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RESEARCH OBJECTIVES

The aim of this group continues to be the study of the fundamental properties of

plasmas. We have been placing particular emphasis on plasmas in magnetic fields,

plasmas of high percentage ionization at low pressures, and most recently on a plasma

showing turbulence in high-speed flow.

We are also studying ways of determining the characteristics of plasmas by means

of very far infrared optics in the wavelength range 0. 1-1 mm, and by means of optical

lasers.

The infrared diagnostic techniques are closely correlated with our continued effort

to improve the more standard microwave methods. Most of our microwave techniques

at the present time involve the study of microwave radiation from plasmas, with and

without magnetic fields.

Theoretical work has concentrated on the study of waves in plasma, turbulence in

flowing gases, and the statistical nature of plasmas.

S. C. Brown

A. REFLECTION OF GUIDED WAVES FROM A PLASMA COLUMN

IN AN AXIAL MAGNETIC FIELD

In the course of the development of a microwave system for measuring cyclotron

emission from an argon discharge, a study was made of the reflection of guided waves
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Fig. XIV-1. Diagram of the apparatus.
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from an axially magnetized plasma column. Figure XIV-1 illustrates the configuration

in question: a discharge tube, 1 inch in diameter, was inserted at an angle of 80 in a

section of S-band waveguide terminated by a matched load. A directional coupler and

crystal detector monitored the total reflected power. Observations were carried out

in the afterglow of the pulsed DC discharge, the density decay being measured by the

microwave cavity. At an argon pressure of approximately 2 Torr, a 90-ma pulse pro-
11 -3

vided an initial electron density of 1011 cm . The amount of reflected power was viewed

during the density decay at values of the applied magnetic field ranging from zero to

2000 gauss.

The oscilloscope traces shown in Fig. XIV-2 illustrate the effects generally observed.

All three have a time scale of 100 isec/div and were triggered at the beginning of the

CAVITY

REFLECTION w > w

REFLECTION w< o

TIME

Fig. XIV-2. Oscilloscope traces showing cavity response and
peaks in reflected power during the afterglow.

afterglow. The top trace shows the resonance response of the cavity that was used for

density measurement. The middle curve indicates a double peak in reflection seen at

magnetic fields whose cyclotron frequency is less than the frequency of the incident wave.

For this sample, the applied field was zero and the height of the peaks represents reflec-

tion of approximately one-tenth of the incident power. As the applied magnetic field is

increased, these peaks move outward in time (to lower electron densities), vanishing

just before cyclotron resonance is reached. When the cyclotron frequency of the applied

field exceeds the frequency of the incident wave, the power reflection in the afterglow

jumps to around 50 per cent and several maxima and minima are observed, as illustrated
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Fig. XIV-3. Loci of reflection maxima and minima at a fixed incident frequency.
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by the lowest trace in Fig. XIV-2. As the magnetic field is increased further, this new

pattern moves inward in time (to higher densities).

Over a wide range of gas pressures and electron temperatures it was seen that the

positions of the maxima and minima depended only on electron density and magnetic field

- a result that is consistent with the theory of electromagnetic waves in cold plasma.

This dependence can be shown graphically by plotting the combinations of magnetic field

and density at which a given maximum or minimum occurs. Such a plot is shown in

Fig. XIV-3 for a fixed value of the angular frequency w of the incident wave, with the

average electron density in the tube and the magnetic field given in terms of the normal-
2 2 2 2ized variables wa / and w /w . The small circles represent the loci of maxima in the

reflected power, and the black dots give the loci of minima. The result is a series of

fairly straight lines which, if extended to the limit of zero density, would intercept the

vertical axis at L /2 = 1.c
Variation of the incident frequency from 2500 Mc to 3750 Mc had the effect of

changing the slopes of these lines in a smooth fashion. For instance, Fig. XIV-4 illus-
2 2trates the progress in the wc, wp-plane of a single minimum that maintained its identity

w= 19.42
1.4

w =18.29
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1 0- = 17.20
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Fig. XIV-4. Loci of a given reflection minimum at various incident frequencies.
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as w, the angular frequency of incident wave, was varied over the range indicated. At

a low frequency the trace emerges just above the line w /w = 1 and as w increases, it

rotates continuously up to the vertical axis. At this point there is an abrupt flip down

into the region of wc < w, and the reflection minimum appears as an effect which can be

observed at zero magnetic field.

