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RESEARCH OBJECTIVES

Our present and future efforts are concentrated in three areas. The first concerns
the noise performance of devices in which quantum effects are detectable or, in fact,
dominant. Because it is relatively convenient to make amplitude noise measurements
on the cw gaseous maser oscillator, the theoretical and experimental work is being done
on this device.

(a) A quantum-mechanical analysis of the noise in optical maser oscillators is in
progress. The purpose of the analysis is to determine the limitations of the semiclas-
sical analysis.

(b) Measurements on the amplitude noise in optical maser oscillators will continue.
Our intent is to use the noise measurements on "quiet" optical maser oscillators, as
described in this report, to determine experimentally physical parameters of the gas-
eous discharge.

The second area of interest is noise in frequency multipliers, especially in those
made from varactors. We hope to develop simple parameters to indicate the noisiness
of a signal and of a multiplier through which this signal passes, and then to compare
the noise performance of various types of multiplier chains.

The third area of interest is the noise contribution of double-sideband degenerate
parametric amplifiers in a variety of applications.

H. A. Haus, P. L. Penfield, Jr., R. P. Rafuse

A. MEASUREMENT OF AMPLITUDE NOISE IN OPTICAL CAVITY MASERS

Measurements on the amplitude noise of a cavity-type gaseous optical maser oscil-

lator operating at 6328 A above and below threshold are reported here. The measure-

ments show that the noise is due mainly to spontaneous emission.

The measurements above threshold are similar to those reported by Prescott and

Van der Ziell; however, we report more data taken above threshold so that several theo-

retical predictions may be checked. Furthermore, we compare these measurements

with measurements taken below threshold, and thus are able to confirm the fact that the

source of noise below and above threshold is the same. Finally, we compare our results

above threshold with the theory of noise in Van der Pol oscillators,2 not with the linear

theory as Prescott and Van der Ziell did. The former theory is the proper one to use

for the maser oscillator,3 and is found to be in good quantitative agreement with exper-

iments. We use the theory previously dis-

cussed 2 as applied to the equivalent circuit

of Fig. VII-1. The conductance G = C/Q

V G Gm -C L i represents the loading of the resonator by

the outside space. G =G (1-aV2) = C/Qm m 0o m
is the (usually negative) conductance of the

nig. VII-1. Equivalent circuit of the
noisy oscillator, maser material. Above threshold, the
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magnitude of the negative conductance Gm decreases quadratically with voltage. The

uniform spectral density i2 /Av = 4GmhvAv(n 2 /g2)/(nl/gl-n 2/g 2 ) of the noise current

generator is chosen so that the power emitted by the cavity below threshold corresponds
to a well-known linear result.4 Here, n 1 and n 2 are the populations of the lower and

upper levels, respectively, and gl and g2 are their degeneracies. It is assumed that
above threshold the dependence of the noise power upon the population inversion is the
same as that below threshold. When the noise power obtained from the equivalent cir-
cuit is incident on a photomultiplier, the photoemission theory of Mandel 5 gives for the
spectrum S(v) of the photomultiplier current, with the maser operating above, but near,
threshold

n2/g Av 2
S(v) = 2AeI + 4AeI aI 2 (= S + S (1)a a n 2 /gv 1 + (S)2 e

n /g -n 1g v 22 2 1 + (AV

Here, e is the electron charge; A, the photomultiplier gain; r, the shot-noise enhance-

ment factor resulting from secondary emission; r, is a loss factor including the quantum
efficiency and all losses between the maser output and photomultiplier, and

Av = V (2)
(1 1

where v is the frequency of the laser oscillation, Avo = v /Q is the half-power band-

width of the cavity.

This expression differs in two respects from equation (5) of Prescott and

Van der Ziell when the latter is applied to near-threshold operation. The amplitude of
the second term in (1) is smaller by a factor of 8, and the bandwidth (2) is larger by a
factor of 2.

Below, but near, threshold, for S(v) one finds the same expression (1) except that
Av is given by

Av = v1 1 ) Q 0. (3)
m

One should note, however, that below threshold contributions of other modes than the

most strongly excited axial, linearly polarized mode become more and more important

as the excitation is decreased.

