
Here, we have defined E ej.X. j d(Xj) and used the fact that 0-dk) = 0 (because Yk is
one of the erasure locators upon which 0-d is defined). Because the modified cyclic par-
ity checks can be expressed as the simple function of the error locators given by Eq. 3

we may solve for the error locators exactly as if there were no erasures and the mini-
mum distance were d - s.

4. Determining the Number of Errors

If d- s is odd, the maximum number of errors that can be corrected is t = 1(d-s-),
1 0 2while if d - s is even, up to to = (d-s-2) errors are correctable, and t + 1 errors are

detectable.

We now show that the actual number of errors t is the rank of a certain t X t
o o

matrix M, whose components are modified cyclic parity checks, as long as t < t . In
order to do this we use the theorem of algebra in which the rank of a matrix is t if and
only if there is at least one t X t submatrix with a nonzero determinant, and all

(t+l) X (t+l) submatrices have zero determinants. We also use the fact that the deter-
minant of a matrix that is the product of square matrices is the product of the determi-
nants of the square matrices.

THEOREM (after Gorenstein and Zierler8): If t -< t , then M has rank t, where

2t -2 2t -3 ... Tt -1o o o

T T T2t -3 2t -4 '" t -2
M o o o

Tt - 1 t - 2  ... To o

Since 2t - 2 < d - s - 2, all the T in this matrix are available.o n
PROOF: First consider the t X t submatrix Mt formed by the first t rows and columns

of M. Using Eq. 3, we can write Mt as the product of three tXt matrices as follows:

T2t-2 2t -3 T -t-1

T2t -3 2t -4 2t -t-2
Mt o o o

0 0 0 
t .

r 2t -3 2t -4 "' 2t -2t

t-1 t- t-1 x 0 o t- X t-2
1 2 t 11 1 0 X X 1

t-2 t-2 t-2 at -2t t-1 t-2Xl X 2  t 0 EX2 0 X 2  X 2

2t -2t

f tXt Xt t
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This may be checked by direct multiplication. 2t -2t

The center matrix is diagonal, and therefore its determinant is E.X. o Since
m J

E. = e.X. 0 crd(Xj ) and X. # Yk' e.j 0, this determinant is nonzero. The first matrix is

Van der Monde, with the determinant LI (X.-X.), which is nonzero because the error
i>j

locators are distinct; the third is the transpose of the first, and has the same determi-

nant. The determinant Mt is the product of three nonzero factors, and is therefore

itself nonzero. Thus the rank of M is t or greater.

Now consider any of the (t+l) X (t+1) submatrices of M, which will have the general

form

T T T
a +b a +b a +bt

o o o 1o

T T T
al+bo a+b 1  al+b

at+bo at+b1 T at+b

a a a b b b

X1 X2 ... Xt 0 0 E 0 0 0 X X 1

al al a b b b
X 1  X ... X t  0 0 .. 0 0 X X l X t

1 2 t 2 2 2 2

at at at b b bt
X t x t  0 0 0 ... E t  X X 1 t
1 2 t t t t t

0 0 ... 0 0 0 0 ... 0

in which the a. and b. are the chosen row and column numbers (read backwards). That
1 1

this threefold decomposition can be made may again be checked by direct multiplication

with the use of Eq. 3. Each of the three factor matrices has a zero determinant; there-

fore all (t+l) X (t+l) submatrices of M have zero determinants. Thus the rank of M

can be no greater than t; but then it is t. Q. E. D.

