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ABSTRACT

It is wellknown that perturbative calculations in eld theory can lead to far sin pler
answ ers than the Feynm an diagram approach m ight suggest. In som e cases scattering
am plitudes can be constructed for processes w ith any desired num ber of extemal legs
yielding com pact expressions which are inaccessble from the point of view of conven-
tionalperturbation theory. In thisthesiswe discuss som e atteam pts to address the nature
of this underlying sim plicity and then use the results to calculate som e previously un-—
know n am plitudes of interest. W itten’s tw istor string theory is introduced and the C SW

rules at treelevel and one-loop are described. W e use these technigues to calculate the
one-loop glionic M HV am plitudes in N = 1 superYang-M ills as a veri cation of their
valdity and then proceed to evaluate the generalM HV am plitudes in pure YangM ills

arXiv:0709.3478v3 [hep-th] 31 Oct 2007

w ith a scalar running In the loop. This latter am plitude is a new result n QCD . In
addition to this, we review som e recent on-shell recursion relations for treeJevel am pli-
tudes in gauge theory and apply them to gravity. A sa result we present a new com pact
form for the ngraviton M HV am plitudes in general relativity. T he techniques and re-
sults discussed are relevant to the understanding of the structure of eld theory and

gravity and the non-supersym m etric Yang-M ills am plitudes in-particular are pertinent
to background processes at the LH C . T he gravitational recursion relations provide new

techniques for perturbative gravity and have som e bearing on the ultraviolet properties
of E instein gravity.
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Introduction

In therealm ofhigh en physics, the standard m adel of particle physics is our crow n—
ing achievem ent todateld Ttdescribes the fiindam ental forces of nature —excluding grav—
ity —asa quantum (gauge) eld theory w ith gauge sym m etry group SU (3) SU (2) U (1).
In this description, the strong force —described by a gauge theory known as quantum
chrom odynam ics w ith gauge group SU (3) —is ad pined to electro-weak theory which is
itself a uni cation of quantum electrodynam ics and the weak interaction. T he standard
m odel is wellsveri ed experin entally and w ill soon be put to even greater tests by the
large hadron collider at CERN which w ill start running later in 2007.

H ow ever, there are a num ber of features of the standard m odel (SM ) which are not
fully understood. M ost prom inent of these is perhaps that it predicts the existence of a
scalar particle called the H iggs boson ofmassM y > 114:4G eV [6]which is responsible
for the generation of m ass in electro-weak symm etry breaking and which has not yet
been observed, though few doubt that it w ill not be found. Indeed one of the central
goals of the Jarge hadron collider (LHC ) isto nd such a particle. T here isalso evidence
that neutrinos should have (tiny) m asses and m ixings and the SM should be extended
to accom odate this.

On the other hand there are also theoretical issues that lead physicists to believe
that the standard m odel is not the nal story. For a start, (quantum ) gravity is not
incorporated into the theory. In addition, the SM su ers from a problem known as the
hierarchy problem . T his problem asks why there is such a large hierarchy of scales for
the interaction strengths of the di erent forces present. It seem s natural to theorists
that just as the electrom agnetic and weak forces are uni ed Into the electro-weak (EW )
force at scales M gy 100G eV, so should EW theory be uni ed with quantum chro-
m odynam ics (QCD ) at som e (higher) scale. A s such it is generally believed that SM
particles are com ing from a grand uni ed theory (GUT ) that spontaneously broke to
SU(3) SU(2) U(l)atenergiesM gy 10'® G eV . Popular gauge groups that m ight
unify those of the SM include SU (5) and SO (10).

’See eg. [1]for an introductory text on the standard m odel and eg. [4,13,14,/89] for treatises on
quantum eld theory in general
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Several deas which try to dealw ith the hierarchy problem exist. O ne of these is
a theory called technicolour [7,18] which considers all scalar elds in the SM to be
bound states of farm ions jpined by a new set of interactions. A nother dea is that a new
symm etry m ay exist such as supersymmetry —see eg. 9,110,111,112] for an introduc—
tion. Supersym m etry (SU SY ) relates bosons and ferm ions and predicts thatm any m ore
particles exist than are currently observed as each boson/ferm ion is associated w ith a
partner ferm ion/boson. It can, however, unify the gauge couplings of the various com —
ponent theories of the standard m odel and thus solve the hierarchy problem . A s such
the SM would be replaced by som e supersym m etric version, the m inin al realisation of
which isusually term ed them Inin ally supersym m etric standard m odel (M SSM )H The
LHC is also geared towards searching for physics beyond the standard m odel such as
technicolour and supersym m etry.

T he case for uni cation w ith gravity is very m uch m ore speculative at present. T his
is not least because its tiny interaction strength com pared with the other forces of
nature m akes experim ental tests of gravity on sm all length-scales di cult to perform
w ith existing technology. A s such there is no accepted quantum theory of gravity
at present let alone a uni cation of quantum gravity with the SM . Currently studied
theories that address the issue of the quantisation of gravity include causal set theory
[15,116], Joop quantum gravity [17,118] and string theory [19,120,121,122]. O f these,
string theory has also em erged as a possible fram ew ork for providing a com plete uni ed
theory of all the forces of nature or a theory of everything (TOE ) as it is som etin es
called .

For string theory, the starting point is best understood as a generalisation of the
world-line approach to particle physics as opposed to the gpacetin e approach ofquantum
eld theory. In this approach one considers particles from the point of view of their
worlkd-volum e or world-line (as their tra ctories are lines in gpacetim e) and describes
this tra ctory using an action of the form
Z
SpamJE:Edel ex @x em? ;

where  is a param eter along the world-line which can naturally be taken to be the
proper tine. e( ) is a function] introduced to m ake the action vald for zero particle
mass m = 0)aswellasm 6 0and X ( ) represents the position vector of the particle
in the “target’ space in which it lives. For the sake of generality we m ay consider the
target gpace to be d-din ensional though of course four din ensions is what we're ain Ing
for. W hilke Spﬁr[jcle describes a free particle, Interactions m ay be included by adding
term s such as dX A (X ) for a coupling to the electrom agnetic eld.

®See [13,/14] for an overview containing the action and Feynm an rules.

‘A ctually e( ) is an einbein.
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To go from pointparticles to strings we sin ply replace Sparticie Ly an action appro-
priate for describing the w orld-shest of a string em bedded in gpacetin e. A n action which
naturally incorporates both m assive and m assless strings is the Brink-D iVecchia-H owe
or Polyakov action

Z
T , P —
S string = Ed detj j ( @X @X ):

Here the param eters of the world—shest are = ; , the tension of the string is T and
can be thought of as a m etric on the worki—sheetH Consistently quantizing Sgering
leads (eventually) to them any interesting consequences that string theory predicts, not
least of these being that gravity is quantized and the dem and that the din ension of the
target space be 26-dim ensional for the bosonic string (the action of which is the one
given by Sstring above) or 10-dim ensional for any of its supersym m etric extensions.

T here are 5 of these consistent supersym m etric string theories that are know n as type
I, ype IIA , type IIB , heterotic SO (32) and heterotic Eg  Eg respectively, each ofwhich
has itsuse In describing the physics of this 10-dim ensionaluniverse in di erent scenarios.
They are, however, intrinsically perturbative constructions and as such it has been
proposed that each of these theordes is jist a di erent 1m it of a unique 11-din ensional
theory which describes the filll non-perturbative range of physics and is known as M —
theory 231

T he Intrinsically higher-dim ensional nature of these theories is clearly in contrast
w ith current experim ental results, although such results do not extend down to the
Planck scale M p 10'° G eV where it is believed that the e ects of quantum gravity
w il be m ost prevalent. N onetheless it is hoped by m any that a com pacti cation down
to fourdin ensions or a realisation of string theory on a 4-din ensional subm anifold such
as a brane [24 ]m ay provide a uni ed description of the standard m odel plus gravity in

3+ 1 din ensions.

A side from quantizing gravity or being a possble TOE, string theory has m any
other facets. Not least am ong these is the capacity to provide altemative or dual’
descriptions of m any wellkknown 4-din ensional quantum eld theories. In particular
these quantum eld theories include highly sym m etric gauge theories such asm axim ally
supersymm etric (N = 4) YangM ills, but also extend to certain aspects of QCD for

exam ple.

It has long been thought that gauge theories m ay be described by string theories
and the idea goes back at least till t H ooft’s diagram m atic proposal 25]. H owever, it

wasn 't untilm uch m ore recently that this proposal was realised in a concrete way by

°Note that the string tension is usually written as T = 1=(2 %Y where °= ]5 with 15 the string
length.
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M aldacena [26]who discovered a duality between type IIB string theory with target
space AdSs  S° - the product of 5-din ensional antide-Sitter space and a 5-sphere —
and a certain conform al eld theory (CFT ), namely N = 4 super¥Y ang-M ills theory in
M inkow ski gpace w ith gauge group SU (N )l The duality is a weak-strong’ one in the
sense that weakly coupled strings are describing the strong coupling regin e of a gauge
theory and as such thisprovidesa fascinating perturbative w indow into non-perturbative

4-din ensional physics.

In addition to this, the duality provides a concrete realisation of the so<alled holo—
graphic principle 27,128 ] which asserts that physics in d-din ensional spacetim es that
include gravity m ay be describable by degrees of freedom in d 1 dim ensions. O ne of
the key ideas in this is that the Bekenstein-H aw king entropy of a black hole (a system
whose dom inant force is gravity) is given by Sgy = A=4 in ‘hatural’ units where A
is the area of the event horizon. This is in contrast w ith the fact that entropy is an
extensive variable and thus usually scales w ith the volum e of the system concemed. In
the case of the M aldacena confcture (also known as the AdS/CFT correspondence),
the 5-sphere essentially scales to a point and we are left w ith gravity (i.e. closed strings)
in 5 din ensions being described by Yang-M ills (i.e. open strings) in 4 din ensions.

In any case, it is not only the non-perturbative aspects of four-dim ensional gauge
theory that we would like to understand better. A lthough weak-coupling perturbation
theory is inprinciple well understood for such theories, the com plexity is so great as to
m ake m any calculations intractable. T he asym ptotic freedom of QCD [29,/130]m eans
additionally that perturbative results becom e m ore In portant as the energy of Interac—
tion is increased, and m any of these w ill be necessary input for the discovery of new
physics at colliders such as the LHC . A s such it would be very interesting from both a
theoretical and a phenom enological perspective if a duality existed thatm ight describe

a 4-din ensional gauge theory at weak coupling.

In fact a key step was taken in this direction by W itten at the end 0of 2003 [31]. He
discovered a rem arkable new duality between weakly-coupled N = 4 superYangM ills
theory in M inkow skispace and a weakly—-coupled topological string theory (known as the
B-m odel) whose target gpace is the CalkbiYau superm anifold C P3*. Thismanibd
has 6 real bosonic din ensions which are related to the usual 4-dim ensional spacetin e

of the quantum eld theory by the tw istor construction of Penrose [32].

In [31], it was observed that treedevel gluon-scattering am plitudes in N = 4 super—
YangM i - localise on holom orphically em bedded algebraic curves in tw istor space and
proposed that they could be calculated from a string theory by integrating over the
m oduli space of D 1-brane instantons in the B-m odel on (super)-w istor space. The

N ote that in order to treat the strings perturbatively we m ust actually takeN ! 1 .

"The sam e applies to Q CD at treedeveldue to an e ective supersym m etry — see {1.3.
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localisation properties of these am plitudes helped to explain the unexpectedly sin ple
structure that often arises in their calculation from Feynm an diagram s desgpite the large
degree of com plexity at interm ediate stages in the com putation. In the sim plest case
the m axin ally helicity violating (M HV ) am plitudes, which describe the scattering of
2 gluons of negative helicity with n 2 gluons of positive helicity, are localised on
sin ple straight lines in tw istor space. Sin ilarly, am plitudes which are known to vanish
such as those involving n gluons of positive helicity or 1 gluon of negative helicity and
n 1 glions of positive helicity are explained in this scheam e.

T he beautifully sin ple localisation properties of theM HV am plitudes led C achazo,
Svrcek and W itten [33] to propose a new diagramm atic way of calculating tree am —
plitudes In gauge theory using M HV am plitudes as e ective vertices. T hese are taken
o —shelland glued together w ith sim ple scalar propagators to give am plitudes w ith suc-
cessively greater num bers of negative-helicity particles. T hese rules tum out to be just
the Feynm an rules for light-cone Yang-M ills theory w ith a particular non-local change
of variables and have m ore recently been put on a m er theoretical footing [34,/35].

The situation at loop—level is not as clear. In [3d] it was shown that states of
conform al supergravity are present w hich do not decouple at one-loop and the procedure
for calculating loop am plitudes in Yang-M ills from a tw istor string theory is not clear.
D egpite this, it is a ram arkable result of Brandhuber, Spence and Travaglini [37] that
the socalled CSW rules can also be applied at loop-level. Tn [37] it was shown that
the one-loop M HV am plitudes originally found by Bem, D ixon, D unbar and K osow er
(RDDK ) in [38]could be calculated using M HV am plitudes as e ective vertices n the
sam e spiritas [33]. T his strongly hintsat the existence ofa fullquantum duality betw een
m axin ally supersym m etric Yang-M ills and a tw istor string theory, though the situation

is unresolved at present

A natural question now arises: Can the M HV rules be applied at loop level in any
gauge theory? The answer to this is not a priori clear as the duality in [31] applies to
N = 4 YangM ills which isknown to be very specialdue to its high degree of sym m etry.
W ithout the existence of a form al proof of the M HV rules at loop level, one way to
proceed is certainly to try a sim ilar m ethod to that in [37] in other theories. To that
end, the present author and the authors of [37]Jused theM HV rules to calculate the one-
loop M HV am plitudes in N = 1 superYang-M ills [40] (see also C hapter 2 of this thesis).
Thiswas independently con m ed by Q uigley and Rosaliin [41]and both results found
com plete agreem ent w ith the am plitudes rst presented by BDDK [42].

®An interesting possibility has recently arisen in [39] where a num ber of new dualities were con—
structed between eld theories nvolving gravity and tw istor string theory, O ne of which is a duality
between N = 4 Yang-M ills coupled to E instein supergravity and a tw istor string theory. An interesting
feature of this appears to be the existence of a decoupling lim it giving pure Yang-M ills which m ight
open the prospect of a tw istor string form ulation of Yang-M ills at loop-level.
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Follow ing this, the authors of [40] tackled the M HV am plitudes in pure Yang-M ills
w ith a scalar running in the loop 43]. There the am plitudes for arbitrary positions
of the negative-helicity gluons were derived for the st tin e and com plete agreem ent
was found w ith the existing special cases [44,144]. Tt was discovered , how ever, that the
M HV <vertex form alisn calculates only the so-called ‘cut-constructible’ part —that is, the
part containing branch cuts —of the am plitudes and thusm isses possible rational tem s.
T hese rational term s are also present In the cases of the supersym m etric am plitudes,
but it tums out that they are intrinsically linked to the cutconstructible parts 38,144 ]
and thus it isenough to know the cuts to fully determ ine the am plitudes. M ore recently,
and building on the results in [43], the rational term s for the M HV am plitudes in pure
Y ang-M ills have been found [45 ]Jand due to a supersym m etric decom position of one-loop
am plitudes described in 1.3, thism eans that the com plete n-gluon M HV am plitudes in
QCD arenow known. The calculation of the cutconstructible part of the am plitudes
in pure YangM ills w ill be the sub Fct of C hapter 3.