In our experiments, an internal mirror laser of nearly hemispherical geometry, with

a mirror spacing of 50 cm, was used. The I. D. of the quartz tube was approximately

3. 5 mm. The gas pressure was ~1. 5 mm Hg, with a 10:1 ratio of the partial pressures

of He and Ne. The maser was DC-excited; gas-discharge fluctuations were suppressed
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by a magnet near the discharge. The maser was stabilized to less than 1 per cent long-

term drift in amplitude by means of a feedback circuit with a time constant of 1/50 sec

by using the light emerging from one of the maser mirrors. The light through the other

mirror was fed partly to a photomultiplier connected to a counter, and partly to a photo-

multiplier used in conjunction with spectrum analyzers. The spectrum was studied in

the range 0-17 Mc. Different spectrum analyzers were used for the various ranges of

the frequency spectrum. The scanning velocities ranged from 1-4 cps/sec at the low-

frequency end to 250-1000 cps/sec near the high-frequency position of the spectrum. The

corresponding IF bandwidths ranged from a minimum of 10 cps to a maximum of

10, 000 cps. The spectrum analyzer output was fed into a spectral density analyzer with

integration times in the range 1-5 sec, and then to a chart recorder.

The composite experimental results are shown in Fig. VII-2. The curves are labeled

by the photoelectron count N at the photomultiplier cathode. Above threshold (Fig. VII-2a),

six dynodes of the photomultiplier were shorted out. The curves below threshold

clearly show the narrowing of the bandwidth and the rise of the excess noise level Se over

the shot noise S as the threshold is approached from below. Lorentzian curves can be

fitted with very good accuracy onto the top curves.

The curves obtained with the maser operating above threshold show a decrease of

Se/S s with a simultaneous increase of the bandwidth as the maser power is increased.

All experimental points can be fitted to Lorentzian curves. The two curves with the

highest ratios S /Ss and the narrowest bandwidths represented the highest power below

threshold and the lowest power above threshold at which our maser could operate stably

and reproducibly for several months. The small spike modulation at approximately

170 kc above threshold is due to residual gas plasma oscillations.

The experimentally observed spectral curves of the photomultiplier current are pre-

dicted quantitatively by Eqs. 1-3.

1. The "saturation level" of the excess noise (near zero frequency), Se , divided by

the shot-noise level, Ss, is proportional to the maser power P below threshold and

inversely proportional to P above threshold. A deviation occurs only farther below

threshold when more than one single linearly polarized mode contributes to the output.

2. The bandwidth of the excess noise is inversely proportional to P below threshold

and directly proportional to P above threshold.

3. The measured ratio Se/S s , above threshold by Eq. 1, gives for n2 /g 2 /(n 2 2 -n 1g1 )

the reasonable value of 1. 97, with the experimentally determined values of n =

4. 9 X 10- 3 , r = 1. 3, and Av = 4. 7 X 105 cps as computed from the reflectance of the
0

mirrors. Note that near threshold, both above and below it, with Q = Qm, the value of

(n 2 /g 2 )/(n 2 /g 2 -n 1 /g 1 ) in (1) may be considered constant as compared with the rapid var-

iation of Avo/Av.

4. For equal bandwidths, the ratio of excess to shot noise above threshold is equal
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Fig. VII-2.
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Experimentally observed spectrum of photomultiplier
current, normalized to shot noise: (a) above threshold;
(b) below threshold.
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to that below threshold, provided that one mode, with linear polarization, dominates both

above and below threshold. Here we find that the predicted value of the ratio Se/Ss from

the result above threshold for the narrowest curve of the operation below threshold is

4600. The measured value is 4400.

The measurements were carried out at Lincoln Laboratory, M. I. T., in cooperation

with Mr. Charles Freed.

H. A. Haus
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B. NOISE PERFORMANCE OF ABRUPT-JUNCTION VARACTOR

FREQUENCY DOUBLER

1. Characterization of Noise in Varactor Frequency Multipliers

A sinusoidal signal corrupted by narrow-band noise can be represented as

Jwo t

f(t) = 2 Re {Vs +x(t)+jy(t)} e (I)

It can be proved that an equally good representation for f(t) is

f(t) = 2 Re [V + V eJt + Ve e . (2)

In most of the cases of practical interest the signal power is very much larger than

the noise power; and we have assumed in our analysis that

V +V 12 << V2 (3)

I -V << V 2 . (4)

A typical power spectrum of f(t) is shown in Fig. VII-3.
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Fig. VII-3. Power spectrum of f(t).