5. Locating the Errors

Still following Gorenstein and Zierler, we now consider the vector 3e of elementary

symmetric functions -ej of the Xj, and its associated polynomial a-e(X) = e X(t, 0) If

we can find the components of 7', we can determine the error locators by finding the

t distinct roots of a-(X) Defining T(a, b) (T a-' T b) , b a d -s-2,

we have
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t

e (n'+t,n') j e(X) 0, O n' d- s - t - 2.

j=1

We know that aeo' the first component of e', equals one. Since the range of n' is at

least 2to-t, we have a set of Zto -t equations in t unknowns. Remembering that t < to
by assumption, we take the t equations specified by 2t - t - 1 > n' > 2t - 2t, which

become in matrix form

T T T T -e2t -1 2t -2 2t -3 2t -t- el
o o o o

TT T T e
2t -2 2t -3 2t -4 ... " 2t -t-2 e2

O O O O

T T T T t-1) e2t t 2t -t-l 2t -t-2 2t -2t 1)
O_ O O

Or, defining 3' =(-a , a-..... (-1)tet), we have

-T e' .(4)(2t -1, 2t -t) e (4)

Since 0 < 2t - 2t and Zt - 1 d - s - 2, all of the Tn needed to form these equationso o n
are available.

We have already shown that M t has rank t, so that these equations are soluble for

-'1 and hence ae . Then, since - (Poi) is zero if and only if P 0 is an error locatore e (,- e
X. , calculation of a-e for each i will reveal in turn the positions of all t errors.

Jo

6. Remark

In Peterson, first the rank of M is found, and then a set of t equations in t

unknowns is solved, as here. We remark that with the definition of M t we have made,

these two steps may be combined into one. (This feature is implicit in Gorenstein and

Zierler.) For consider the equations

-T = "M (5)(Zt -1,t ) e

twhere " - (-Oel' e2 ...., (-1) et 0,. . , 0). An efficient way of solving Eq. 5 is by

Gauss-Jordan reduction to upper triangular form. Since the rank of M is t, this reduc-

tion will leave t nontrivial equations, the last to - t equations being simply 0 = 0. But

M t is the upper left-hand corner of M, so that the upper left-hand corner of the reduced

M will be the reduced M t. We can therefore set the last t - t components of #" to zero,t o e
and get a set of equations equivalent to Eqs. 4, which can be solved for ''. Thus wee
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need only one reduction, not two; since Gauss-Jordan reductions are tedious, this may

be a significant saving.

7. Solving for the Values of the Erased Symbols

Once the errors have been located, they can be treated as erasures. We are then

interested in the problem of determining the values of s + t erased symbols, given that

there are no errors in the remaining symbols. To simplify notation, we consider the

problem of finding the dk given Y k , 1 -< k < s, and t = 0.

Since the parity checks are linear functions of the erasure values, Peterson notes

that we could solve s parity-check equations for the s dk. There is another approach,

however, which is more efficient.

Suppose we want to find dk . As an aid to understanding this approach, let us think
o

of treating the remaining s - 1 erasures as erasures, but making a stab at guessing dko

This would give us a word with s - 1 erasures and either one or (on the chance of a cor-

rect guess) zero errors. The rank of the matrix M 1 would therefore be either zero or

one; but M 1 is simply a single modified cyclic parity check, formed from the elementary

symmetric functions of the s - 1 remaining erasure locators. Its vanishing would there-

fore tell us when we had guessed dk correctly.
o

To derive an explicit equation for d k , let k a'd be the vector of elementary symmet-
o o

ric functions of the s - 1 erasure locators Y 1, ' " -I' k +1' Y S. Since
o o

t = 0, we have from Eq. 2

5
s m 0+d-s-1_L

S(m +d-Z, m +d-s-1) dkYk Yk(s-1, o)
S o k=l

and therefore

Td s_ 1 - r -d S
k d-s-1 k d (m+d-2, m +d-s-1)

m +d-s-1 m +d-s-1

dk Yk k dY o +k dkYk k d k
o o o \ k#k o

m +d-s-1

dk Yk k d k

since k d (Yk ) = 0, k k o . Thus
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k d-s-l
d o

k m +d-s-1

Yk k d (Yk o

This gives us an explicit formula for d k , which is valid for any s:
o

S - S + a-S
m +d-2 k dlSm +d-3 +k d2Sm +d-4

k m +d-2 m +d-3 m +d-4 (6)
S k k 1 Yk + k d2 k0o0 0 0 0

We can find all erasure values in this way; each requires calculation of the symmet-

ric functions of a different set of s - 1 locators. Alternatively, after finding d1 , we

could modify all parity checks to account for this information S mo+d-2,o=
0 0

S(mo+d-2, m) - dl 1Y (m+d-2, m and solve for d 2 in terms of these new parity

checks and the remaining s - 2 erasure locators, and so forth.

