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A. A COMPUTER SOLUTION FOR ALLOWED ENERGY BANDS FOR PERIODIC

POTENTIALS

Given an arbitrary periodic potential of period a, we know that a solution of

Schrddinger's equations will be absolutely periodic if it satisfies periodic boundary

conditions.

(x+a) = (x)

d d@

d- (x+a) = dr (x)

Also, a solution will be half-periodic, that is, it will repeat every two periods, if it sat-

isfies the following periodic boundary conditions.

4(x+a) = -4(x)

d d
( x+a) - (x)

Periodic and half-periodic solutions occur at discrete energies. Moreover, the ener-

gies depend upon the initial conditions of the solution. As an example of this, consider

the solution of the wave equation for a potential consisting of a periodic delta function

(a) t V .\./ (b) t

t I tv I

The delta function does not affect the electron in (b),since it is at a node of the solution.

Hence, the electron in (a) has higher energy.

The program has been written for a PDP-1 computer controlled by teletype. A field

of 512 registers is used to store one period of the potential. Subroutines are included

for placing the potentials on this field. The solution, when found, is stored on another

field of 512 registers. The potential and solution may be displayed on the PDP-1

oscilloscope.
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Fig. I-1. Allowed energy bands for an electron in a one-dimensional
solid for various potentials.
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Fig. 1-2. The potentials used by the program. (All cells
energy in electron volts.)
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Fig. I-3. Four periods of square well. Fig. I-4. Four periods of square well.

Electron at 1. 81 ev. Electron is Electron at . 81 ev. Electron is
in an allowed band. in a forbidden band.

Fig. 1-5. Periodic solution for sinusoidal
potential. 1. 23 ev.

Fig. 1-7. Periodic solution for Coulomb
(v4). . 094 ev.

Fig. I-6. Periodic solution for delta
function (v7). .347 ev.

Fig. 1-8. Half-periodic solution for
square well. 0. 90 ev.
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If an electron energy is typed in and the program is started, the computer will find

a solution with the end heights matched.

(x+a) = (x)

or

.(x+a) = - (x)

Upon command, the program increments the energy upwards until the end slopes are

matched.

d4 d4
d(x+a) = (x)

Thus all of the values of the periodic and half-periodic solutions can be found one by one.

Two sets of initial conditions were used.

4'(0) = ' '(0) = 0
or

(0) = o (0) = o

The energies found in this manner were taken to be edges of the allowed and forbidden

bands for an electron in a one-dimensional solid. The results are plotted in Fig. I-i

for the various potentials shown in Fig. 1-2. The energies have been chosen so that the

highest energy of the first allowed bands will coincide (except for potentials v4 and v6).

The Coulomb potentials are actually the lattice sum of several neighboring Coulomb

potentials.

These results were confirmed by another section of the program which extended the

solution over several periods of the potential (Figs. I-3 and 1-4). Some periodic solu-

tions are shown in Figs. 1-5, 1-6, 1-7, and 1-8.

The program is useful for demonstrating the properties of a wave function in one

dimension, and is capable of handling any symmetric potential.

A. Zobrist, M. W. P. Strandberg

B. INCOHERENT PHONON PROPAGATION IN ANISOTROPIC MEDIA

The usual ultrasonic phonon experiment involves piezoelectric (or magnetostrictive)

transducers oriented and cut in such a way that their surfaces produce and respond to

wave surfaces of constant phase. Such configurations are chosen to enhance the gener-

ation of coherent phonons of some desired mode, and the detectors are relatively insen-

sitive to phonons whose wave vectors deviate significantly from the normal to their

surface.

The direction of travel of a phonon in an anisotropic medium is not generally colinear
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with its wave vector. In a crystal the specific directions in which the ultrasonic wave

vector and the Poynting vector are colinear are termed pure-mode axes. For example,

if the wave vector of a phonon propagating in a-quartz is not directed along a pure-mode

axis, its direction of travel can deviate up to 500 from its wave vector. 1 Such effects

have been observed in experiments where the transducer diameters are small in com-

parison with their separation, yet are large in comparison with the ultrasonic wave-

length. The experimental configuration is sketched in Fig. 1-9. Here, no signal is

R R2

d k ANISOTROPIC
PROPAGATION
MEDIUM

X

Fig. 1-9. Ultrasonic propagation in an anisotropic medium. The ultrasonic Poynting

vector S makes an angle 8 with the wave vector k.

detected at the receiving transducer R 1, which is directly opposite the transmitting

transducer X. However, a large signal is detected at the receiving transducer R 2 . (The

ultrasonic Poynting vector S makes an angle 0 with the wave vector k.) Phase velocities

are determined by the quotient of the component of the transducer separation in the

direction of the wave vector (i. e., the distance d in Fig. I-9) and the elapsed time. The

velocity of the flow of ultrasonic energy, on the other hand, is greater by the factor sec 8.

vE = Vp sec 6 (1)

A small heating element is capable of producing simultaneously the entire phonon

spectrum, characteristic of some absolute temperature T, that can be propagated within

a crystal. If a small bolometer is attached at another point on the crystal, all phonons

whose Poynting vectors lie within the subtended solid angle can be detected, regardless

of the orientation of their wave vectors. In general, the double mode-dependence of Eq. 1

complicates the theoretical analysis for arbitrary propagation directions in typical

anisotropic media. If observations were to be made within very small solid angles cen-

tered about a pure-mode axis, however, most of the data could be interpreted in terms

of the well-known velocities characteristic of the axis.

The x axis of a-quartz is a pure-mode axis for both longitudinal and transverse pho-

nons. Thus, as the solid angle subtended by a bolometer approaches zero at the x axis,
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three pulses should be detected whose energy velocities approach the phase velocities

characteristic of x-axis phonon propagation (v =5. 75, v 1 t=5. 18, v2t=3. 36 km/sec). This,

however, does not rule out the existence of "extra" pulses caused by other modes whose

Poynting vectors also happen to lie along the x axis. An examination of the energy-flow

vector diagram for transverse waves in a-quartz, calculated by Farnell, indicates that

phonons whose wave vectors intercept the unit sphere somewhere in the region near 0 =

700 and c = 100 might contribute to energy detected on the x axis.

An "extra" pulse has been observed by von Gutfeld and Nethercot 3 for this orientation

of a-quartz, although the angle subtended by their detector was not stated. Farnell's

diagram shows that a detector that subtends a half-angle of 25. 50 will pick up the trans-

verse mode whose wave vector intercepts the unit sphere at 0 = 900 and 4 = 400. Since

von Gutfeld and Nethercot did not mention the angle subtended by the bolometer in their

x-cut quartz experiment, the question concerning the existence of "extra" modes propa-

gating along the x-axis in a-quartz remains open.

J. M. Andrews, Jr.

References

1. G. W. Farnell, Can. J. Phys. 39, 65 (1961).

2. M. F. Markham, Brit. J. Appl. Phys., Suppl. No. 6, S56 (1957).

3. R. J. von Gutfeld and A. H. Nethercot, Jr., Phys. Rev. Letters 12, 641 (1964).

QPR No. 75