In a di erent direction, various results em erging from tw istor string theory (46,147 ]
inspired B ritto, C achazo and Feng to propose certain on-shellrecursion relations for tree—
level am plitudes in gauge theory [48 ]w hich were Jater proved m ore rigorously in a paper
with W itten [49]. T hese represent tree am plitudes as sum s over am plitudes containing
an aller num bers of extermal particles connected by scalar propagators. Starting from
am plitudes w ith 3 particles one can thus build up all n-point treedevel am plitudes

recursively.

Subsequently the present author, together w ith B randhuber, Spence and T ravaglini
show ed that sin ilar on-shell recursion relations for tree-level am plitudes in gravity could
be constructed [50], where a new form for the n-graviton M HV am plitudes was also
proposed. Such recursion relations for gravity were independently found by Cachazo
and Svrcek In [51] which has som e overlap with [50]. One strking feature of these
recursion relations is that they require a certain behaviour of the am plitudes (M ) asa
function ofm om enta in the ultraviolet (UV ) such thatwhen thought ofasa function ofa
com plex param eter z, Iim ,, 1 M (z)= 0. For YangM ills am plitudes thiswas proved to
be the case In [49], but it is a priori less clear how gravity m ight behave. In 50,151 ] the
particular am plitudes In question were shown to have this behaviour and m ore recently
it was established for all treedevel gravity am plitudes in [52]. T his unam biguously
establishes the valdity of the recursion relation in gravity, the construction of which is
the sub gct of Chapter 4, and also lends support to the recent con ctures that gravity
asa eld theory m ay not be as divergent as previously thought [53,154,155,154,157,158,
59,601].

T his thesisw illbe concemed w ith a few [40,143,/50 Jofthem any developm ents arising
from tw istor string theory [31]. T hese include theuse ofM HV vertices to calculatem any
tree-level (and som e one-loop) processes 61,162,163,164,65,164,67,168,69,70,7]]Jaswell
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as the use of the socalled holom orphic anom aly B] (which arose to solve a discrepancy
between the tw istor space picture of one-loop am plitudes presented in ] with the
derivation in ]) to evaluate one-loop am plitudes @,E,Iﬁ]. M HV vertices have also
been found at treedevel in gravity g] (after understanding how to dealw ith the non-
holom orphicity which stalled initial progress ]) and the CSW rules in gauge theory
at loop level have been m ore rigorously proved in ] together w ith recent advances at

elucidating the loop structure in pure Yang-M ills ,B,@,E].

R ecent In provem ents m,@,@] to the unitarity m ethod pioneered in @,Iﬂ,@,
E, 189,190 ]use com plex m om enta (in sim ilarity w ith the on-shell recursion relations
presented in , ,Iﬁ,lﬂ]) which allow s, for exam ple, a sin ple and purely algebraic
determ nation of Integral coe cients [Iﬂ,@]. In @] B ritto, Buchbinder, C achazo and
Feng developed e cient techniques for evaluating generic one—looEjnjtarjty cuts which

have since been applied in E] and further developed In @,@, 1.

Stam m Ing from the on-shell recursion relations w ritten dow n at treeJlevel by B ritto,
Cachazo and Feng @] (which have been successfully exploited in E,@,@] and un-—
derstood in temm s of tw istor-diagram theory in ,IﬁHE]) is the application of
on-shell recursion to one-loop am plitudes which allow s for a practical and system atic
construction of their rational parts. T hese have been pioneered in @, E,@,
IE ,IE ,IE ,IE ], leading to the full expression for the rational term s of the one-loop
M HV amplitudes in QCD in ]. Som e success has also been had w ith such on-shell

recursion in one-loop gravity 1.

Progress on the string theory side has been som ewhat m ore lim ited after som e
rom ising initialwork. A Ifremative tw istor string theories to that introduced by W itten
Eh to describe perturbative N = 4 Yang-M ills have been put forward, though these
have generally seem ed to be m ore form al and less practical than the original proposal.
M ost notably there is that of Berkovits (and M otl) B,Iﬂ]whjch was also addressed
at loop level in @], and which has been recently used to calculate loop am plitudes in
Yang-M ills cou&id to conform al supergravity ]. O ther proposals include those of

n1d,01d,had

Sim ilarly, dual tw istor string theories have been constructed for other eld theories
including m arginaldeform ations of N = 4 (and non-supersym m etric theories) B ,IE 1,
orbifods of W itten’s original proposal to include theordes w ith less supersym m etry and
product gauge groupslﬁ2_1| ’ Ez
theories. T his latter section of work inclides tw istor descriptions of N = 1;2 conform al

]Jas well as tw istor string descriptions of supergravity

su ravity @,@L aswellas a m ore recent construction for E instein supergravity
g,%] follow Ing initial observations of the special properties of graviton am plitudes
B,Iﬂ, , ]. Additionally, tw istor string dual constructions have been presented
for truncations of selffdual N = 4 super¥YangM ills ], Jower din ensional theories

M,@,E,B,E]andN =4 SYM with a chiralm ass term @].
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D irectly follow ing from &l], itwasshown how to construct am plitudes that arem ore
com plex than the M HV am plitudes from an integral over a suitable m oduli space of
curves In tw istor string theory. Som e sin ple 5point next+to-M HV (NM HV ) am plitudes
were addressed in Jaswellas alln-gluon MHV am p]jtudeﬁ n ]and all 6-gluon
am plitudes in E 1.

Another avenue that has proved ilum inating is the study of gauge and gravity
theories In tw istor space. This includes @] w here the partition function of N = 4
YangM illswas exam ined in tw istor space, ]where the CSW ruleswere treated from
a purely gauge theoretic perspective in tw istor space and E ]where loops have been
studied and other related work including , ]. Furthem ore, selffdual supergravity
theories have been investigated from a tw istor space perspective in , ], relations
between tw istors, hidden sym m etries and integrability elucidated in ,], and the
connection w ith string eld theory developed in ]. Finally, tw istor string theory has
inspired a great deal of work in understanding supem anifolds and their connections
w ith string theory and gauge theory such as that of m,@,@,@]and references

therein.

°ie. the am plitudes which are M HV am plitudes when the helicities of all particles are reversed.
T hey thus describe the scattering of 2 gluons of positive helicity with n 2 gluons of negative helicity.
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Sum m ary

T his thesis is organised as follow s:

In Chapter[Il we discuss perturbative gauge theory and the unexpectedly sim ple re-
sults that it can produce despite the huge num ber of Feynm an diagram s that have to be
summ ed. W e Introduce various techniques for explaining this sin plicity including colour
ordering, the spinor helicity form alism , supersym m etric decom positions, supersym m et-
ric ward dentities and the use of tw istor space. W e go on to review the tw istor string
theory introduced in [31]and show how it can be used to calculate tree-level scattering
am plitudes of gluons. Finally we describe som e key deas In perturbative gauge theory
that were inspired by the tw istor string theory. In particular we present an overview of
the CSW rules and their application at tree-and loop—-Jevel in N = 4 superY ang-M ills.

C hapter[] isdevoted to elucidating the calculation of M HV loop am plitudesin N = 1
YangM ills using a perturbative expansion in tem s of M HV am plitudes as vertices as
was introduced forN = 4 YangM ills in [37]. W e follow [40]where the calculation was
origihally perform ed and use the decom position of the integration m easure advocated
in [37,179] to reconstruct the ngluon M HV am plitudes In N = 1 YangM ills rst given
in [42]. T hisprovides strong evidence that theM HV diagram m ethod isvalid in general
supersymm etric eld theories at loop level. Som e technical details are relegated to
A ppendix [E].

In m uch the sam e spirit, C hapter[d describes the calculation of theM HV am plitudes
in pure YangM ills with a scalar running In the loop. W e take the sam e approach
as in Chapter[d and closely ollow [43]. This produces the rst results for the (cut—
constructible part of the) n-gluon M HV am plitudes w ith arbitrary positions for the
negative-helicity particles in pure YangM ills. The results obtained are in com plete
agream ent w ith the previously known special cases in [42,l44] and as w ith Chapter[Z,
m any technical details to do w ith the evaluation of integrals are om itted and provided
in A ppendix[G].

In Chapter[4 we describe som e tree-level on-shell recursion relations in gravity as
constructed in [50] and highlight som e of their sin ilarities w ith the on-shell recursion
relations proposed for gauge theory in [48,/149]. T he form at ollowed is that of [50]and
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as such we describe a new com pact form for the ngraviton M HV am plitudes arising
from the recursion relation. W e also comm ent on the existence of recursion relations
in other el theories such as * theory and m ention the connection between the C SW
rules at treelevel and these on-shell recursion relations.

W e conclude and discuss future directions in Chapter[H. Additionally, there are
appendices describing the spinor helicity form alisn and Feynm an rules for m assless
gauge theory In such a form alisn ,d-din ensionalL orentz-invariant phase space, unitarity
and theK awaiLewellenTye (K LT ) relations in gravity which relate tree am plitudes in
gravity to (products of) tree am plitudes in Yang-M ills.
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CHAPTER 1

PERTURBATIVE GAUGE THEORY

In the traditional approach to quantum eld theory, one writes down a classical La—
grangian and can quantise the theory by de ning the Feynm an path integral. Per-
turbative physics can then be studied by draw ing Feynm an diagram s and using the
Feynm an rules generated by the path integral to calculate scattering am plitudes. For
a non-Abelian gauge theory the classical theory is welldescribed by the YangM ills
Lagrangian [1511]:

1
L= (@ m) @ A% @A*)P+ ga® T?
1
gfabc(@ Aa)A bA c Z9_2(_I_r:-e{;l]oAaAb)(feodA ca d) ; (1.01)

where isafermion eld,A the gauge boson el and g is the coupling. G reek indices
are associated with spacetin e, while Rom an indices describe the structure in gauge
group space. This can then be used to construct the Feynm an rules in the usualway.

A Yhough this construction is som ew hat technical it is easy so see what these inter-
actions w illbe from a heuristic standpoint. The rsttwo tem s in (L.OJl) w ill give the
ferm jon and gauge boson propagators respectively. T he third term involves two s and
an A and thus represents a vertex w here two ferm ions interact w ith a gauge boson. T he
fourth term involves 3 A s and represents a 3-boson vertex while the fth term gives a
4-boson vertex.

Ifwework everything out properly then we nd that, in Feynm an gauge for exam ple

where we have set = 1 In a m ore general gauge boson propagator of the form
i P p
> 9 1 ry= i (102)
pr+ 1 P

the Feynm an rules for an SU (N ) gauge theory are:
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Figure 1.1: Feynm an ruks for SU (N.) YangM ills theory in Feynm an gauge.
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In the above rules we have taken all particles to be outgoing and we use the conven-—
tion thatcl 1= (C C )=2 for som e 2-index obpct C . W e have also ignored the
contributions due to ghost elds and w ill stick to these choices In what follow s unless
otherw ise speci ed. Am plitudes for physical processes are obtained by draw ing all the
ways that the process can occur using the above rules and associating each of these w ith
a gpeci cm atheam atical expression. T hey are then evaluated and added up to produce
the desired result. C Jassical results are obtained from diagram sw ithoutany closed loops
w hile quantum corrections involve an increasing num ber of loops. For m ore details see

eg. 41.

Even though gauge theories present m any technical challenges, the way to proceed
(at least perturbatively) is inprinciple well understood. In practice, how ever, the cal-
culational com plexity grow s rapidly w ith the num ber of externalparticles (legs) and the
num ber of loops. For exam ple, even at tree-level w here there are no loops to consider,
the num ber of Feynm an diagram s describing n-particle scattering of extermal glions in
QCD grow s faster than factorially with n [154,/153]

n 41 5 6 7 8 9 10
# diagram s | 4 | 25| 220 | 2;485 | 34;300 | 559;405 | 10;525;900

Figure 1 2: T he num ker of Feynm an diagram s required for tree—level n-gluon scattering.

D egpite this, the nal result is often sin ple and elegant. A prim e exam ple is the so-
called M axin ally Helicity Violating (M HV ) am plitude describbing the scattering of 2
gluons (i and j) of negative helicity with n 2 gluons of positive helicity. A t treedevel
the am plitude is given by:

e _ hi 33

Ap Py — ; (1.03)
h2ih23i:::tn 1nin 11

forany n. W e w ill leave the explanation of them eaning of this expression to later in the
chapter, but the reader is nonetheless able to appreciate its sim plicity com pared w ith

the ever Increasing num ber of Feynm an diagram s needed to produce it.

T he question then arises of: W hy is there this sin plicity underlying the apparently
m ore com plex perturbative expansion and how does it arise. T he rest of this chapter is
devoted to setting up a fram ework in which these questionsm ay be addressed.

N ote that the follow ing num bers are relevant for the case where one is considering a single colour
structure only. T he total num ber of diagram s after sum m ing over all possible colour structures is even
greater still. For m ore on this see 1]

23



11. COLOUR ORDERING

1.1 Colour ordering

O ne prom inent com plication experienced by gauge theories is the extra structure inher-
ent In their gauge Invariance. T his m eans that elds of the theory do not just carry
Spacetin e indices but also indices relating to their transform ation under the gauge
group. In the standard m odel it has been found that SU (N .) groups are the m ost ap—
propriate ones for describing the gauge sym m etry and so unless otherw ise speci ed we
w il consider gauge groups of this type.

1;2;:::;N.. The SU (N.) generators in the fundam ental representation are traceless
Hem itian N, N, m atrices, (Ta)iI which we nom alise to tr(T3TP) = abH The Lie-
algebra isde ned by [T *;TP]= if**T°, where the structure constants £** satisfy the
Jacobi Identity:

gadegbad | ghdegead | podegabd _ g (111)

Let usbegin by considering a generic treelevel scattering am plitude. It is apparent
from the Feynm an rules given in Figure[I] that each quark-ghion vertex contributes a
group theory factor of (T @ );' and each triboson vertex a factor of £3°°, w hile fourboson
vertices contribute m ore com plicated contractions involring pairs of structure constants
such as 3£, The quark and glion propagators will then contract m any of the
indices together using their group theory factors of 5, and ;. Wecan now start to
illum inate the general colour structure of the am plitudes ifwe rst use the de nition of
the Lisealgebra to rew rite the structure constants as

£ = (TR P;TC) (112)

D oing thism eans that all colour Ectgrs n the Feynm an rules can be replaced by linear
com binations of strings of T?s, e.g.  tr(:::T TP i) tr(:::TPTC res) sostr(e:: T 1ee) iF
we only have external gluons, or :::(T*? :::Tb)i| tr(T? :::TC)(TCTd:::)kl ::: —where the
strings are term inated by (anti)-fiindam ental indices — if external quarks are present.

In order to reduce the num ber of traces we m ake use of the identity

M1 1
eyl @ent= it = it (113)

2This isdi erent from them ore fam iliar tr(T *TP) = 2P=2, but is purely a convention used to avoid
the proliferation of factors of 2. Note that the Feynm an rules written down at the begihning of the
chapter use tr(T°TP) = 2°=2. To rewrite the diagram s in a way that j.?)consjstent w ith these fn ore
natural’ colour ordering conventions one sin ply has to replace T* | T®= 2 and £2*° | £3*= 2. See
also A ppendix [B].
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11. COLOUR ORDERING

which is jast an algebraic statem ent of the fact that the generators T® form a com plete

set of traceless H emm itian m atrices. This In tum gives rise to sim pli cations such as

X
(T3 s THRTE)V(TAT 1 10T ) = (T3 22T T+1 10T
a
1 a a a a.
— (T s T )V t(T** T 2T )(114)
N¢
and
X

(T2 20T TA)(TAT3L 10T ) = (T3 10T T2 55,720 ),

1
(T sr: T ) (T 22T ), :(115)

C

In Eq. (ILI3) the 1=N_ tem corresponds to the subtraction of the trace of the
U (N.) group in which SU (N.) is embedded and thus ensures tracelessness of the T2.
This trace couples directly only to quarks and comm utes with SU (N.). A s such the
term s Involving it disappear after one sum s over all the pem utations present —a fact
which is easy to check directly. W e can thus see that we are ultin ately left w ith either
sum s of single traces of generators if we only have external gluons as in Eq. (I.1.4) or
sum s of strings of generators term inated by fiindam ental indices as in Eq. {ILLY) fwe
also have external quarks [153,/154 ]H Inmost of whatwe do we w illonly be concermned
w ith gluon scattering and can therefore w rite the colour decom position of am plitudes

as

X
A=) = g" 2 (T OT? @ 10T 0))A TS (1); (2);:::; (n)) ;(116)

2Sn=Zn

where S, is the set of pemm utations of n ob Fcts and Z, is the subset of cyclic per-
mutations. g is the coupling constant of the theory. The A ™™° sub-am plitudes are
colourstripped and depend only on one ordering of the extermal particles. It is there-
fore su cient to consider A rtfee(l;Z;:::;n) — the “reduced colour-ordered am plitude’ —

and sum over all (n 1)!non-cyclic perm utations at the end.