The qualitative explanation of these observed variations in reflected power is that

they arise from interference of the guided waves reflected off the front and back faces

of the plasma column. For a section of waveguide filled uniformly over a finite length,

L, with magnetized plasma, the criterion for a maximum or minimum in the reflected

power is that L corresponds to some definite number of wavelengths in the direction

parallel to the waveguide. In other words, if kz(w, wp ,c) is the wave number along the

waveguide, the loci traced by a given reflection maximum is a curve along which k z is

constant. Preliminary examination of the boundary value problem for a cold plasma

indicates that the dependence of k on w, w , and Wc is strongly related to the behavior
z p c

of n r , the index of refraction of right circularly polarized waves, given by

22
2 p

n = 1r W -
c

Lines of n = constant in the 2, W -plane all intersect at w = oc , O = 0 and undergo a
r p c c p

transition from the lower to the upper part of the plane as nr passes through one. Thus

if kz is a continuous function of wn , this same transition will appear for a line of con-

stant k as w is varied.z
The results for all of the maxima and minima studied are presented in Fig. XIV-5.

22
Here, for convenience, the inverse of the slopes of lines traced in the w , w -plane is

plotted as a function of w. Maxima and minima are represented by the small circles

and black dots, respectively. The three points at which the curves intercept the hori-
2 2

zontal axis represent transitions from the upper to the lower part of the w , ec-plane of

lines of constant k . Of particular interest is the convergence of the curves at these
z

intercepts. The horizontal axis represents the empty-waveguide solutions. As mag-

netized plasma is added, each solution is split into two separate modes, presumably

with different dispersion relations between kz and w. This is not surprising because

in the latter case, the wave equation is of fourth order and two distinct transverse wave

numbers are allowed. In the experiment, the splitting did not completely disappear at

zero magnetic field (see Fig. XIV-2) but this could be due to a slight geometrical asym-

metry.

An additional effect, which deserves mention, has been observed in the reflection

characteristics. As well as the strong interference effects just discussed, some much

fainter dips were seen in the reflected power. These likewise depend on electron density
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Fig. XIV-5. Inverse of the slopes of lines traced in the , W -plane as a function of

the incident frequency. P c

and magnetic field, but the loci, when plotted, form straight lines intercepting the ver-

tical 2/2 -axis not at 1. 00 but at 1. 07. It is possible that this effect arises from the

excitation of higher order waveguide modes that are not cut off in the plasma-filled

section.

The equations governing the propagation of guided waves in a cold plasma have been

given by Allis, Buchsbaum, and Bers, but it would be difficult to obtain an exact solu-

tion for the configuration in question. Agreement with the theory is being sought in var-

ious limiting cases in order to understand more fully the general characteristics of the

dispersion relation.

B. L. Wright
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B. RF ABSORPTION BY A PLASMA NEAR THE ION CYCLOTRON HARMONICS

A system for the investigation of ion cyclotron resonance in a low-pressure arc has

been described previously, and an experimental program for the determination of ion
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energy-loss mechanisms in the plasma has been outlined. In the course of this investi-

gation a complex absorption spectrum has been observed in the range of magnetic fields

for which

5 i 2'

where Q. = B is the ion cyclotron frequency, and w = 2Tr X 106 is the excitation
1 m.

1

frequency.

Some typical absorption spectra are described in this report; at present, a detailed

interpretation of them must await further experimental investigation. Several hypo-

theses will be advanced as a guide for further work.

The plasma under investigation is a helium arc produced in a hollow-cathode dis-

charge.2 Helium gas is introduced into the vacuum chamber through both the cathode

and a hollow tubular anode. A direct current of 3-40 amps is passed through the arc,

(5
Z

uU
z
zZC)
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Fig. XIV-6. Plasma absorption spectra.

and produces ionization within the electrodes and in the chamber between them. The

resulting plasma is confined by an axial magnetic field. The range of parameters of the

arc is summarized as follows:
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Axial magnetic field 0-4100 gauss

Solenoid driving current Is = 0-100 amps

Cathode (tantalum) 0. 125 inch O. D. X 0. 010 inch

Anode (copper) 0. 375 inch I. D.

Cathode gas feed F C = 0. 5-2 X 103 liter-microns/sec

Anode gas feed FA = 0. 5-2 X 103 liter-microns/sec

Arc length 1 meter

Arc current I = 3-40 ampsa

Arc voltage 40-80 volts

Ambient neutral pressure 1-10 X 10-3 torr

14 -3
Plasma density on axis 0. 5-5 X 10 14cm

The plasma is surrounded by a periodic induction coil, 1,3 30 cm long, with a 20-cm

space period. The coil is the unknown element in an RF bridge operating at a frequency

of 1 megacycle. The axial magnetic field is modulated at 100 cps by an additional

winding surrounding the plasma. Through a system of synchronous detection the bridge

produces DC signals proportional to dA/dB and dD/dB, where A and D are the plasma

absorption and dispersion, respectively. These quantities may be investigated as func-

tions of the arc current, gas flow, and magnetic field.