2. Definition of Amplitude Noise, Phase Noise, and a Set of Figures of Merit

In the present analysis, we shall deal exclusively with the spot-noise performance 2

of multipliers.

The signal f(t) in (1) (under our assumption of high signal-to-noise ratio) may be

written 4

f(t) - 2{V +x(t)} cos wt + 7 . (5)

We shall, therefore, refer to x(t) as the amplitude noise, and to y(t) as the phase

noise.

The instantaneous amplitude of f(t) is given by

R(t) 2{Vs+x(t)}, (6)

and the instantaneous angular frequency of f(t) is

y'(t)
W.(t) o + . (7)
1 o V

The amplitude noise figure F 2 is defined as

F 2 = (S/NAM)in/(S/NAM)ou t , (8)

where (S/NAM)in is the exchangeable signal-to-amplitude noise ratio of the input net-

work; and (S/NAM)out is the signal-to-amplitude noise ratio across the load.

The phase noise figure F 3 is defined as

F3 = (S/NPH)in (S/NPH)out ,  (9)

where (S/NpH)in and (S/NpH)out are the exchangeable signal-to-phase noise ratio of the
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input network and the signal-to-phase ratio across the load, respectively.

3. Noise Performance of Lossless Varactor Frequency Multipliers

A functional representation of a varactor multiplier is given in Fig.

shown in Fig. VII-4, is the input resistance of the varactor multiplier.

R
I

FREQUENCY
V I MULTIPLIER R

VII-4. R. , asin

Fig. VII-4. Varactor frequency multiplier.

With the noise sources in the bias network neglected, and the bias source admittance

zero, we have shown that, for a doubler,

F3 4

F 2 = 4/(3-2k ) 2

where

x = R in/(Rin+R ) .
o in in+ R1

(10)

(11)

(12)

It is interesting to see that F 2 = 1 for = 1/2, or R in = R This has also been
th

shown to be true for higher order mutlipliers. The value of F 3 for an n -order multi-
2

plier has been proved to be n

4. Noise Performance of an Abrupt-Junction Doubler

Let m i and m 2 be the modulation ratios of the doubler; and let T d be the noise tem-

perature of the parasitic series resistance, R , of the varactor.
s

With the noise statistics of the input termination given by

IVa+V 2 = 4kTARlAf

IVa-V 12 = 4kTpR Af

and

[Va-p[v V+V]* = p I -V / IV+V ,

QPR No. 76

(13)

(14)

(15)



(VII. NOISE IN ELECTRON DEVICES)

we have shown that

w Td w\
c d + m3+ 4m + 4  +m

2o T 2
o A o

2

(16)

1 + 2m 2

In this analysis we have assumed that the average elastance, So, of the varactor has

been tuned out; and the formula (16) has been derived for the case Rin = R 1 .

For the doubler with optimum efficiency, the asymptotic low-frequency value

of F2 is

F 2 - 1 = 12. 50 + 19. 87 ) 0. (17)

The asymptotic high-frequency value of F 2 under the same conditions is given by

T d 
Lo476+6F - 1 = 3 - 0. 0624 c d 2. 4976 + 64 o

( )2C
(18)

If the noise source in the bias network is indicated by V o , and the impedance of the

bias source is R , it has been shown that for the doubler with optimum efficiency, F 3
has the asymptotic low-frequency value

TA T d+ 50+T TP P

50. 4
2

( j)

11. 20

2
4 +Ros )2

34. 6
2R

4(1 +1 2
s c

wo + ; W Re p
W)p

+ TAc Imj P
2 0 - V/T°

v
2

o o

c 4kT R Af'
c Ps

The analysis shows, therefore, that the minimum possible values of amplitude and

phase noise figures for an abrupt-junction varactor frequency doubler are 1 and 4,

respectively.

Similar formulas have been developed for higher order multipliers, and the methods
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of optimization of these figures of merit are now under investigation.

V. K. Prabhu
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