It is interesting to note that the sam e conclusion can be arrived at from string theory
in a som ewhat m ore natural way [1553,1156]. This arises because of the observation
that In an open string theory the full on-shell am plitude for the scattering of n vector
m esons can be written as a sum over non-cyclic perm utations of extemal legs carrying
Chan-Paton factors [157] multiplied by K oba-N ielsen partial am plitudes [158]. For

>N ote that Eq. (I.L5)) is appropriate for the case where we have just one qg pair. W ith m ore pairs
there will be products of strings w ith each string tem inated by fundam ental and anti-findam ental

indices giving term s like (T ° :::Tb)iI $0:(TC:a:T® )kl. In the nalexpression,each generatorw illappear
only once in any given term of course.
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11. COLOUR ORDERING

the scattering of extemal gluons that we are interested in we need not worry about
findam entalm atter because at treelevel the Feynm an rules forbid it from appearing
as internal lines. In the :n nitetension Imit (T ! 1 ; %! 0)theU (N.) string theory
reducesto a U (N ) gauge theory and the trace part of thisdecouplesaswehave seen. W e
can thus inm ediately conclude that the gauge theory scattering am plitudes decom pose
asEq. (ILI4).

For one-loop am plitudes a sin ilar colour decom position exists [156]. In this case,
how ever, there are up to two traces over SU (N ) generators and one m ust sum over the
spins of the di erent particles that can circulate in the loop. In an expansion n N .,
the leading (asN. ! 1 ) contrbutions to the am plitudes are planar and the colour
structure is sin ply a single trace —n fact it isN . tin es the tree-level colour factor w hen
there are no particles In the fundam ental representation propagating in the loop. In this
case an aln ost ddentical form ula to (I.1.4) can be w ritten down for a decom position of
one-Jloop am plitudes of extermal gluons [156 ]

h
AP ag= g Newmrd e PR )i ()
2Sn=Zn
bni2c+1 <
+ tr(T® @ T2 © D) tp(T? © T2 )
=2 28n=Snge i
ALD¥( M)y () ;(110)

and we have left the sum over spins as being in plicit in the de nitons of the colour-
ordered partial am plitudes A rllzflloOp and A ;2. brc is the largest integer less than or
equal to r and S, . is the subset of pemm utations of n ob jcts leaving the double trace

structure invariant.

It is a rem arkable result of Bem, D ixon, D unbar and K osower that at one-loop,
non-planar (m ultitrace) am plitudes are sin ply obtained as a sum over perm utations
of the planar (singletrace) ones. This is discussed in Section 7 of [38] where it was
also noted that this applies to a generic SU (N.) theory (both supersymm etric and
non-supersym m etric) w ith extemal particles and those running in the loop both in the
ad pint representation. A s far as loop am plitudes go we w ill only be concemed w ith
particles that are in the ad pint, so it w ill be enough for us to consider only one cyclic
ordering (i.e. only A i_;lloOp ,which we w illgenerally abbreviate to A L) and then sum
over all the relevant perm utations at the very end. W e w ill not actually perform this
sum m ation in what follow s but leave it as som ething which can easily be In plem ented

to obtain the fuill am plitude.

T he colourordered sub-am plitudes obey a num ber of dentities such as gauge in-
variance, cyclicity, orderreversal up to a sign, factorization properties and m ore. T his
m eans that there isn "t a huge proliferation in the num ber of partialam plitudes that have
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12. SPINOR HELICITY FORMALISM

to be com puted. For 5point glion scattering for exam ple, there are only 4 independent
tree-level sub-am plitudes and it tums out that 2 of these vanish dentically because of
a ‘hidden’ supersymm etry (see {1.4l). For a m ore com plete list of dentities see [153].

1.2 Spinor helicity form alism

So far we have seen that we can reduce som e of the com plexity of our task by rem oving
the colour structure and considering only colour-ordered am plitudes. W e’ll also only
consider m assless particles and this restricts us further, though there are still a large
num ber of things that A , can depend on. For spinless particles (scalars), the situation
isclarand A, = A, (p;) “)( ri; ;1 pi), where the p; are the m om enta of the external
particles obeying p> = p p = 0 and we have w ritten the delta function of m om entum

conservation explicitly [31,/159]. In fact the m om entum dependence only appears in
term s of Lorentz-invariant quantities such asp;  p-.

For m assless particles w ith spin the situation is m ore com plicated and we have
to consider their wavefunctions i, gving A, = A, (Pi; 1) (4)(P L. pi). Textbook
de nitions have the ; being di erent depending on the spin being considered. For
exam ple In the case of spin 1=2 electrons and positrons in Q ED the wavefunctions are
usually taken to be the fam iliar u (p) and v (p) and their conjigates (see eg. Section (3.3)
of [4]), whilke In the case of spin 1 gauge bosons the polarisation vectors  in a suitably
chosen basis are comm on. A m ore unifying description would be highly desirable and
in fact one can be found using the socalled spinor helicity form alisn [160].

121 Spinors

W e start w ith the fact that, when com plexi ed, the Lorentz group is locally isom orphic
to
SO (1;3;C)= SL(2;C) SL(2;C) ; 12.1)

and thus the nitedin ensional representations are classi ed as (p;q), where p and g

are Integers or half-integersl] N egative- and positive-chirality spinors transform in the

(1=2;0) and (0;1=2) representations respectively. For a generic negativechirality spinor

we write with = 1;2 and for a generic positive-chirality spinor we write ©  with
= 1;2.

T he spinor indices introduced here are raised and lowered w ith the antisym m etric

tensors and as = and = with %2 = 1 and =

“N ote that this section is based largely on the spinor helicity reviews of [31,1159,1161]. See also
A ppendix[A] for m ore details and identities and [162] for another good review covering m any aspects of
this chapter.
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12. SPINOR HELICITY FORMALISM

(and lkew ise for dotted indices). G iven two spinors and  of negative chirality we

can then form a Lorentz-invariant scalar product as
h; i= ; (122)

from which it followsthath ; i= h ; i.Sin flarformul apply for positive-chirality

spinors except that we use square brackets to distinguish the two: [7;~]1= 7 ~ —.
It is worth noting inparticular thath ; i= 0 in plies = c where c isa com plex
num ber and sim ilarly for ~ and ~. W e w ill often use even m ore com pact notation for

these scalar productsand writeh ; i=h i= h ietc.

T he vector representation of SO (1;3;C ) isthe (1=2;1=2) and as such we can represent
a momentum vector p as a bispinorp . We can go to such a representation by

using the chiral representation of the D irac  -m atrices —a process that is wellknown in

supersymm etric el theories, see eg. [9,/10]. In signature + the D irac m atrices
can then be represented as |
0
= ; (1.2.3)
0
where () _ = (Ij~)and ( )- = ( )-= -~ () _= (1; ~)and ~ =

('; ?; 3) are the Paulim atrices as given in Equation (B_1J). For a given vector p

we then have

p_ = p
= pll +p ~ | (124)
N ,
_ Po .pa P I ; (125)
P1+ P2 Po P3
from which tfollowsthatp p = det(p ). Hencep islightlke (©° = 0) ffdet(p )= 0,
which in tum m eans that m assless vectors are those for w hich
p_= T (1.26)

for som e gpinors and ~ . These spinors are unique up to the scaling ( ;%) !

(c ;c I~y fora com plex num ber c.

Ifwewish p to berealin Lorentz signature (in which casep _ is hemm itian) then
we must take 7 = where is the com plex conjagate of . The sign determ ines
whether p has positive or negative energy. It is also possible (and som etim es usefiil) to
consider other signatures. In signature + + and 7 are realand independent w hile
in Euclidean signature (+ + + + ) the spihor representations are pseudoreal. Light-lke

vectors cannot be realw ith Euclidean signature.

The fomula forp p= det(p ) generalises for any two m om enta p and g and using
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12. SPINOR HELICITY FORMALISM

thefactthat ( ) ( )~ = 2 we can write the scalar product for two light-ike

vectorsp = _andg = ~_as

20 a@)=h i[~]: (12.7)

This is the standard convention in the perturbative eld theory literature and di ers
from the conventions in 31,161 ]by a sign that is related to the choice of how to contract

indices using

122 W avefunctions

Once p isgiven, the additional inform ation involved in specifying (and hence ™ in
com plexi ed M inkow ski space with realp ) is equivalent to a choice of wavefunction
for a gpin 1=2 particle of m om entum p . To see this, we can write the m assless D irac
equation for a negativechirality spinor as

i( ) @ =0: (1.2.8)

A plane wave = e® *with constant obeys thisequation 1 p = = 0 which

In plies that = ¢ . Sin ilar considerations apply for positivechirality spinors and
thus we can w rite ferm ion wavefiinctions of helici 1=2 as

=~ T, - X - 7T (129)

regpectively.

Form assless particles of spin 1 the usualm ethod is to specify a polarization vector
(which we should be carefl not to confuse w ith ) In addition to their m om en-
tum and together w ith the constraint p = 0. This constraint is equivalent to the
Lorentz gauge condition and deals with xing the gauge nvariance inherent in gauge
eld theories. Tt is clear that f we add any multiple of p to then this condition is

still satis ed and we have the gauge invariance

— + ! P : (1.2.10)

If one now has a decom position of a light-lke vector particle with momentum p =
~ then one can take the polarisation vectors to be [31] (see also [153,1163] and
references therein):

- =, - = ; (1211)

"W e will often use the tem s chirality and helicity interchangeably.
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12. SPINOR HELICITY FORMALISM

for positive-and negative-helicity particles respectively. and ~ are arbitrary negative—
and positive-chirality spinors (not proportional to or 7)) regpectively and it is worth
noting that the positive-helicity polarization vector is proportional to the positive-
helicity spinor (™) associated w ith them om entum vectorp w hile the negative-helicity
polarization vector is proportional to the negative-helicity one (). T hese polarization
vectors clearly obey the constraint 0 = p =p- shceh 1i= ["7]= 0 and are
independent of and ~ up to a gauge transform ation [31,/161]. T he wavefiinctions for
positive and negative-helicity m assless vector bosons can thus be w ritten as [161]

At =t - ;A = X - : (1212)

123 Variable reduction

O ne of the centralm otivations for all this song and dance is that we can use the results
to hom ogenise our description of scattering am plitudes. T he plethora of variables that
we had before can sim ply be traded for the bisgpinors and ~ to yied the com pact
form of a general scattering am plitude as

Ap=RAL( 570 @ LT (L2.13)

where h; is the helicity of the ith particle. In this schem e we can therefore calculate
am plitudes for the scattering of speci ¢ helicity con gurations of speci ¢ colour order—
ings of m assless particles. T he full am plitude is obtained by sum m ing over all helicity

con gurations and all appropriate colour orderings.

Asa nalramark In this section it is useful to note (and easy to show —see [31,
1611) that under the scaling-invariance inherent in the decom position of Eq. (1.2.8),
the waveflinction of a m assless particle of helicity h scales as ¢ 2" and thus obeys the
cond ition

- T ()= 2h (;7): (L214)
@ @~—

Sin ilarly, the am plitude in Eq. (I.2.13) obeys
i —— i An(ii7ihi)= ZhiAn( i77i7hi) (1215)

for each i SeparateyH

®The full expression A, ( 5; 5;hs) ¢ (ZL L4 Ni—) also obeys (L2.15)) [31].
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13. SUPERSYMMETRIC DECOMPOSITION

T he interested reader can nd the Feynm an rules for m assless SU (N ) Yang-M ills
gauge theory in the spihor helicity form alisn i A ppendix[Bl.

1.3 Supersym m etric decom position

Supersym m etric eld theories are in m any ways very sin ilar to the usual Yang-M ills
theorieswhose Feynm an ruleswew rotedow n at the start of the chapter. T he presence of
this extra sym m etry —supersym m etry —m eans that the particles of the theories arrange
them selves into supersym m etric m ultiplets containing equal num bers of bosonic and
ferm ionic degrees of freedom and this can often give rise to great sin pli cations.

M axin ally supersymm etric (N = 4) Yang-M ills for exam ple, w hich hasthem axin um
am ount of supersym m etry consistent w ith a gauge theory (ie. particles w ith spin less
than or equalto 1) in four dim ensions, contains only 1 m ultiplet consisting of 1 vector
boson A (2 real degrees of freedom (d.of.)), 6 real scalars I (6 maldof) and 4
W eyl (ie. chiral) farm ions (8 realdof.) which lives in the ad pint of the gauge
group. Thismultiplet is often w ritten in a helicity-basis (the helicities of the particles
hereareh = ( 1; 1=2;0;1=2;1)) as A ; ; ; ";A")= (1;4;6;4;1) and is often
referred to as the ad pint multiplet of N = 4. The m eaning of this notation is that one
of the degrees of freedom of the vector boson is associated w ith a negative-helicity ( 1)
state and the other w ith a positive-helicity (+ 1) state. Sim ilarly, the chiral ferm ions
are gplit into two, w ith 4 degrees of freedom being associated w ith helicity 1=2 and 4
w ith helicity + 1=2. T he scalars are of course spinless and thus associated w ith helicity
0. O ther comm on m ultiplets in four din ensions inclide the vector m ultiplet of N = 2
(1;2;2;2;1) —which consists of 1 vector, 2 ferm ions and 2 scalars —the hyperm ultiplet
of N = 2 (0;2;4;2;0) and the vector (1;1;0;1;1) and chiral (0;1;2;1;0) multiplets of
N = 1 supersym m etry.

T he existence of these supersym m etric m ultiplets generally leads to a better con-
trolof the eld theory in question, and m ost=im portantly for us a greater control of its
perturbative expansion. H euristically, ferm ions propagating in loops give term s w hich
have the opposite sign to bosons and the exact m atching of the bosonic and ferm ionic
degrees of freedom  leads to cancellations in the ultraviolet d vergences that plague non—
supersymm etric eld theories. In particular, N = 4 superYangM ills is believed to be
com pletely nite In four dim ensions as well as having quantum -m echanical conform al-
invariance. M assless QCD on the other hand is classically conform ally-invariant, al-
though this is broken by quantum e ects as is wellknown from the existence of its
one-loop (and higher) -function. QCD is also UV divergent at loop-level and thus
m ust be renom alised orderdby-order in perturbation theory.

N = 4 super¥YangM ills has the m ost striking features of these fourdin ensional

supersym m etric gauge theories and we w ill concermn ourselves w ith this theory as well
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13. SUPERSYMMETRIC DECOMPOSITION

asN = 1 super¥YangM ills. In fact, the results for N = 1 am plitudes in Chapter 2 also
apply to certain N = 2 am plitudes by virtue of the fact that the N = 2 hyperm ultiplet
istwice the N = 1 chiralmultiplet and the N = 2 vectormultiplet isequaltoan N =1
vector multiplet plusan N = 1 chiralm ultiplet.