Figure XIV-6 shows some typical absorption spectra. The function plotted is dA/dB

versus B with the gas feed as a parameter. For these three spectra the arc current was

held constant at 15 amps. The sense of the measurements is such that with increasing

B(Is), a zero crossing from above represents a maximum in the absorption and a zero

crossing from below, a minimum.

The dominant feature of these spectra is the large peak in absorption at 2. = w which
1

occurs for B = 2605 gauss, I = 72. 5 amps. This is the cyclotron resonance of the He

ion. The other striking feature is the complicated structure in the region 20 < I <

30 amps. This region is shown in detail in Fig. XIV-7 for constant arc current and

variable flow. Figure XIV-8 shows the same region, but for constant flow and variable

arc current. The behavior of the absorption in this region may be summarized quali-

tatively in the observation that the significant features of the spectra, insofar as they

persist, move upward in magnetic field with increasing are current and downward with

increasing gas feed.

In order to compare the observed absorption spectra with theory, it is necessary to

express the absorption as a function of the plasma density and temperature. An oscil-

lating Langmuir probe was used to provide information on the radial distribution of the
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Fig. XIV-8. Plasma absorption spectra.

plasma parameters. The probe consists of a 0.030-inch tungsten rod which is insulated,

except at the tip, by a thin-walled alumina tube. This probe is driven in and out of the

plasma along a radius with a period of 6 seconds. With this probe, the ion saturation

current may be obtained as a function of radius for different plasma conditions. It is not

possible to measure the electron saturation current, since the theoretical value of several

amperes would vaporize the probe in addition to perturbing the plasma. Profiles of the

ion saturation have been taken over the range of parameters covered in Figs. XIV-7 and

XIV-8. The profiles are generally bell-shaped curves with a half-width approximately

equal to the anode diameter of 0. 375 inch. Using the Bohm formula,4 we have

+sat= 04ne eTe
sat M.

1
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and under the assumption of an electron temperature of 5 ev, we obtain the following

values for the axial plasma density.

Anode Gas Feed

I 300 700 1240 1960 (liter-microns/sec)
s

(amps)

14 -3
20 0.89 1.0 1.33 1.67 10 cm

14 -3
30 1.33 1.73 2. 21 2.44 10 cm

The cathode gas feed was held constant at 1240 liter-microns/sec and the arc current

was 15 amps in these measurements. The radial profile of ion saturation current is

remarkably insensitive to the arc current, showing roughly a 10 per cent increase for

currents of 10-20 amps.

A review of the possible modes of wave propagation in a plasma with the observed

parameters indicates at least two possibilities, excitation of the Alfv6n compressional

wave or the electrostatic ion cyclotron harmonic wave. These possibilities are consid-

ered below. For a uniform cold plasma, the Alfv6n compressional wave obeys the dis-

persion relation3

22 2 2
2 kc +v2 c 2

2 z m 2 2 w
2 2 i i 2 2 2 2'
G. T. k c + v c

where r.2 is the ion plasma frequency, and k and v are the axial and radial wave num-
1 z m

bers. In the experimental situation, kz and w are fixed by the driving coil, and vm is

determined by the radial boundary condition.

A coupling resonance with resulting increase in absorption should occur at the value

of B for which the dispersion relation is satisfied. Specifically, the magnetic field for

resonance should increase with increasing plasma density. From the probe data and

the behavior of the absorption spectra, it may be seen that the magnetic field for which

absorption maxima occur move downward with increasing density. It is unlikely, there-

fore, that the anomalous absorption is due to the excitation of Alfv6n waves.
3, 5

The electrostatic ion cyclotron waves have been considered by several authors.

They are longitudinal in nature, that is, k II E, and for minimum damping they propagate

across the magnetic field k .B 0 For k z = 0, a dispersion relation for these waves has
3

been given by Stix

[2 i= a(q, i)
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(XIV. PLASMA PHYSICS)

where

k 2 KT.

i 2 M. ion gyroradius/transverse wavelength
1

1

q= .

1

The function a goes from +cc for q = n + E, n integral, to -oo for q = (n+l) - E. Conse-

quently, this dispersion relation may be satisfied at at least one point between every

q = n and q = n + 1. Excitation of these waves could be responsible for the observed

absorption but comparison with theory must await further experimental and theoretical

analysis.

W. H. Glenn, Jr.
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C. MICROWAVE MEASUREMENTS OF ELECTRON DIFFUSION IN A

WEAKLY IONIZED FLOWING GAS

[This report is a revised version of a paper presented at the American Physical

Society, Division of Plasma Physics Meeting, New York, November 4-7, 1964.]