G. D. Forney, Jr.
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B. MODULAR THRESHOLD FUNCTIONS

This report presents some preliminary results regarding a special class of multiple

threshold functions. Multiple threshold functions have been treated by Ercoli and

Mercurio. 1 The functions to be treated here are called modular threshold functions

(MTF) and are defined as follows.

DEF 1. A Boolian function F(x 1,..... xn ) is a modular threshold function iff there

exists a set of real numbers w .... w , A, B and T such that the following constraints
n

are satisfied.

1) B>0

2) A<T<A+B

3) For each combination of variable values x i the integer p is so chosen that

n

A ) wixi + pB <A + B.

i=l

n
If the quantity Z w.x. + pB is compared with T, then

i= 1

n

n

w w.x. + pB < T -F(x ,.. . ,x) = 0.

i= 1

Let us indicate some properties of the class of MTF. The proofs for some of the

following theorems are not complete, but enough information is provided so that the

reader can finish the proof.

LEMMA 1. All linearly separable2 functions are MTF.

PROOF. Consider a realization of a linearly separable function F(x 1 , . . . xn) with

weights qi and threshold T'. Then the MTF realization of F will have

n

A = min ixi

i= 1

n n

B = max q x - min qixi + a; a > 0

i=1 i= 1

T =T'

wi qi' -<in.
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With these parameters the value of p in Definition 1 will always be zero and the com-

parisons with the threshold will be identical to those of the linearly separable realization.
LEMMA 2. For all n > 1 there exists at least one F(x 1 ,..,, xn) that is MTF and not

linearly separable.

PROOF. For n > 1 consider the nonlinearly separable function.

F(x ... , n ) = x 1  X x ... Xn.

n
With the choice w. = 1, A = 0, B = 2, the value of Z w.x. + pB satisfying Definition 1
is such that i=1

iw.x. + pB= X1 x 2... x
i=

With T = 1, F(x 1 ,.... xn ) is MTF.

THEOREM 1. The class of linearly separable functions is properly contained in the

class of modular threshold functions. This follows directly from Lemmas 1 and 2.

THEOREM 2. The MTF class is closed under functional complementation, that is,
if F(x 1 , ... . xn) is MTF so is F(x 1 , ... ,xn).

PROOF. We shall give the parameters for an MTF realization of F. Assume that

the realization of F has wi , A, B, and T. The realization of F will have w!, A', B',

and T as follows:

w? = w.
1 1

A' =T

B' =B

T' = A + B.

THEOREM 3. The MTF class is closed under single-variable complementation, that
is, if F(x 1, . . xk . . xn ) is an MTF s o is F(x 1 ' .' - ' k .. .. , xn)'

PROOF. Assume that the realization of F(x 1 . . .x k .... xn ) has the parameters

w., A, B, T. Then the realization of F(xl , . 'xk ... xn) will have the parameters w!,

A', B', and T' as follows:

A' =A-wk

B' =B

T'= T - Wk

wk = -W k

w! = w., 1 i <n, i k.
1 1
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COROLLARY 1. The MTF class is closed under dualization, that is, if F(x 1 ... . x n)

is MTF so is Fd(x 1 f ... Y x ) 
= F(- 1 . . n ).

THEOREM 4. Assume F(x o , x 1 ... xn) = Xofl(xl ... , Xn) + Xof 2 (x 1 ... , xn ) is MTF.

Then both fl and f2 are MTF.

PROOF. Let the realization of F have the parameters w., 0 -< i < n, A, B and T.
1 11 1

Let x = 1. Then F = fl, and fl is realized with w =wi, 1 < i < n, = A - w B =B
O 1 1

and T T - w. Let x = 0. Then F = and f 2 is realized withw. 2 = w, < i <n,
2 2 o 20 1

A = A, B = B and T T.