A swe have already m entioned, we w ill m ostly be concemed w ith gluion scattering
in SU (N.) YangM ills theories (including QCD ) and thus w ill only consider this case
here. At treedevel it is easy to see that gluon scattering am plitudes are the sam e in
QCD asthey are in N = 4 superYang-M ills theory. T his is because vertices connecting
gluons to farm ions or scalars in these theories couple gluons to pairs of these particles.
T hus one cannot create ferm ions or scalars Intemally w ithout also creating a loop [164].
These Q CD scattering am plitudes therefore have a hidden’N = 4 supersymm etry:

A, = AN, : (131)

The sam e can of course be said about any supersymm etric eld theory with adpint
elds when one is concemed w ith the scattering of extermal glions at treelevel. W e
thus have the m ore general result that

AN = A, =AFE, =AF (132)

At one-loop we can of course have other particles propagating in the loop,butwhere
gluon-scattering only is concermed we can still nd a supersym m etric decom position. Tt
is:
one-loop

one-loop
QCD = A

N =4

one-loop
N =1;chiral

one-loop
scalar

A 4A + 2A (13.3)

In words this says that an allgluon scattering am plitude in QCD at one loop can be
decom posed Into 3 term s: Firstly a term where an N = 4 m ultiplet propagates In the
loop. Secondly a term wherean N = 1 chiralm ultiplet propagates in the loop and lastly
a term In pure YangM ills where we only have 2 real scalars (or one com plex scalar)
in the loop. This is easily seen due to the multiplicities of the various m ultiplets in
question: (1;0;0;0;1)= (1;4;6;4;1) 4(0;1;2;1;0)+ 2(0;0;1;0;0).

A swe have already discussed m any tin es, the LH S of {I.3.3)) is extrem ely com pli-
cated to evaluate. H owever, the 3 pieces on the RH S are relatively m uch easier to deal
with. The st two pieces are contributions com ing from supersymm etric eld theories
and these extra (super)-sym m etries greatly help to reduce the com plexity of the calcu—
lations there. M uch of the di culty is thuspushed into the last term which is them ost
com plex of the three, but is still far easier to evaluate than the LH S.

It is therefore clear that supersymm etric eld theories are not only sin pler toy
m odels w ith which to try to understand the gauge theories of the standard m odel, but
relevant theories in them selves which contribute parts (and som etin es the entireity in
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the case of certain treeJevel am plitudes (1.3.2)) of the answ er to calculations in theories
such asQ CD . T hese supersym m etric decom positions w ill be of great assistance to us in
our quest to understand the hidden sim plicity of scattering am plitudes and in order to
perform actual calculations.

For m ore inform ation on supersymm etric eld theories see any one of a m ultitude

of books, papers and review s including [9,110,11,[14].

14 Supersymm etric W ard identities

Aswecan now see, for a Jarge num ber of scattering am plitudes in gauge theories we can
reduce the com plexity of our problem by considering an appropriate colour-ordered sub-
am plitude that only depends on the positive- and negative-helicity spinors associated
w ith the externalm om enta (we usually drop the h; dependence of {1.2.13) and leave it
asbeing m plicit in thede nition of the am plitude being considered ). U sing our hidden’
(or not, depending on the theory in question) supersym m etry we are now in a position
to Jeam som ething about the scattering am plitudes in question. T he follow ing is also
nicely reviewed in a num ber of places including [153,[154] and was rst considered in
1164,l165,l164,[167]. Seealso eg. [168]fora recent application of supersym m etric W ard
dentities to loop am plitudes.

141 N =1 SUSY constraints

Let us consider what is In som e ways the sim plest possble setup, an ad pint (vector)
multiplet n an N = 1 supersymm etric eld theory where the SUSY is unbroken. This
N = 1 theory has only one supercharge Q ( ) that generates the supersymm etry w ith
being the ferm ionic param eter of the transform ation [B]. Because supersymm etry is
unbroken we know that Q must annihilate the vacuum : Q ( )Pi= 0. This in tum gives
rise to the ollow Ing supersym m etric W ard dentity (SW I)
%0
0=h0JO ( ); 1::: nIPi= HOJ 1 :::Q( )5 s]::: oL (141)
=1
for some elds ;. In addition, if we use a suitable helicity basis In which we have a
m assless vector A and a m assless gpin 1/2 ferm ion ,then Q ( ) acts on the doublet
A; )@de. @ ; ;0; *;A")in the notation of the previous subsection) as [166,/167

Q( A (p)
Q(C ) (P

P; )
(P; A 142)
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for som e m om entum p associated with these states. ( ;p) is linear n  and can be

constructed by using the Jacobi dentity

1)l @I+ 0 ); L)+ I @i )00 )]=0 (143)

and the SUSY algebra relation Q ( );Q ( )]= 21 B ,whereP = P asusual By
considering {IL4.4) forany ofthechiral elds (A * (p) orexam plk),we can readily deduce
that

) i) ;)= 2ip ; (144)

which can be solved to give (in the notation of L.2) [153,/154,166,1167 :

T (piait) = #pgl; (p;q;#) = #hpgi : (1.45)

In this expression we have written p= 7, and our param eter in tem s of a G rass—
m ann param eter # and an arbitrary referencem om entum g= (74. W e have also used
the shorthand notation h  4i= hpgiand [T, "ql= [Pglwhich will often be em ployed
henceforth.

Now consder (LZI)wih 1= ] and ;= A} forié 1:

0 = HIO( (@#)); T @AY (P2) A (py)Pi
= (P10 RAT (P AL () t2:A) (pn)Pi
+  (Pig#)03 ] (1) 5 (P2) Al (pr)Pi

+ (a0 1 (PL)AG (P2) i [ (pn)Pi
= (E1iai# A (BT AL jiiAL)
+ T oA (T 5 iiiiAL)
+ e AR (] AL iz L)t (146)

A s all of the couplings of ferm jons to vectors conserve helicity (you always get one
ferm jon of each helicity coupling to a vector), then 1 temm s involving two ferm ions
and n 2 gluonsmust vanish and thus the rst term nvoling only gluons of positive
helicity m ust vanish too A, (AI ;A; ;:iAT ) = 0. Since supersymm etry com m utes
w ith colour we can w rite our am plitudes as colour-ordered ones straight away and then
the relations apply to each colour-ordered am plitude separately.

If we consider the case where we have one negative-helicity in our SW I so that
1= 1, 2=A, and ;= A rié 1;2 for example, then we can also show that
all am plitudes w ith one negative-helicity particle and n 1 positive-helicity particles
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vanish. This is so both for the case of allgluon scattering and the case of n 2 gluons
and two ferm ions of opposite helicities. W ith m ore than one negative-helicity (such as

1= 1, 2=A,, 3=A; and ;= A] Porié 1;2;3) we can start to relate
non-zero am plitudes to each other. In all of these cases it is usefill to rem em ber that
the reference m om entum ¢ is arbitrary and can thus be taken to be one of the external
mom enta (= pi) or exam ple at any given stage in order to sin plify the calculations
and deduce ussfulresults.

142 Amplitude relations
Som e of the usefuil relations that we can obtain are:

ASUSY (1 ;2 ;iiin ) = 0 14.7)
ASUSY (1 ;2 ;iitn) = 0 (148)

hisi gyg

AEUSY(Ai;...; FFESY Jsf, ) = hj_rj_AnU Y(Ai;...;Ar;...;A;;...), (1.4.9)
hi si:

ASUSY (A, iy oy b)) = —SARUSYAL jrinA L Al i) (1410)
hiri?

where we have also played the same game with an N = 2 Vector m ultiplet in order to
include scalars . These relations hold orderby-order in the loop expansion of super—
symm etric eld theordies asno perturbative approxin ationswerem ade in deriving them ,
and by virtue of {I.3.2) they apply directly to treedevel Q CD am plitudes involring glu—
ons. It tumsout that treedevel Q CD am plitudes involving fundam entalquarks can also
be obtained from (1.4.9) because of relations betw een sub-am plitudes involring gliinos
(ie. ferm donic superpartners of glions in an ad pint m ultiplet such as the above) and
those Involving findam ental quarks [153,[169].

Equations (1.4.7) and (1.4.8]) am ount to the statem ent that for any supersym m etric
theory with only ad pint elds, the ‘allplus’ and ‘allm inus’ helicity am plitudes m ust
vanish and the am plitudes w ith one m inusand n 1 plusses (or viceversa) m ust also
vanish. T he sam e statem ent holds for the treeJevel gluon scattering am plitudesofQCD .
A sa result of this, the st non-vanishing set of am plitudes in a supersym m etric theory
are the ones w ith two negative helicities and n 2 positive helicities. T hese are thus
term ed the M axin ally H elicity V iolating (M HV ) am plitudes. T heir parity conjugates,
the am plitudes w ith tw o positive helicities and n 2 negative helicities are sin ilarly non-
vanishing and are som etin es term ed googly M HV (orM HV ) am plitudes [31]. Sin ilarly,
am plitudes w ith three negative helicities and n 3 positive helicities are term ed next—
toMHV (NMHV ) am plitudes. The next ones are thus called next-tonext+toM HV
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(NNM HV ) and so on.

The treelevel M HV am plitudes for gluon scattering, proposed at n-point in [170]
and then proved in [171], are given by (1.0.3) or by

hi §i*

»_ Hck+ 14

(14.11)

up to a factor. iand j are the gluons of negative helicity and the am plitude obeys
{I219). T he am plitude is cyclic in the ordering of the glions and so then + 1% spinor
appearing in the denom inator of (I.Z.I1l) just denotes the spinor of the 15¢ gluon. N ote
in particular that this function is entirely ‘holom orphic’ in the negative-helicity spinors

—ie. itdoesnotdepend on any of the ~ s —and thisw illbe In portant to us presently.
W e will not discuss NM HV and other am plitudes yet except to m ention that they do
depend on the ™ s.

1.5 Twistor space

There isa way In which we can understand som e of the properties of am plitudes that
we have discussed above such as the vanishing of certain helicity con gurations and
the sim ple structure of theM HV am plitudes and that is by going to tw istor space [31].
This has two prin ary m otivations. O ne is that the conform al sym m etry group has a
rather exotic representation in temm s of the and ~ variables and the other is that
the scaling-invariance m entioned under equation (I.2.8) has an opposite action on the
holom orphic spinors com pared w ith the antiholom orphic spinors ~. It would be nice
to put the conform al groud!| into a m ore standard representation and it m ay also be
nice to have the sam e scaling for the negative and positive-helicity spinors.

In term s of the spinorswe have already introduced in $1.7, the conform algenerators

"The gluon am plitudes at treeJdevel are invariant under the fll conform al group rather than just the
Poincare group. This is because of the classical conform al invariance of both m assless QCD and any
of the other supersym m etric eld theories that we have been considering. Am plitudes in som e of these
supersym m etric theories (especially N = 4 Yang-M ills) also have quantum conform al invariance.
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are 31]

Po= (15.1)
s =2 £, & (152)
2 e @
g - X~ & - (153)
- 2 Ch e~-
i e _ e
D = -— —t T+ 2 (154)
2 @ @~—
2
kK - & . (155)
@ e~

where P is the momentum operator, J and J _ the Lorentz generators, D the
dilatation operator and K the generator of special conform al transform ations. T hese
give rise to the algebra of the conform algroup as

i
J ;P = —( P + P ) ;
_ > _ _
i
J ;P = = P + P ;
_— - 2 - - - =
1
J ;J = 71( J + J + J + J ) ;
1
J ;5 = 71 _J + J + J o+ _J
i
D ;P = —-P ;
_ o -
K ;D = 2k ;
i
J ;K = — K + K ) ;
_ > _ _
i
J ;K = = K + K ;
—_— - 2  — - - -
K ;P = i J 4+ J + D ; (1L56)

w ith all other com m utators being zero. However, as can be seen from (L5.)-{I.5.1),
the m om entum operator is a m ultiplication operator, the Lorentz generators are rst
orderhom ogeneousdi erentialoperators, thedilatation operator an inhom ogeneous rst
order di erential operator and the special conform al generator a degree two di erential

operator. W e have quite a m ix.
W e can in fact reduce these to a m ore standard representation by perform ing a the

transform ation (31,1321

. @
i—

— N @ _

— ! i (1.5.7)
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Thisbreaks the symm etry between and ~ aswe have chosen to transform one rather
than the other, but giving the advantage that all the generators becom e rst order

di erential operators:

e
Po= i —; 1538
L=t g 158)
K - i 5, (159)
- -e
; - X &, & . (15.10)
2 @ e
i@ g
y - 2 &, (1.511)
— 2 @ - @ -
p - - &£ £ (1512)
e e -

T he scaling propertiesof and are also changed such that there isan Invariance under
(7)) (¢ jc); (1513)

for a com plex num ber ¢, and the am plitude scalings (I.2.19]) becom e

@
i@—+ Kn( 17 /h)= (@2hi+ 2)K%,( 17 1/he) (15.14)

;e
where A7, is the appropriately transform ed am plitude.

T his transform ation is perhaps easiest to understand in signature + + . In this
case one can consider and - to be realand independent and thus they param etrise
a copy of R*. The scaling (1.5.13)) is then a real scaling and reduces the space to real-
profctive threespace RP° and the transform (1.5.7)) is in plem ented by a ‘1/2-Fourier’
transform analagous to that encountered in quantum m echanics [31]:

Z 2
das~ . .
£ = ST (7) 151
()= Sze () (15.15)

In other signatures (such asM inkow skispace) itm ay bem ore naturalto regard and
as being com plex and independent. T hey thus param etrise a copy of C* which reduces
to CP° under the scaling (1.5.13). These spaces —RP° and CP> —were called twistor
spaces by Penrose [32] and we will often use coordinates z ! with I = 1:::4 on them
thus com bining and - together. O ne should really refer to “eal/com plex pro pctive
tw istor space’ respectively, but we w ill denote them all as being tw istor space (T ) and
let the context dictate what we m ean by that.

In the com plex cases, the choice of a contour for the transform ation as given by
(I_2.19)) is not necessarily clear and it seam s necessary to take the m ore sophisticated
approach of Penrose and use D olbeault- or sheafcohom ology [34]. Na vely, this inter—
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15. TW ISTOR SPACE

prets the integrand and m easure of {1.5.19) as a (0;2)<form on tw istor space, while
equation (I.5.14]) suggests that the am plitudes are best thought of not as functions,
but sections of a line bundle L, ofdegree 2h  2,L, = O( 2h 2) foreach h. The
am plitudes are thus elem ents of H (©?)(C P3O;O ( 2h 2)) 31]

T he transform ation of wavefiinctions to tw istor space is In som e ways m ore com —
plex. O ne cannot perform such a na ve ‘1/2Fourier’ transform in essence because the
waveflunctions are de ned by being solutions to the m assless free w ave equations and so
onem ust see how one can solve these In tw istor space. It tums out that these solutions
can be written as integrals of fuinctions of degree 2h 2 and the wavefunctions are
then described by elem ents of the @-cohom ology group H 1) (C p3’ ;0(2h 2)) —s<eceg.
31,1172,1173,1174 ] for details.

In particular these descriptionsm ean that scattering am plitudes w ith speci c exter—
nal states m ake sense in tw istor space. In a usual eld theory construction one would
multiply a m om entum —space scattering am plitude w ith itsm om entum -space wavefunc—
tions and integrate over allm om enta to create a scattering am plitude w ith speci ¢ ex-—
temalstates in the position—space representation. If the wavefunctions in position-space
satisfying the appropriate freew ave aﬂJaQtjons aregiven by ’ ;(x)= d*p; (é )Pt X (py),
then we have schem atically A (" 1) = ( d'p; (@)e® * ;(p:i))&K (ps).