As part of a general investigation of the influence of flow on the properties of a dis-

charge in a weakly ionized gas, we have considered the enhanced diffusion that is to be

expected if the gas flow is hydrodynamically turbulent. The effects of turbulent pipe

flow had been briefly studied,1 but the more intense turbulence that can be generated

in jet flow produces more readily observed effects. 2

Figure XIV-9 shows our experimental apparatus. The gas, either argon or helium,

enters through the narrow tube, producing a turbulent jet that is convected downstream

through the microwave Cavity. The plasma is generated by pulsing the cavity in the
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TM020 mode at 2800 Mc with several watts of power at a 120-cycle repetition rate. The

density in the afterglow can be determined by measuring the frequency shift of the TM 0 1 1

resonance near 2400 Mc.

To interpret the experimental results, one must know the velocity profile created

by the jet. Figure XIV-10 illustrates the three flow regimes. In the subsonic range,

an ordinary jet with a laminar core is formed, surrounded by an expanding cone of tur-

bulent gas. As the velocity in the jet tube increases, the turbulence becomes more

intense. Further increases in flow cause the velocity to become sonic in the tube, and

a shock front forms at the orfice. The flow behind the front is a divergent cone, within

which the flow is laminar. The turbulent region is restricted to the boundary layer at

the cone edge. Increasing the flow reduces the turbulent region somewhat, but when the

Reynolds number of the flow in the jet tube exceeds the critical value of approximately

1800 and the flow entering the shock is turbulent already, the entire shock front becomes

unstable. The full downstream flow then suddenly becomes strongly turbulent. The flow

through the cavity tube is always below critical Reynolds number; this implies that the

turbulence decays, but the turbulence is convected through before it is substantially

attenuated.

Two types of experiment were designed to observe the effects of this turbulence. The

most direct technique is to measure density as a function of time in the afterglow, from

which a diffusion coefficient D is calculated. The presence of turbulence is indicated

by an enhanced effective D. Alternatively, one can make quenching power measure-

ments. Here, the pulse power is increased until breakdown occurs and then it is

decreased. The power at which the discharge is extinguished is recorded. Quenching

occurs when the cavity field is insufficient to raise the initial concentration to a stable

discharge level during the pulse. It is therefore quite sensitive to diffusion, which gov-

erns the initial electron density. In both experiments, one observes the competition

between turbulent diffusion and ambipolar diffusion for thermal electrons. Approximate

theoretical calculations indicate that the two effects are of the same order of magnitude.

Typical results for quenching power measurements are shown in Figure XIV-11. The

5- HELIUM 5- ARGON
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0 o2 2

0 0
500 1000 1500 500 1000 1500 2000 2500

Re

Fig. XIV-11. Quenching power vs flow.
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quenching power follows the form predicted from the flow profile, with a sharp jump at

the critical Reynolds number, when the entire stream breaks into strong turbulence.

This onset of turbulence is also marked by the appearance of visual flickering in the dis-

charge. Turbulence is particularly effective in raising quenching power because the

occasional large fluctuations will quench the discharge, although they do not contribute

much to the average diffusion.

The more significant measurement is that of effective diffusion from density decay.

A typical semi-log plot of resonant frequency shift versus time in afterglow is shown

in Fig. XIV-12. The good straight-line fit implies that electron loss is caused by a dif-

fusion mechanism. In Fig. XIV-13 effective diffusion relative to ambipolar diffusion is

plotted as a function of flow. The effective D increases as the jet becomes more intense

and approaches sonic (point S), and jumps again when the whole stream turns turbulent,

in agreement with qualitative predictions. The major puzzle has been the uniformly high

values of diffusion; they are just ten times what one calculates for cold electrons. Recent

measurements and calculations indicate that the 10 mw used for density diagnostics in

the high-Q cavity may be sufficient to keep the electrons hot; this would explain the

remarkably fast diffusion. Additional work on this hypothesis is in progress.

Similar measurements for argon are presented in Fig. XIV-14. These show the

same features as helium. To guarantee that the large diffusion coefficients were inde-

pendent of tube radius, the diameter of the glass tube through the cavity was changed

from 1 cm to 2. 5 cm (see Fig. XIV-15). In this larger tube, the turbulence decays more

rapidly downstream. Only the turbulence from the unstable shock is sufficiently strong

to reach the cavity with measurable intensity.

Considerably more work on the effect of turbulence in both jet and pipe flow is

planned, particularly for explaining the large effective D even in the absence of flow.

Until this problem is solved, theoretical calculations are impossible, and one cannot

venture more than qualitative explanations of results based on the general features of

the velocity profiles in the flow.

K. W. Gentle, G. A. Garosi, K. U. Ingard, G. Bekefi
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