A multiple-threshold function is defined by a set of weights wi and a set of thresholds

T1' T 2' ... , T m. The usual convention is that T 1 > T 2 > ... > Tm. It is also neces-

sary to specify the value of the function in some range, usually for Z wix i > T1. The

function value for T. Z w.x.i < T is then the complement of its value for Tj -1<

Z w.x. < T11 j-2"
LEMMA 3. The class of two-threshold threshold-realizable functions (2T-TR) is

included in the class MTF.

PROOF. Consider a 2T-TR function F(x 1 , .... , xn) with weights w i , 1 < i < n and

thresholds T 1 and T 2 with T 1 > T 2.

Case I.
n

Assume F = 0 for F wixi. T 1 . The MTF realization of F(x 1 , .. . xn) will have
i=1 mm

A = min w x - max wx. - > T 1  w x

B = max w.x - min w x

MTF
w. -w., 1 < i -- < n

1 1

T = T,.

Case II.
n

A 2T-TR has value F = 1 for Z w.x. > T. Find the MTF realization of F and note
i= 1

that the class MTF is closed under functional complementation. Q. E. D.

THEOREM 5.3 A function G(x 1 . .. x ) is ZT-TR iff there exists a decomposition

G = f + f 2 such that oflf + x f 2 is linearly separable.

THEOREM 6. A function G(x 1 ,..., x n ) is MTF if there exists a decomposition G =

fl + f2 such that G(x 1 .. . , x o) 
=  fl + xof2 is linearly separable.

21 n o o
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LEMMA 4. There exist MTF functions for which the above-mentioned decomposition

does not exist.

PROOF. It can be shown that G(x 1 . .. x n ) = x1 x x 2 ... xn for n >- 3 cannot be

decomposed as in Theorem 6. By Lemma 2, G is MTF.

THEOREM 7. The class of 2T-TR functions is properly included in the class of mod-

ular threshold functions.

We can make some informal observations regarding modular threshold functions.

First, if the quantities A and B are associated with an MTF realization, the same func-

tion will be realized if A is replaced by A+ KB, where K is an integer. Also no weight

associated with the MTF realization need have magnitude greater than or equal to B.

Also, all weights can be positive. Thus for any MTF realization, 0 < w. < B. This in
1n n

turn bounds the quantity Z w.x., that is, Z w.x. < nB. By using this bound it is pos-
i=l i=l

sible to show that there is a multiple-threshold realization of any MTF with a maximum

of 2n thresholds.

The MTF characterization allows any modular threshold function to be represented

in compact form. This form is an (n+3)-tuple giving the parameters w., A, B, and T.
1

(It is not known by the author whether all functions can be so represented.)

We shall indicate how the concept of modular threshold functions can be used to obtain

some error-correction ability for noisy combinational logic circuits. Let us restrict

our attention to MTF realizations in which all of the parameters w., A, B, and T are1
non-negative integers. (Note that any realization having all rational parameters can

be scaled to satisfy this requirement.) The input combinations of an integer realization
n

of a function F can be grouped according to the value of the quantity Z w.x. + pB asso-
i=l

ciated with them. An ordering of these groups is indicated in Fig. XIX-1, where each

K. is a non-negative integer, K. < K. if i < j, and K < B. Assume that the threshold
1 1 3 m

for the function F is T = A + K. as shown.

Figure XIX-2 shows a set of functions F., 1 - i - m-l that are derived by using the
1

weights associated with F and varying the threshold. In particular, F. is the function

obtained by using A + Ki+ 1 as the threshold. We shall now assign output weights qi to

the functions F.i so that for all input combinations and their corresponding output com-

binations

n m-i

wx + pB - qiFi = constant.

i= i=

It can be shown that the choice

qi = Ki+l - K.-K+
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yields

n m-l

wx. + pB - q;Fi = A + K

i= l i= 1

Figure XIX-3 shows a circuit in which the combinational logic realizes the set of

functions F. described above. In addition, this same combinational logic realizes a func-
1

tion F such that x x® .. .( x = F ( F2 ... Fm. The inputs to this logic (x!)m 2 n 1 2 m 1
come from block encoders associated with the over-all inputs x.. These encoders have