In tw istor space, m ultiplying an am plitude in H ©#) (C Pao;O ( 2h 2))with awave-
finction which is n H @) CP3;0 (2h  2)) gives an elament of H ©3) (cP¥;0 ( 4)).
The naturalm easure on CP> isa (3;0)<orm ofdegree 4 (it is in fact the °of (T6.12)),
and so the nalintegralwillbe ofa (3;3)-fom of degree 0 which m akes sense (ie. the
integrand is a top—form on tw istor space invariant under {I.5.13)) as an integral over
CP30 . Doing this for each extemal particle gives the required scattering am plitude in
position-space.

Follow ing the original suggestions of N air [175], there isa sim ilar construction w hich
is particularly apt for am plitides in N = 4 YangM ills. In this case, particles are
described by , 7 and an additional spinless ferm ionic variable o with A = 1;:::;4
in the 4 representation of the R symm etry group SU (4)r of N = 4 YangM ills. The
Spacetim e sym m etry group in this case is no-longer the usual conform al group, but the
superconform al group PSU (2;2#) and one can write down generators In term s of

and which are again In a som ew hat exotic form . A fter a Penrose transform to

®Here we low [31]and write CP® instead of CP° because H ©2)(CP*;0 ( 2h  2)) = 0 and we
should really work with a suitable open set of CP® (which we denote with a prin e) rather then all of
tw istor space.
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super-tw istor space, which jist consists of {IL5.7) plus

A i

i® . (1516)

~

e 1
QA
all superconform algenerators sin ilarly becom e rst orderdi erential operators and the

A

space spanned by , —and isRP** or cP**. The scaling invariance of super-

tw istor space is:
@' M)l (@2t B (1517)
In this case, the helicity operator

ho1 4,8 (15.18)
- 2 %@, ’

m odi es the scaling relation (1.5.14l) so that it becom es

@ @ -
ZiI@ZiI+ ?@ ; Kn( 55 15 ashi)=0; (15.19)

and so the scattering am plitudes are elem ents of H (032) (C P3j40;0 0)).

O n super-tw istor space, the waveflinctions are now elem ents of H 0% (C p3# ;0 (0))
and can be given explicitly for a particle of helicity h by [31,136,1120,1161]

2h 1
(; h)y= t ; 1) — exp il~; F an( ) (15.20)

where g, ( ) issimnply a factorof 2 2h SH For exam ple, for a positive-helicity gluon
gy, is 1 while for a negative-helicity gluon itis * 2 2 . (In fact it is just the factor of
that the associated state m ultiplies in the expansion of the super ed A in (1.6.10).)
is a ‘holom orphic’ delta function which isa (0;1)om given by (£)= ©Nf)df for
any holom orphic finction £ —see A ppendix [A] for a m ore detailed discussion.

In this case, them ultiplication of scattering am plitude and wavefinction leads to an
elem ent ofH (0R) (C P3j40 ;0 (0)) and thevolum e form isa (3;0)form ofdegree 0 (explicitly
given by (I.&.11])), so the result m akes sense (again as a scaling invariant top—form ) to
be integrated over C p3* and gives the scattering am plitude in position-space.

For our treatm ent of am plitudes, we w ill generally use the de nition (L.5.19) and

signature + + and interpret our results in other signatures when necessary. It is

°This factor of ! is precisely what converts the wavefunctions from being ofdegree 2h 2 to being
of degree 0. One m ight also wonder why the power of = isonly 2h 1 and not 2h 2 given that
the wavefunctions on CP® (ie. with the factor of g, om itted) are of degree 2h 2. T his is because the
holom orphic delta function is of degree 1 and thus gives the correct scaling properties overall.
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also worth m entioning that we have glossed over m any subtleties In the considerations
above such as the realnature of m om enta already alluded to in 1.2, and the exclusion
of the oint at in nity’ in tw istor space (ie. the use of T rather than T ). For m ore
details on all these and m ore detailed discussions of tw istor T heory we refer the reader
to [31,132,1174,1173,1174,1176,1177,1178 ] and related references.

151 Amplitude localisation

Interpreting ({I.5.19) as the way to transform am plitudes into tw istor space, we are now
ready to see w hat the treelevel M HV am plitudes look lke there. Ifwe recall that these
am plitudes depend only on the negative-helicity spinors ;, the transform ed am plitudes

are 311:

Z
2~ n
AMEV .y o ¥oa I i "7 @ X ~ AMHV( ™))
n ir i) — (2 )26 k k n ir 1
j=1 k=1 | |
Z 2y on X ' X '
4 d=5 . ~ . ~ MHV
= d'x 2 )2exp i x _© Xp 1ix x © AL (1)
=1 k=1 k=1
Z
Y
e @y x5 YT (1521)

In the second line we have usad a standard position-space representation for the delta
function ofm om entum conservation and then in the third we have sin ilarly interpreted
the ¥ Integrals as delta functions. TheM HV am plitudes are thus supported only when

j_tx _ y=0fralljand for _= 1;2. For each x _ these equations de ne a
curve of degree one and genus zero in RP> or CP® (depending on w hether the variables
are real or com plex) which is in fact an RP! ora cP! 31]. x _ is the param eter or
m odulus describing any one of these curves and (I.5.21]) is thus an integral over the
m oduli space of degree one genus zero curves in T . A s there is a delta function for every
extermal particle, the integral is only non-zero when all npoints ( ;,; ; ) lie on one
of these curves in tw istor spaoe Thus the M HV am plitudes are localised on sin ple
algebraic curves In tw istor space, which are (propctive) straight lines in the real case

and sphereg 1 in the com plex case.

In them axin ally supersym m etric case we have an additional localisation from trans—
form ing the farm ionic variables to tw istor space. A swellas thedelta function ofm om en—

10"I:echjlrlca]ly the space is really n copies of tw istor space.

"Recallthat S° = CP'.
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Figure13: The M HV am plitudes localise on sim ple straight lines in tw istor space. Here
the 54ointM HV am plitude is depicted as an exam pk.

tum conservation com ing w ith the am plitudes, we also have a ferm ionic delta fiinction
@y= @ i3 = d exp i? T (1522)

and theM HV am plitudes for N = 4 YangM ills are given by [31,1175]

1

AMHV( o~ _): (4)(P) (8)( ) .
e Loohid+ 1i

n

(1.5.23)

T he transform to super-tw istor space is a straightforw ard generalisation of (I.5.21]) and
the result is [31]

1
~M HV 4,48 (2) (4) A A
X (17 17 )= d'xd .+ % : o+ : —
" s I - ] J Loohide 13

(1524)
Theeguations § +x ;= 0and %+ * ;= 0thende ne (foreach j) acp? or
an RP¥ in cpP** orrp3* respectively on which the am plitudes lie.

Theequation +x = 0isin fact of centralin portance in tw istor theory and is
traditionally taken to be thede nition ofa tw istor. For a given x (as in our case above),
it can be regarded as an equation for and which aswe have seen de nes a degree one
genus zero curve that is topologically an S?. A point in com plexi ed M inkow skispace is
thus represented by a sphere in tw istor space and hence com plexi ed M inkow ski space
is the m oduli gpace of such curves. A ltematively, if and (ie. a point in tw istor
Space) are given, it can be regarded as an equation for x. T he set of solutions isa two
com plex-din ensional subspace of com plexi ed M inkow ski space that is null and self-
dualcalled an -plane. T he null condition m eans that any tangent vector to the plane
is null, and the selfduality m eans that the tangent biwvector is selfdual in a certain
sense. These -planes can essentially be regarded as being light—rays and tw istor space
is the m oduli space of -planes.
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O ther am plitudes involving m ore and m ore negative helicities can also be treated,
though in these cases perform ing the Penrose transform (1.5.19) explicitly becom es
harder. In these cases it has been found that certain di erential operators can be
constructed w hich help to elucidate their localisation properties in tw istor space 31,173 1.
Tn particular, given three points P3;P;Px 2 CP? with coordinates ZiI;Z§ and 7, , the
condition that they lie on a ‘line’ (ie. a linearly-em bedded copy of CP! as discussed

above) is that Fi5, = 0 where
Fijkr = 19K LZiIZ]JZE : (1525)

S ilarly, the condition that four points in tw istor space are ‘coplanar’ (ie. lie on a
linearly em bedded cp? cP’is given by K ;1= 0 where

Kij1= 1k12i25%Z5 27 ¢ (1526)

W hen these are explicitly used, _ is substiuted for @=@~- and then they act on
am plitudes as di erential operators.

T he localisation properties of m any am plitudes have been checked [31,143,147,153,
72,173,74,91,17¢9,18C,1181,1184,1183,/184 ], and it hasbeen found that am plitudes w ith
m ore and m ore negative helicities localise on curves of higher and higher degree. For
treeJlevel am plitudes in particular thism eans that an am plitude w ith g negative-helicity
gluons localises on a curve ofdegreeq 1. In general, the tw istor version of an n-particle
scattering am plitude is supported on an algebraic curve in tw istor space whose degree
is given by [31]

d=qg 1+ 1; (1527)

w here g is the num ber of negative-helicity glions and 1 the num ber of loops. T he curve
is not necessarily connected and its genus g isbounded by g 1.

Figure 14: Twistor space localisation of tree am plitudes with g= 3 and g= 4

Treedevel next+to-M HV am plitudes for exam ple are supported on curves ofdegree 2,
while NNM HV am plitudes are supported on curves of degree 3 as shown in Figure 1 4
above. W e can also get a geom etrical understanding of the vanishing of the allplus
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am plitude and the am plitude w ith onem inusand n 1 plusses at treelevel. By (1.5.27)
these would be supported on curves of degree d= 1 and d= 0 in tw istor space. In
the st case, there are no algebraic curves of degree 1, so these am plitudes m ust
trivially vanish. In the second, a curve of degree 0 is sin ply a point and so am plitudes
of this type are supported by con gurations where all the gluons are attached to the
sam e point ( 1; ;)= ( ; )8 iin twistor space. Recalling from equation [I.2.7) that
pi P/ hi 5i[75 71 all these invariants m ust be zero for these am plitudes. T his on
the other hand is in possible for non-trivial scattering am plitudes with n 4 particles
and thus these m ust vanish at tree-level.

Forn = 3 things are a bit m ore subtle because on—shellness, pf = 0 and m om entum
conservation, p1 + P2 + p3 = 0, guarantee that for real m om enta In Lorentz signature
pi p= 0.However, for com plex m om enta and/or other signatures the 3-point am plitude
makes more sense. As 0 = 2p; p= h; ;i[7;7i], the lndependence of ; and 73
in plies that eitherh ; ji= 0 or [Ty 7;]= 0. Thusall ; are proportionalor all ~; are
proportional. A s can be read-o from the YangM ills Lagrangian (or seen as a special
case of the googly M HV am plitudes), the + + am plitude is given by

1572 T

A : (1528)
(172002 731073 71

This would vanish dentically if all the ~; are proportional, so we should pick all the

; to be proportional to ensure m om entum conservation. H owever, SL (4;R ) Invariance
in tw istor spac then in plies that the ( ;; ;) all coincide and thus the gluons are
supported at a single point in tw istor space as predicted by (1.5.27) 31 1.

1.6 Tw istor string theory

In this section wew illgive a very briefoverview ofa string theory that providesa natural
fram ew ork for understanding the properties of scattering am plitudes discussed In the
previous sections. W e w ill only describe the original approach (which has also been the
onem ost com putationally usefiilto date) taken by W itten [31]though other approaches,
notably by Berkovits [112,1113,[114 ], have been considered. Further proposals inclide
[115,1116,/117%,1118], though these have not so farbeen used to calculate any am plitudes.
A good Introduction to them aterial presented in this section can again be found in [161].

It is well known that the usual type I, type II and heterotic string theories lie
in the critical dim ension of d = 10, which is where they really m ake sense quantum
m echanically. However, there are other string theories known as topological string
theories which are typically sim pler than ordinary string theories and can m ake sense

1230 (3;3)= SL(4;R) is the conform al group in signature + +
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in other dim ensions. They are called topological because they can be obtained from
certain topological eld theories which are eld theories whose correlation functions
only depend on the topological nform ation of their target space and in-particular do
notdepend on the local nform ation such as them etric of the space. W itten introduced
topological string theory in [185,/186]as a sin pli ed m odel of string theory, and it has
been extensively studied since then. W e will only give a ‘Iightning’ review here and
refer the reader to the original papers and such excellent introductions as [187 ] form ore
details.

161 Topological eld theory

One startswith a eld theory In 2-dim ensionsw ith N = 2 supersym m etry. T he super—
symm etry generators usually transform as spin 1=2 ferm ions under the Lorentz group,
but in 2d this is SO (2) = U (1) locally and the spin 1=2 representation is reducible into
tw o representations which have opposite charge under the U (1). Things living In these
representations are often tem ed leftm overs and right-m overs, and the supersym m etry
isusually w ritten asbeing N = (2;2) w ith 2 leftm oving supercharges and 2 rightm oving
supercharges.

The symm etries of the theory consist of both the usual Poincare algebra as well
as the N = 2 supersymm etry algebra and the R symm etry of the theory associated
with the supersymm etry. W e w ill not w rite all of these down here, but in-particular

the supersym m etry generators and their com plex conjugates obey the non-zero anti-
com m utation relations (in the language of [1871]):

fO ;0 g = P H
fD ;D g = P H); (1o6.d)

where H d=d “and P d=d ! are the Ham iltonian and m om entum operators of the
2-d space w ith coordinates

One thing that we can now do is to de ne new operators Q o and Qp which are

linear com binations of supercharges as

Qa = Q04+ +0

Qg = Q++0Q 162)
and then it ©llow s from (1.6.1]) that

02=02=0 (163)

and Q a and Qg look lkke BRST operators. However, Q , g are not scalars, so wewould
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violhte Lorentz Invariance by interpreting them as BRST operators straight away. In
fact what we can do is to m ake an additionalm odi cation to the Lorentz generator of
the 2-d space by m aking linear com binations of it and the R -sym m etry generators in
such a way that the Q , g are scalarsunder the new generators. T his procedure is called

tw isting and produces two di erent topological eld theories labelled by A and B.

Now thatwehavea BR ST operator, we can use the usualde nitions for the physical
states of our theory In term s 0f BRST cohom ology (see for exam ple Chapter 16 of 2]
or Chapter 15 of [4] for an introduction). Physical states j 1 are given by the condition
Qa_pJ 1= 0 with states being equivalent if they di er by som ething which is BRST
exact such asQ - Jj 1 orsome j i. Sin ilarly, physical operators are taken to be those
which comm utew ith the BR ST operatorm odulo those which can be w ritten as an anti-
comm utator of Q , g with som e other operator. In particular one can show that that
the stresstensors of the tw isted theories are BR ST exact as they can be written in the
fom T, , = fQap; g for som e . This is a general property of topological eld
theordes.

162 Topological string theory

W hatwe have so far constructed are two 2-dim ensional topological eld theories. H ow —
ever, we can prom ote these to string theories by considering the theories to be living
on the worldsheet of a string and ensuring that we integrate over all m etrics of the
2-din ensional space in the path integral as well as the other elds appearing in the
action (seeeg. Chapter 3 of [19]forhow thisworks in the usual string theory settings).
T he Euclidean path integral

Zz = Dh( )D ( )e Sabil. (164)

where h is the world—sheet m etric, are the elds of our 2-d eld theory and

are the coordinates of the 2-d space then de nes our topological string theory. Ifwe
have rede ned our Lorentz generators to m ake Q o a scalar then the string theory is
known as the A -m odel, while ifwe choose tom ake Q 5 a scalar we arrive at the B-m odel
1185,/1861].

W e can also say som ething about the target spaces of these topological string the-
ories. In nom al’ string theory settings these target spaces — the spaces in which the
strings live —are known to be 10-din ensional (or 26-din ensional for the purely bosonic
string) in order for them to be quantum -m echanically anom aly-free. The N = (2;2)

eld theories discussed above, how ever, naturally give rise to target gpaces which are
special types of com plex m anifolds known asK ahler m anifolds —even before we perform
the topological tw isting. T hese gpaces are com plex m anifolds that are endowed w ith a
Herm itian m etric (ie. a realm etric —real in the sense that gy = (gi5) and g5 = (9i)
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-with gi5 = gy = 0) and which we can write locally as the second derivative of som e
function term ed the K ahler potentialK (z;z):
@°K (z;z)
= — 165

di| @zl@z| ( )
Here z' and z! are appropriate com plex coordinates on the target space. W hen we do
the tw isting described by (I.6.2J) it tums out that the A -m odel tw ist can be perform ed
for any K ahler target space, while the B-m odel tw ist requires the space to be of a yet

m ore gpecialised form known as a Calbi¥Yau m anifod.

There are m any di erent ways to de ne a Calabi¥Yau m anifold, but one way that
is good for our purposes is that it is a K ahler m anifold that is also R icck at, R = O.
Them oduli (essentially the param eters) describing the variety of such spaces are of two
types which are term ed the K ahlerm oduliand the com plex-structure m oduli. Tt can be
show n that the space ofK ahlerm oduliis ocally H *#) (M v ) —that is to say it is Jocally
given by the D obeault cohom ology class of (1;1)-form s —while the com plex-structure
m oduli space is locally the cohom ology class of (2;1)-m s H M <y ). Because
Calabi¥Yau m anifolds are autom atically K ahlerm anifolds to begin w ith and because of
their high degree of sym m etry, the A -m odel is often also considered on a CalabiYau.
Finally, it can be shown that the central charge of the V irasoro algebra of the A —and
B-m odels vanishes identically In any num ber of din ensions [187], so topological strings
are wellde ned in target spaces of any din ension. Form ore com prehensive discussions
of com plex, K ahler and CalabiYau m anifolds see eg. [187,1188,1189,/190,1191 1.

A s for the physical operators in thesem odels, we brie y state w ithout proof that in
theA model,Qa can beviewed asbeingQa d-thedeRham exterior derivative —and
the localphysical operators are in one-to-one correspondence w ith deR ham cohom ology

elam ents on the target space:
On  ABiyumpug()d * g h & (166)

For the B-m odel on the other hand one can show thatQp Q@ —the D olbeault exterior

derivative — and the local physical operators are now jast (0;p)-form s w ith values in

the antisym m etrized product of g holom orphic tangent spaces —which we denote by
ITEOM cy):

. @
s R

(1.6.7)

T hese theories also have the Intruiging property of m irror sym m etry [192,/193]—see
eg. [194]and references therein for a com prehensive review —that the A-m odelon one
CalabiYau is equivalent to the B-m odel on a di erent CalabiYau which is known as
its M frror. In the m irror m ap, the hodge numbers h'? and h?? are swapped which
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pertains to the exchange of K ahler and com plex-structure m oduli. This is especially
useful as the B-m odel is generally easier to com pute-w ith than the A -m odel, w hile the
A -m odel is m ore physically interesting in m any scenarios. Hard com putations In the

A -m odel can often bem apped to easier ones in the B-m odel.

163 The B-modelon super+w istor space

In his original construction [31], W itten considered the B-m odel and we will do the
sam e here. T he target space on which we willwant it to live willbe CP**, which isa
Calabi¥Yau superm anifold (with bosonic and ferm jonic degrees of freedom ) rather than
a bosonicm anifbd asism ore comm on. T his is fortunate because C P? isnot C alabiY au ,
while cp* is In addition, if we recall that the closed-string sector is w here gravity
states arise, we would like to consider the open-string B-m odelon tw istor gpace in order
that we m ay end up w ith degrees of freedom w ith spin 1 or lss. In the sin plest case
this consists of adding N bosonic-space- 1ling D 5-branes (thus spanning all 6 bosonic
directions of CP3* i analogy w ith the purely bosonic case of [195]. In addition (as
W itten did), we take the D 5s to wrap the ferm ionic directions ! and Y i such a
way that we can set 7 to zero. It is not entirely clear how this should be interpreted,
but one m ight say that the branes wrap the directions while being localised in the

directions. T he presence of N branes gives rise to a U (N ) gauge sym m etry as usual
due to the Chan-Paton factors of the open strings ending on theam .

So far we have been considering things from a worldsheet pergpective. H ow ever, for
open strings we also have the spacetin e perspective of open-string eld theory [194].
T his has a m ultiplication law ?, an operator Q obeying Q ° = 0 and Lagrangian

1 2 2
.,%:5 g 2Qd + 5427?42%?427 ; (168)

where &/ is the string eld. In the presence of D 5-branes on a 6-din ensional (bosonic)
m anifold this has been shown to reduce to holom orphic Chem-Sin ons theory [195],
where the D5D5 modes of the string ed & give a (0;1)form gauge ed A =

A {(z;z)dz{ on the branes. On the other hand, when the target space is the super-

m anifold CP3j4,£/ reduces to the (0;1)-fom gauge super ed A = A ((Z2;Z2; ; )dZ I,
while Q becom es the @ operator and ? the usualw edge product operation ~ . T he action
descends to 7

S:%cpm A tr AA@A+§AAAAA ; (169)

B fact cPY isCalbiYau i N = 4.

48



16. TW ISTOR STRING THEORY

and with = 0 the super eld A can be expanded as
1 1 1
A(Z;z; )=A+ II"'EIJIJ"'?'IJKLIJKNL"’ZIIJKLIJK "G ;

(16.10)
whereA; 1; 17 ;~1;G areallfunctionsofZ and Z and wehave suppressed the (0;1)-form
structure. i ([L6J) isa (3;0)<om and is the holom orphic volum eorm on C P>

4—1!21JKLMNPQZIdZJdZKdZLdeNdPdQ : (1611)

Because dz ! and d ! scale oppositely { as ollows from (L.5.17) and the ferm ionic
natureof ' d ' ! ¢ ld ! under I517)) { it is clear that (I6.11]) is invariant
under this scaling and thus the action {I.6.9)) is only invariant if A is of degree zero,
A 2 H (O;l)(CP3j40;O (0)). Thismeans that each com ponent el in the expansion
(I6.10) must be of degree 2h 2 and thus describes a el of helicity h in spacetin e
—c.f. the tw istor description of waveflinctions for particles of helicity h of Eq. (1.5.20)
and surrounding paragraphs. In addition, the ferm ionic nature of the ! restricts the
num ber of degrees of freedom of the com ponent elds and it can quickly be seen that
(I6.10) describes the N = 4 mu]i'jp]et which in the notation of sfL .3 can be w ritten

as(® ; ; ; T;AY) G;™Y; 155 1;A),while the action in com ponent o can be
w ritten as
Z
s = Ortr e @ +A~A) “Tr@ i+ RB; 1) (16.12)
cp?
+ EIJKL @ gL +A" 1) éIJKL 17 3”7 k1L g

where %= 15x2'dz7dz¥ dz L=4! is the bosonic reduction of obtained after inte-
grating out the Iand A; 1]1=A" 1+ 17 A.Theequationsofm otion follow ing
from (I6J9) are @A + A ~ A = 0 and the gauge nvarianceis A =Q@! + A ;! ]

W hatwehave arrived at is half’ of N = 4 superYangM ills. W ehave allthe eldsas
is apparent from (1.6.10)), but it tums out that not all the interactions are present. O ne
of the easiest ways to see this is to note that the sym m etries of the B-m odel generally
leave Invariant [[31]. H owever there are also interesting transform ations of the target
space that leave the com plex structure invariant but transform non-trivially. One
such transform ation isa U (1)g partoftheR—symmetry group U (4)g = SU 4R U (1)
that acts a

s: ztv zt; Tt (1613)

To bemore precise it is the tw istor transform of the N = 4 m ultiplet (34,1197 ].
R ecall that for G rasam an van'ab]es,fd @=@ with fd TJd= YWand ()=

1®N ote that the I indices on the com ponent elds in (1.6.12)) are fundam ental indices of this SU (4)g .

49



16. TW ISTOR STRING THEORY

withd ! e *d ! because of their form onic nature. ! e *  thushasS = 4
and hence so does the action {L6J) as the transform ation of the ! inside A are
com pensated by equal and opposite transform ations of the com ponent elds: A has
S=0, thasS= 1, ;hasS= 2, hasS= 3andG hasS = 4. In fact
the com ponent action (I.6.17]) ism ade up entirely of tem swith S = 4. However, the
usualN = 4 YangM ills action in com ponent form consists of term swhich have S = 4
and S = 8. For exam ple the scalar kinetic term s (@ ¥ have S = 4 whilk the scalar
potential ? hasS = 8. The holom orphic Chem-Sin ons action (1.6.9)) thus captures
all the elds of maxin ally supersymm etric Yang-M ills, but not all the interactions.
A Ythough we will not discuss it here, the theory described by (I.6.9) is in fact self-
dualN = 4 superYang-M ills [198] - that is, (super)-Y ang-M ills theory for a gauge eld
A%whose eHd strength appearing in the action is selffdual. A C is the spacetine eHd
corresponding to tElge hom ogenequty 0 ed (A) in (IL&IQ) and the spacetin e action of
this theory isS = G~ 0 GOon FSOD.HereGOjsasle—duaZLZ—fbm w hose tw istor
transform is the ham ogeneity 4 ed (G) in (LEIQ), FJ, is the se]fdualpar@ of
FO=da% A%~ A%and  is the Hodge duality operation.

164 Dldbrane instantons

W itten’s solution to the aforem entioned problem of the absence of the entire set of
interactions was to enrich the B-m odelon CP>* with instantons. T he ones in question
are Euclidean D 1-branes which wrap holom orphic curves in super-tw istor space and on
which the open strings can end. T hese holom orphic curves are precisely the ones that
we m et earlier on which the scattering am plitudes were found to localise. W e won't
go Into much detail here (m ore can be found in [31]), but the basic idea is that these
instantons have S-charge 4(d+ 1 g) for the connected degree d and genus g case.
T hus for the “‘classical’ treedevel M HV ca these instantons provide the tem s w ith
S = 8 aswehad hoped.

W ecan now consider other typesof stringsapart from D 5-D 5s. W ealsohaveD 1D 15,
D1D5sand D5D1s. TheD1-D1 strings give rise to a U (1) gauge eld on the world—
volum e of an instanton which descrlbes the m otion of the instanton n T. We will
thus ignore the D1-D1 strings from now on. Of course we do want to involve the
D l-nstantons, so we’ll focus on the D1-D5 and D5D1 strings. W itten argued that
these strings give rise to farm ionic (0;0)-form elds lving on the world-volum e of the
instanton. The D1-D5 modes give rise to a farm ion  * and the D 5D 1 m odes give a

N ote that om ally we can w rite the selffdual and antiselfdual parts of ¥ 0as FS?D = (F 04 FO):Z
and FZSSD = F° F’)=2. H ere we have taken F=Fr0,

W e refer to the treedevel M HV am plitudes as being the ‘classical’ case as it tums out that we can

re-form ulate perturbation theory in term s of M HV ~vertices’ — see sfL.]] —and they are thus appropriate
for consideration of S-charge violation at the level of the action.
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ferm ion ¢, with { and i (anti)-fundam ental U (N ) indices respectively. The e ective
action for the low -energy m odes is then
Z
Se = dz (@, + A,dz) ; (1.6.14)
D1
where z and z are local com plex coordinates on the D 1 and A , (which is a background
eld on theD 1) is the com ponent of the super eld generated by the D 5-D 5 strings kying
along theD 1. The rsttem isthe kinetic term of thesem odes (with @, the @ operator
restricted to the D 1), while the second describes their Interaction w ith the gauge eld
A and can be written as 7

Sint = J "~ (A,dz); (L6.15)
D1

wherewede nedJd tobethecurrentJ{j= { Jdz.

Any particular extemal state w il contribute just one com ponent of this super eld
A and therefore its coupling w ill be

Vs = Js ™ s i (16.16)
D1

where ¢ isthewavefunction of the state in tw istor space and thusa (0;1)-form there
Then if the curve which the D 1 wraps were to have nom oduli (i.e. there were only one
possibility for it), one would be able to com pute scattering am plitudes by evaluating
the correlator Wy, :::Vg 1. However, we know from the discussion in A1.5]] that these
curves do have m oduli and thus we should integrate this correlator over their m oduli
space. O ur prescription for com puting n-point scattering am plitudes whose extermal

particles have wave functions 5, will then be

Z

Ap= dM glvg :::Vg 1 (16.17)

where dM 4 is an appropriate m easure on the m oduli space of holom orphic curves of

degree d (and genus zero for our current purposes).

165 TheMHV am plitudes

As an exam ple of how (IL&.17) is in plam ented let us calculate the M HV am plitudes
using thisprescription. From #l.5.Jlwe saw thattheM HV am plitudes lie on holom orphic

YW e use subscripts s; etc. to denote the ith particle for the rest of this section In order to avoid
confusion w ith the gauge indices.
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curves that are em bedded in CP>* via the equations

s _t X _ 5 = 0
A A
st s. = 0: (16.18)
s, are the hom ogeneous coordinates on the curves (with sy = 1:::n denoting the kT
particle) and theirm oduliare x _ and * . T hese are thus the curves that we w ill take
the D 1-instantons to be w rapping. x _ has 4 (bosonic) degrees of freedom whilke * has

8 (ferm jonic) ones and a naturalm easure on the m oduli space is then dM ; = d*xd®

For clarity let us gpecialise to the case of 4-particle (gluon) scattering w here particles
1 and 3 have negative-helicity and particles 2 and 4 positive-helicity. T he n-particle case
is an easy generalisation of this. Form ally we have
Z
dM 11V, Vg, Vs, Vg, i
Z Z Z
= d*xd® Js, N s it Joo © s i (1.6.19)

cpt® ' cpt® ’

Ay

w here we assum e that the wavefunctions ¢ take values in the Liealgebra ofU (N ) and
thus contain a generator T? in addition to (IL520). (Js, ){j = ((z) I(z)dz then
gives
Z Z
Ay = d'xd®  dzyiidzr o (z1) P(z) s iirog (Za) P (za) s, (1620)

up to a factor. Separating-out the Liealgebra generators from the rest of the wavefunc-
tons ( 5, = ngak ) we can re-w rite the correlator as

Z Z D E
d*xd®  dzyiidzg O o::r O (@R B )¢ E 0 (1621)

51 *°° sS4 I la

This correlator has m any di erent contributions (105 In total) com ing from the
possible ways of W ick contracting the farm ions and . Let us consider the cyclic one
wherewe contract (z )with (z), (z)with (z3)and soon (with (z) contracted
with (z;)). Because and are ferm jons living on (in this case) C P!, their propagator
is the usual one for free ferm ions on the com plex plane

J

h J(z) ((z)i= {

(1e22)
Zy Z1
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and the relevant W ick contraction is

Woyere = (T%)% :::(T*)" h P (z) ¢ (z2)izih ¥ (za) ¢ ()i
Ji Ja
= (T2)E (T ... o
I l4 71 2z, 74 71
tr(T3 :::T3)
= : (1.6.23)
(z1 zZ2)(zo z3)(z3  24)(za  2Z1)
D ropping the singletrace colour factor for now , (IL&21]) is
Z Z 0 ... 0
Ay, = d*xd® dz; :::dzs St S
(z1 z)(2z0 z3)(z3  24)(zZa  2Z1)
Z Z 0 ... 0
=  d'xd® hgdginthgdgi S5 ;o (1624)

hg si:ithg

w here we have changed to hom ogeneous coordinates ¢, on the CPls by setting z, =

2 _1 : Coa . PR
5= s with 1 and 2 indicating spinor “ ’ indices here.