1

R - BIT SEQUENCES

Xii

S TENCODER F1  z 1

x2 x2 z2

ENCODER COMBINATIONAL

LOGIC DECODER

Fm -1 Zm- 1
x x'

SENCODER m Zm

1 S-BIT SEQUENCES ]

Fig. XIX-3. Logic and coding circuits.

two properties: (i) the same single-error-correcting code is imposed on the r-bit out-

puts of all the encoders; (ii) for every s-bit input sequence they produce an r-bit output

sequence such that Z w.x! = N. The r-bit output sequences of the combinational logic
11r

are processed by a decoder that produces s-bit sequences. These Zi sequences should,

in the absence of noise, be the same as those resulting from sequential operation of the

combinational circuit on the original s-bit x. sequences. It is assumed that the encoding
1

and decoding circuits are not subject to error during their operation, although the com-

binational logic may be. During the operation of the combinational logic one or more of

the output functions may have a value equal to the complement of the correct output value.

If, during the processing of some block of information, the combinational logic is

error-free then

N. + p1 B I= Zq F. + r(A+K1 ) + P 2 B,

i=1 r i=1
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where the integers pl and p 2 are chosen to make the left- and right-hand sides of this

equation greater than or equal to A and less than A + B. Also the r-bit word formed

at the decoder by computing F 1  F 2 Z... F m for each operation will satisfy the same

parity equations as are imposed by the encoders.

Assume now that a single error occurs in some F. during one of the r operations in
1m-1

a block. The quantity Z qiFi + r(A+K l ) will be changed by an amount ±qi, the sign of
i=l 1

qi being determined by the type of error. The parity equations on F FZ ) . . . $F m
will also give the location of the error within the r-bit sequence. Knowledge of the value

of the actual output at this position and the value of

n m-1
E= N - qiFi + r(A+K 1 + pB, A < E <A + B

i=l r i=l

is sufficient to correct the error. This can best be demonstrated by showing that no

situation occurs in which two different correct outputs can be corrupted, by at most a

single error, to yield the same actual output and the same value of E. This proof will

not be presented.here.

Thus the concept of modular threshold functions provides a new approach to single-

error correction for multiple output circuits. If it can be determined that the set of

functions to be realized is a set of the type described, the error correction technique

can be applied with only the addition of F . Alternatively, if one desires a realization
m

of a single MTF, the technique describes a method for adding redundant functions so as

to achieve some degree of error-correcting ability.

R. N. Spann
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C. THE COMPUTATION PROBLEM WITH SEQUENTIAL DECODING

This report summarizes a thesis that will be submitted to the Department of Elec-

trical Engineering, M. I. T. on February 5, 1965 in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

The Fano Sequential Decoding procedure is a technique for communicating at a high
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information rate and with a high reliability over a large class of channels. Its use is

limited, however, by equipment cost and by variation in the time required to decode suc-

cessive transmitted digits. It is with the latter issue that this work is concerned.

Others have shown that the average processing time per decoded digit is small if the
information rate of the source is less than a rate R . In this thesis the probability

comp
distribution of the processing time random variable is studied. The results of this

examination are applied to the buffer overflow probability, i. e., the probability that the
decoding delay forces incoming data to fill and overflow a finite buffer. It is shown that

the overflow probability is relatively insensitive to the buffer storage capacity and to the
computational speed of the decoder, but that it is quite sensitive to information rate. In
particular, halving the source rate more than squares the overflow probability. It is

found that these sensitivities are basic to sequential decoding, and arise because the

computation per decoded digit is large during an interval of high channel noise and grows

exponentially with the length of such an interval.

A conjecture is presented concerning the exact behavior of the overflow probability

with information rate. This conjecture agrees well with the (limited) experimental evi-
dence that is now available.

J. E. Savage
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