Now we m ust ntroduce the explicit form for the wavefunctions and integrate over
the . For this it isusefulto note that with z= “= ! and m aking the m ore speci ¢
choicesof = (1;z) and = (1;b), &_2.9) becom es (&_2.10):

hdih DF( )= F(): (1.6.25)

Om itting the integral over m oduli, {1.6.24)) thus gives

z oh, 1
. . S i[~ =
Ay = hgdgi (hg i) — el s la=e)g, ()
CPle S1
7 2hg 1
. . S i[~ =
hsdgi (hg i) — el sallea™sa)g (S OH (g)
CPle Sg
_ 1 2 3 4 1 2 3 4 i3 s, s )L
- S] S1 S1 S S3 S3 S3 S3H ( Si )e . : : 4 (1'6’26)

where H is the denom inator in (I.6.24).

W e must now perform the integral over the m oduli. For this purpose we can recall

the equations describing the enbedding (1.618) and substitute 5 = x _ o and
t = % , B whereupon the integral over x gives
0 1 0 1
Z x4 x4
d4X @(p@ ix _ 5 NST<A = @@ Sk NSkA ; (1.6.27)
se=1 sp=1

%R ecall that the delta functions of {L626) have set 5, = s, .
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which is just the delta function of m om entum conservation. For the ferm onic m oduli

we have (for exam ple):

hg s1: (1628)

A fter dealing w ith all the s in a sin ilar way and then integrating over the eight
variables givesh o &, i*. Puttig all the pieces together we get

0 1
h i X
Ayl ;27;3 ;47) = (T :0:T™) S1 S 4@ o ~s B
hs sitithg g1 o1
|
. !
hl 3i* X

= (T3 :::T™ )7h12i---h41i “) i~ (1629)

which is precisely the formula for the M HV am plitudes that we wrote down before,
though we have kept the colour structure explicit here.

W e should be carefil to note that we have sin ply picked the particular W ick con-
traction that we needed iIn order to get a cyclic colour ordering. A 1l the term s w ith
non-cyclic colour orderings but a single trace are also present as well as m ultitrace
term s which in [31,/36 ]were suggested to be a sign of the presence of closed-string (and
thus gravitational) states.

W e have explicitly described the construction of the M HV am plitudes from the B-
m odel in tw istor space. O ther am plitudes can be calculated in thisway too, though the
com plexity is greater so we willnot go Into any detailon this. The NM HV am plitudes
for exam ple require one to integrate over the m oduli space of degree 2 curves In T and
som e sin ple cases were calculated this way in [134]. O ther cases such as the n-point
googly M HV am plitudes (w ith 2 positive-helicity gluons and n 2 of negative helicity)
were worked out In [135] and all 6-point am plitudes In [136]. For these integrals over
curves of degree d > 1, one encounters the possibility of degcrjbjng these as connected
curves of degree d, or disconnected curves ofdegreed; with  d;y= d. In [134,/135,1136]
it was found that the connected prescription alone reproduces the entire am plitudes in
the cases considered (at least up to a factor). However, there is also strong evidence
that the sam e am plitudes can be com puted using the purely disconnected prescription
33]. Indeed, this disconnected prescription led directly to the proposalof new rules for
doing perturbative gauge theory w hich we w illdescribe in the next section. T he authors
of (199 Jargued that the integrals involved in the connected prescription localised on the
subspace w here a connected curve of degree d degenerates to the intersection of curves
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of degree d; w ith P d; = d and thus provided strong evidence that there are ultin ately
d di erent prescriptions which are all equivalent. T he extrem e possibilities are that we
have jist one degree d curve to consider, or altematively d degree one curves. This
latter case was the inspiration for 331].

W e have also not said anything about loop diagram s here except for the form al state—
m ent that they localise on curvesofdegreed = g 1+ lwithg 1. Thestructureofm any
loop diagram s of N = 4 superYang-M ills was elucdated in [31,174,173,1180,/181,1183],
though the situation w ith their calculation from the B-m odel is far less clear than that
for trees unfortunately. In [3d] it was shown that closed string m odes give rise to states
of N = 4 conform al supergravity describing deform ations of the target tw istor space as
wellas the expected N = 4 Yang-M ills states. C onform alsupergrav in 4 dim ensions
has a Lagrangian which isthe W eyltensor of gravity squared, S = 5 d4xp ij 2,
and is usually considered to be a som ew hat unsavoury theory as it gives rise to fourth
order di erential equations which are generally held to lead to a lack of unitarity (see
eg. [201]). Onem ight still hope to decouple these states, but because the coupling
constant is the sam e in both sectors the am plitudesm ix and one ends up w ith a theory
of N = 4 conform al supergravity coupled to N = 4 superY ang-M ills, som e am plitudes
of which were com puted in [36] at treedevel and m ore recently in [114] at loop—level
(see also 2021]). Degpite all this, it was shown by Brandhuber, Spence and T ravaglini
that the proposals of [33]can be extended to loop—level and provide a new perturbative
expansion for eld theory which is vald in the quantum regin e as well as the classical
one. This discovery w ill be a central them e in the follow ing chapters of this thesis.

Asa nalram ark in this section we point out that tw istor string theories have also
been constructed to describe other theories w ith less supersym m etry and/or product
gauge groups [119,1120,1121,1122,1124] as well as m ore recently to describe E instein
supergravity [39]. Indeed the proposals in [39] include a tw istor description of N = 4
SYM coupled to Einstein supergravity which m ay lead to a resolution of the problem
of loops if they can be consistently decoupled.

1.7 CSW rules (tree-level)

M otivated by the ndings we have so far discussed, C achazo, Svrcek and W itten pro-
posed a set of altemative graphs for tree-level am plitudes in Yang-M ills theory based
on the M HV vertices [33]. The essential dea is the observation that one can seem —
ingly com pute treedevel am plitudes from the totally disconnected prescription alluded
to above by gliing d disconnected lines together (on each ofwhich there isan M HV am —
plitude localised) for an am plitude nvolving d + 1 negative-helicity gluons. T he gluing

'For a review see eg. 2001.
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procedure is m ade concrete by connecting the lines w ith tw istor space propagators. In

eld theory tem s this corregponds to the use of M HV am plitudes as the fundam ental
buiding blocks —because their localisation properties in tw istor gpace translates to a
point-dike interaction in M inkow ski space —and gliing these together w ith sin ple scalar
propagators 1=P 2. The two ends of any propagator m ust have opposite helicity labels
because an incom ing glion of one helicity is equivalent to an outgoing gluon of the
opposite helicity.

171 O -shell continuation

In order to glueM HV vertices together wem ust continue them o —shellsince one orm ore
of the legsm ustbe connected to theo -shellpropagator 1=P 2. Forthis purpose, consider
a generic o —shellm om entum vector, L . O n general grounds, it can be decom posed as
65,1791

L =1+ 2z ; (1.702)

2

where 1 = 0,and isa xed and arbitrary null vector, = 0; z is a real num ber.

Equation {1.7.]l) determ ines z as a function of L :

L2
z = : (1.7.2)
2(L )
Using spinor notation, wecan write land asl =11, = ~ . Itthen follows
that
L ~—
1 = = ; (1.73)
(T~ ]
L
T = = : 1.74)
- hl i

W e notice that (I.73) and {1.7.4) coincide w ith the CSW prescription proposed in [33]
to determ ine the spinor variables 1 and T associated w ith the non-null, o —shell four-
vector L de ned in (I.7.1l). The denom inators on the right hand sides of {1.7.3) and
(IZ4) tum out to be irrelevant for our applications since the expressions we will be
dealing w ith are hom ogeneous in the spinor variables 1 ; hence we w ill usually discard
them . Thisde nes our o —shell continuation.

1.72 The procedure: An exam ple

TheCSW rulesfor pining theseM HV am plitudes together are probably best ilistrated
w ith an exam ple. It is clear that a tree diagram with v M HV vertices has 2v negative-
helicity legs, v 1 of which are connected together w ith propagators. A s m entioned
above, each propagator m ust subsum e precisely one negative-helicity leg and thuswe
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are left with v+ 1 extermal negative helicities. To put it another way, if we wish to
com pute a scattering am plitude w ith g negative-helicity gluonswe willneed v= g 1
M HV wvertices. A s such let us consider the sim plest case of the 4-pointNM HV am plitude
A4(1l* ;2 ;3 ;4 ). Weknow from our discussions in that this m ust vanish and
we would thus like our calculations here to support that. Even though we end up
com puting som ething trivial, it is a good illustration of the procedure to follow .

1< P3
+
P12
P Py
oy P
+
P14
By b3
Figure15: The wo M HV diagram s contributing to the + am plitude. A llexternal

mom enta are taken t e outgoing.

As shown In Figure 1.5, there are two diagram s to consider. For each diagram
we should write down the M HV am plitudes corresponding to each vertex and Jpin
them together with the relevant scalar propagator, rem em bering to use the o —shell
continuation of (I.73) and (I.7.4)) to dealw ith the spinors associated w ith the intemal
particles. The rst (upperm ost) diagram gives

h i 1 h 3y 433
C1= 2 Fizm o S - (1.75)
h P lll’l 1 2lP12h 4 Plgm P 31
where them om entum of the propagator isP1, = (p1+ p2) = (P3+ pa). A sthe extemal

m om enta are m assless, sz = 2(p1 p)= hl2i[21]and the o —shell contihuation tells
us that

Pig~_
P ~
. [ Pis N]
_ (17Tt 273)~
[Py, ~1
al an
_ 2 2z . 176
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where we have written "~ = a; and [7p,, ~]1= b for clarity and have kept the de-
nom inators of the o <hell continuation explicit in order to dem onstrate that they will
drop out of the expressions. Sim ilarly, an appropriate form for elim inating p,, from

the M HV vertex on the right is

ag

— (1.7.7)
b

On substituting for p,, and P7, {I.Z.5) then becom es

o kaj m21# 1 34 v
LT a2 1ihl 2ihl 2i[2 1104 314 31 azaq
3 .
_ a; h34i . (178)
dpazay [12] ) o

G oing through the sam e procedure for the second contribution in Figure 1.5 gives

aj h23i
Cyr= ; (1.7.9)
arazag [41]
. . . Py
and the nalanswer isA4 = C;+ C,. Momentum conservation is_ ., ;73 = O,
which can be applied to an expression of the form h3ii[il] to give i JhB3iifEl] =
B2i[21]+ h34i[41]= 0 and means that h34i=[12]= h23i=[41]. ThusC; = C, and

weget A, = 0 as expected.

T here are two essential points to note here. The rst is that when we perform ed
the o —shell continuation all the denom inators of (I.73) cancelled out. This is in fact
generally true for the am plitudes we w illbe interested in and thuswe w ill discard them
from now on. T he second point is that in C1 and C,, the arbitrary nullm om entum of
the o shell continuation was still present, urking asan ~_in the ;. The contrdbutions
cancelled in the end so we didn 't care too m uch about this, but we m ight worry about
the presence of this arbitrary m om entum in the calculation of am plitudes that don‘t
vanish. In fact it tends to crop up frequently and the expressions that one arrives at
seem to depend on  at rst sight. However, it can be shown that the am plitudes are

—-independent and it can therefore som etin esbe ofuse to set  to be one of the extermal
m om enta In the problem .

T his procedure has been i plam ented both for am plitudes w ith m ore external glu—
ons and am plitudes w ith m ore negative helicities. In both cases the com plexity grow s,
but the num ber of diagram s grow s ©or large n at most as n® [33]which is a m arked
n provem ent on the factorial grow th of the num ber of Feynm an diagram s needed to
com pute the sam e processes. Further evidence for the procedure and a heuristic proof
from tw istor string theory can be found in [33], while a proof based on recursive tech—
niqueswasgiven by R isager in [34 Jw hich was then used to give an M HV <vertex approach

58



18. LOOPDIAGRAM S FROM MHV VERTICES

to gravity am plitudes [77]. Evidence for the validity of the procedure for tree and loop
am plitudes was given in [79 ]

On the other hand M ans eld found a transform ation which takes the usual Yang—
M ills Lagrangian and m aps it to one where the vertices are explicitly M HV vertices
357 (see also [203])). This involves form ulating pure Yang-M ills theory in light-cone
coordinates and perform ing a non—local change of variables which m aps the usual 3-
and 4-point vertices that arise In Feynm an diagram perturbation theory into an in nite
sequence of M HV vertices starting w ith the 3-point + vertex. The procedure
also clari es the origin of the null vector that we have used to de ne the o —<hell
continuation. It is just the sam enullvectoras isused to de ne the Iight-cone form ulation
of the theory (35,181 ]. For further work related to understanding the CSW rules from a
Lagrangian approach see [80,181,184,/137%,1138,1139,1204].

1.8 Loop diagram s from M HV vertices

The CSW rulesat treedevel provide a new and e ective way of re-organising perturba-
tion theory and thus lead tom ore e cientm ethods for calculating tree—level am plitudes
w hich often yield sin pler results than m ore traditional approaches. N aturally we would
like to be able to extend this m ethod beyond treelevel and consider quantum cor—
rections which are often a substantial contrbution to the overall result. However as
already m entioned the picture from tw istor string theory is not as clear at loop-level
and onem ight expect the C SW procedure to fail there due to the presence of conform al
supergravity.

N onetheless B randhuber, Spence and Travaglini showed that the CSW rulesare still
vald at one-loop and provided a concrete procedure to follow from which they re-derived
the one-doop npointM HV gluon scattering am plitudes in N = 4 superY ang-M ills [37].
T he answ ers they obtained are in com plete agreem ent w ith the original results derived
at 4-point by G reen, Schwarz and Brink from the low energy lim it of a string theory
2057 and then at npoint by BDDK [38]. W e willbrie y review the m ethod proposed
in [37]and outline how it can be used to derive the N = 4 am plitudes. C hapters[Z and
[3 w ill then be devoted to applying the sam em ethod to the N = 1 am plitudes and those
in pure YangM ills w ith a scalar running in the loop respectively, thus calculating all
cutconstructib = contributions to the npoint M HV glion scattering am plitudes in
ocD {I.33).

Wew i1 say m ore about loop am plitudes shortly.

23Tt tums out that the CSW approach at loop-level only calculates the cutcontaining tem s, thus
m irroring the cutconstructibility approach of BDDK . T he rational temm s are inextricably linked to
these in supersym m etric theories but m ust be obtained in other ways In non-supersym m etric ones. See
also A ppendix[Dl.
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181 BST ruls
T he procedure proposad in [37]can be summ arised as follow s [40 ]z

1. Consider only the colour-stripped or partial am plitudes introduced in L. As
already m entioned there, the rem arkable results discussed In Section 7 of 361
m ean that this is su cient to reconstruct the entire colourdependent am plitude.

2. Lift the M HV treedevel scattering am plitudes to vertices, by continuing the in-
termal Jnes o -shell using the prescription described in {1.7.1]. Intermnal lines are
then connected by scalar propagators which jpin particles of the sam e spin but
opposite helicity.

3. Buid M HV diagram s w ith the required extemal particles at loop level using the
M HV treeJlevel vertices and sum over all ndependent diagram s obtained in this
fashion fora xed ordering of extermal helicity states.

4. Reexpress the loop integration m easure in term s of the o —shell param etrisation
em ployed for the loop m om enta.

5. Analytically continueto 4 2 din ensionsin order to dealw ith nfrared divergences
and perform all loop integrations.

182 Integration m easure

T he loop kgs that wem ust integrate over are o <helland in order to proceed wem ust
work out the Integration m easure used in [37]. The details of the m easure were m ore
concretely worked-out in [79] using the Feynm an tree theorem [204,1207,1208]and we
use certain results from there as well as from the original construction of [37] while
follow Ing the review of Section 3 of [40 1.

W e need to re-express the usual integration m easure d*L over the loop m om entum
L in term s of the new variables 1and z Introduced previously. A fter a short calculation
we nd tha 37,1791

I Q-2 . (181)
L2+ 4" z+ i’ |
where we de ned?*L = iOdLi and have introduced the N airm easure [175]
1 5 5 d’1
dN (1) = — hldlid®T IdId*l = — : (18.2)
41 21y

#The i" prescription in the left- and right-hand sides of (L&) was understood in [37], and, as
stressed in [79,1179,1209] it is essential in order to correctly perform loop integrations.
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18. LOOPDIAGRAM S FROM MHV VERTICES

Eq. (I.81]]) is key to the procedure. It is in portant to notice that the product of the
m easure factor with a scalar propagator d*L=(L? + i") .0 (L&) is independent of
the reference vector . In [[L75], it was noticed that the Lorentz-invariant phase space

m easure for a m assless particle can be expressed precisely in term s of the Nairm easure:
a'1 @) = N ; (183)
where, as before, we write the nullvector las1 = 1T ,and in M inkow ski space we

dentify T= 1ldepending on whether 1y is positive or negative.

N ext,we observe that in comutjng one-loop M HV scattering am plitudes from M HV

diagram s (shown in Figure 1.6)21, the fourdim ensional integration m easure which ap-

pears is [37,179]

d4L1 d4L2 4)
dM = mm (Lo L1+ Pp); (1.84)

where L1 and L, are loop m om enta, and P;, is the extermalm om entum ow ing outside
the ]oo so thatL, L;+ Py = 0.

Lo

| <

Ly

Figure 1.6: A generic M HV diagram contributing to a one-loop M HV scattering am pli-
tude.

Now we express Ly and L, as in (I.Z1),
Li; = L% + zz ~ 3 i=1;2 : (18.5)
U sing {I.8.3), we re-w rite the argum ent of the delta function as
Ly Li+Pr=Xk L+ Prs; (1.8.6)

w here we have de ned

PL;Z = Py z g (1.8.7)

2%W e thank the authors of [79] for allow ing the reproduction of Figure 17 of that paper.

2 . .
®In our conventions all externalm om enta are outgoing.
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18. LOOPDIAGRAM S FROM MHV VERTICES

and

2 o= 7 oz (188)

Notice that we use the same for both them om enta Ly and L. Using (I.89), we can
then recast (1.84l) as 37,791
dz; dz, &L &L,

aMm = + P ; 189
7 + i"1 7o + i"2 2]10 2]20 (12 ]1 L,z) 7 ( )

where"; = sgn( glo)" = sgn(lp)",i= 1;2 (the lastequality holds sinceweare assum ing
o> 0).

W e now convert the Integration over z; and z, Into an integration over z and
z% = 2z, + z, and wih a carefiil treatm ent of the integrals [79] we can integrate out

z0. W e also m ake the replacam ent

&L Ly, . .
Z . ; ’ - ) 7 18.1
TS (L L+ Ppg) dLTPS(L ; I ;PLy) (1.8.10)
w here
dLPS(L ; I ;PLy) = d'y W@ a'y (@) Y& L+ PL,) (1.8.11)

is the twoparticle Lorentz-invariant phase space (LIPS) m easure and we recall that
()= ( }) (}). Trading the nalintegralover z for an integration over P #_, the

Lz/

integration m easure nally becom es [37,1791]

R Py,
M o= 21 Bz LPSL L PLg): (18.12)
Lz L

This can now be Imm ediately din ensionally regularised, which is accom plished by
sin ply replacing the fourdin ensional LIPS m easure by its continuation toD = 4 2

din ensions:
PLPS(L; LPLy) = &L D@y (@) ®@ L+ PL.): (1813)

Eq. (I.8.12)) was one of the key results of [37]. It gives a decom position of the originalin—
tegration m easure into a D -din ensional phase gpace m easure and a dispersive m easure.
A ccording to Cutkosky’s cutting rules 210], the LIPS m easure com putes the disconti-
nuity of a Feynm an diagram across its branch cuts. W hich discontinuity is evaluated
is determ ined by the argum ent of the delta function appearing in the LIPS m easure;
in (8I2) this is Pr,, (de ned in (I.8)). Notice that Py, always contains a tem
proportional to the reference vector |, as prescribed by [[L8.7). Finally, discontinuities
are integrated using the dispersive m easure in (I.8.17]), thereby reconstructing the fi1ll
am plitude.
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19. MHV AMPLITUDES IN N = 4 SUPERYANG-M ILLS

A s a last ram ark, notice that in contradistinction w ith the cutconstructibility ap-
proach of BDDK , here we sum over all the cuts { each of which is Integrated w ith the

appropriate dispersive m easure.

19 MHV am plitudes in N = 4 super-Y ang-M ills

In this section we will brie v review the onedoop M HV N = 4 super¥YangM ills am —
plitudes and their derivation using M HV vertices. M any m ore details can be found in
37,1381.

191 General integralbasis

Tt isknown that, at one-loop, allam plitudes In m assless gauge eld theories can bew rit—
ten In term s of a certain basis of integral functions term ed boxes, triangles and bubbles
as well as possible rational contributions (i.e. contrbutions which do not contain any
branch cuts) 3§8,[44]. These functions m ay Invole som e num ber of loop m om enta in
the num erator of their integrand, iIn which case they are term ed tensor boxes, triangles
or bubbles, though the basic scalar integrals rem ain the sam e and at 4—, 3—and 2-point
respectively are the basic integrals arising at oneoop in scalar ° theory.

Py Ps Ko

Q1 Q2

Py Py K1 K3

Figure 1.7: Boxes, Trianglks and Bubbks. Here P;, K ; and Q ; are generic m om enta
representing the contribution of one or m ore external particles. T he di erent functions
discussed kelow (1-m ass, 2-m ass etc.) are all special cases of these.

A box integral is characterised by having 4 vertices, a triangle integral by having 3
vertices while a bubble has 2. T he speci ¢ functions that occur are then characterised
notonly by possible powers of loop m om enta arising in the num erator, but by the
num ber of vertices w ith m ore than one extemal leg. If a vertex has only one external
leg it is called a m assless vertex (as the extermalm om entum ism assless in the theories
we are considering), w hilst if it has m ore than one external leg it is term ed a m assive
vertex as the externalm om entum em anating from it does not square to zero.
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19. MHV AMPLITUDES IN N = 4 SUPERYANG-M ILLS

T here are thus 4 generic types of box Integrals: 4-m assboxesw here all 4 vertices are
m assive; 3-m ass boxes; 2-m ass ‘easy’ boxes w here the m assive vertices are opposite each
other; 2-m ass ‘hard’ boxes where the m assive vertices are ad pcent and 1-m ass boxes.
At 4-point the only possible box Integral is a m assless box. Sin ilarly one can have
3-m ass triangles, 2-m ass triangles, 1-m ass triangles, 2-m ass bubbles and 1-m ass bubbles
(as well as m assless triangles and m assless bubbles at 3—and 2-point Iespectjyey)
E xplicit form s for all these fiinctions can be found In A ppendix I of [44].

192 TheN =4MHV oneldoop am plitudes

C onceming the above decom position, m axim ally supersym m etric Yang-M ills theory is
special in that its high degree of sym m etry prescribes that its one-loop am plitudes only
contain scalar box integral functions (up to nite order in the din ensional regularisation
param eter ) 1BE,l142]. In particular, the M HV am plitudes only depend on the 2-m ass
easy (2m e) box fiinctions. T he full one-loop npointM HV am plitudes are proportional
to the treelevel M HV am plitudes and are given by [38]

ANTHMEV = alrev I (19.1)
where [3§,[73]
] 1
g XX 1 2m e .
v = 1 Sz o1x Fogd (192)
i=1 r=1

T he basic scalar box integral I is de ned by

Z

I,= i(4 )
T d 2 2 p’(p P1)(@ P: P2l (p+ Py)

; (19.3)

where dim ensional regularisation is used to take care of infrared divergences. The
relevant integrals arising in {I.9.2]) are related to I for di erent choices of the external
m om enta at each vertex P; (1= 1:::4). These are denoted by I ¢ —see Figure 1.8 —

A

and are given in tem s of the F 2" ¢ by

nr;i

2m e
I2m e _ ZFH fiagl . (194)
drid T plm r 2] e+ 1], [+ 1] 7 =
6841 H1H

2TN ote that 1-m ass and zero-m ass bubbles are usually taken to vanish in din ensional regularization
which is interpreted as a cancellation of infrared and ultraviolet divergences (44,211 ].
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19. MHV AMPLITUDES IN N = 4 SUPERYANG-M ILLS

w ith
6 = (it kit k1P ;>0
& = " rco; (195)
w here the k; are the externalm om enta. T he explicit form oanzr_f;,_ie is given by [39]
1 b [r+ 1] [r+ 1] [r] i 2], i
2 T+ r+ r n r
Fanr;ie = 2 ( g )+ g ) tl) tl+r-¢-1
| | l
k] r] mr 2]
. tl . tl . Tj_+r+l
+ Lip 1 il + L 1 ey + L 1 —
tl 1 | tl I Ll |
r 2" rl.ln r 2] [r+11°
: 1 :
4 ng 1 +r+ 1 ng 1—1 t—j_+r+l + —]og2 tl 1 ,‘(1.9.6)
[+ 1] [r+ 1 [+ 1] 2 [+ 1]
g g g
where L}, is Euler’s dilogarithm
Z zZ
. g(l 1t
Li(z) = dt (19.7)
0 t
Kitry1
kiJrr R
ki 2
iy
Kivr 1
_ .
ki i1

Figure 1.8: The 2-m ass easy box function.

The one-loop M HV am plitudes were constructed in [38] from tree diagram s using
cuts. A given cut results in singularities In the relevant m om entum channels and by
considering allpossible cuts one can construct the fiill set of possible singularities. From
this and unitarity one can deduce the am plitude as given in (I.9.1). M ore explicitly,
consider a cut one-loop M HV diagram where the cut separates the extermal m om enta
kn, & kn, 1,and kn, & kp,+1 (ie. the set of externalm om enta ky | jkp + 1725 Kn ,
Iie to the kft of the cut, and the set ky ,+1ikm,+ 275k, 1 Le to the right, with
m om enta labelled clockw ise and outgoing). T his separates the diagram into two M HV
tree diagram s connected only by twom omenta ; and 1 ow Ing across the cut, w ith

L=+ Py ; (1.9.8)
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19. MHV AMPLITUDES IN N = 4 SUPERYANG-M ILLS

where Py, = g ri“:zm . ki is the sum of the externalm om enta on the left of the cut. The
mom enta L ;1 are taken to be null. Tt is In portant to note that the resulting integrals
are not equal to the corresponding Feynm an integrals where ; and 1, woul be left o

shell; how ever, the discontinuities in the channel under consideration are dentical and

this gives enough inform ation to determ ine the full am plitude uniguely.

However, we willnow sketch how to derive the M HV am plitudes using the m ethod
of M HV diagram s. T his is quite sin ilar, but not identical to the approach of BDDK
using cut-constructibilly, a brief review of which can be found in A ppendix [D].

193 MHV vertices at one-loop

my m1-1

Figure 19: A one-loop M HV diagram com puted using M HV am plitudes as interaction
vertices. T his diagram has the m om entum structure of the cut referred to at the end of
(1.9 2.

1. Toeach M HV vertex we associate the appropriate form oftheM HV am plitude for
that vertex, recalling that intermal linesm ust be taken o —shell using the prescrip—
tion described in AI.7.0l. To each intemal line we associate a scalar propagator
and Integrate over the appropriate loop m om entum . T he generic expression for
the diagram of Figure 1.9 then reads:

A - d'n; d', 1 1 AL
(2 ¥ (@2 PLi+ i"Ls+ i

d*L; d'L, Ny W@, Li+Py)iNg Y@ Lo+ Pr)

L%‘i‘ i"L%‘f‘ i" D Dg
din;  d*L iN g, N
@, +Pr) ————— 2 W@, Li+P)—="2: (199)
- - 2 : I/
PUOURT L2y gepzy e PTUETD L pa
Here L, and R denote the left and right vertices respectively and we have
P, = Kpn, + Kn,+1+ 22:+ Kk, and Pr = Kp,41+ Kp,e2+ tii+ Ky, 1. N and

D denote the functions of spinor variables describing the num erator and denom —
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19. MHV AMPLITUDES IN N = 4 SUPERYANG-M ILLS

inator of each M HV vertex respectively and we have inclided a factor of i(2 )*
w ith each vertex in keeping w ith N air’s supersym m etric description [31,13%,1175].

2. In 37]an approach using N air superwvertices was used. H ere we w ill just consider
the usual M HV vertices for ease of transition to the later chapters where we
will discuss M HV am plitudes in theories w ith less supersym m etry. In this case
there are two possibilities to consider. The rst is where both extemal negative—
helicity gluons lie on oneM HV vertex and the second isw here they lie on di erent
vertices (see eg. Figure 24). A fter som e m anjpulation (em ploying the Schouten
dentity stated in A ppendix A ), they can be shown to give the sam e contribution.
E xtracting an overall factor of

hi §i*
A= = 42 ¥ WLy Prp)0—— 1910
0 (2 ) P, R ) " ks 1L ( )

where iand jare the extermalnegative-helicity glionsand requlating by prom oting
the ntegralsto 4 2 din ensions, [[L2.9) becom es

. Z

i

— tree S .
A= AR MK (1911)

wheredM is them easure (1.8.17) derived previously and

- my Imqihlb ki Mmomo+ 1ihg Li . (1.912)
" tm,; 1Lih Lmqitm,bih Lm,+ 11 o
3. Follow ing equations (2.11)=«2.16) of 37]wemay nally write K asa signed sum
(ie. two term s com e w ith plus signs and two w ith m inus signs —see Eq. (2.13) of

[37]) of temm s of the fonn

hibinjhi
hihihjli

R (1;) = (1913)

O nce expressed In term s of m om enta by m ultiplying top and bottom by appropri-

ate anti-holom orphic spinor invariants, cancellations arise b%’@v een di erent term s

N P
of the signed sum and we can schem atically write R = R ! R, with
39,791
1P7,(i3) 2(PLz)(3PLy)
R, = ——1 : : : (19.14)
4 (14)(GL%)

2®B e carefiil to note that in the ollow ing expression iand j refer to the di erent possibilitiesm ; ,m 2,
my,+ landm; 1,and not to the negative-helicity particles of the overall am plitude which now only
arise in the factor of A J°°.

67
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The notation (ab) here is shorthand for (a b).[I.9.11]) then becom es

7
i X

A= - )4Affee dM R, : (1.9.15)

P P
Tt is worth m entioning that the procedure of expressing R ! R . isaclever

way of cancelling the triangle and bubble contributions In R to leave only box
functions [37,179] and is equivalent to the usual m ethod of Passarino-Veltm an
reduction of 212]. {I.9.17)) is then the basic integral that we have to work with
and we w ill consider the speci c term R o (m 1;m ») for de niteness.

4. Recall that the measure dM involves a dispersive part and an integral over
Lorentz-invariant phase space (ALIPS). W e wish to begin by perform ing the in—
tegral over this phase space. For this we go to the centre of m ass fram e for Py,
~Pr, = Po(1;0) -and parametrize I = 1Po(l;v) and L = 1Po( 1l;v) with
v = (sih 1c0s 2;sn 1sh ;008 1). In 4 2 dinensions, the LIPS m easure

(1.8.13)) can be written in tem s of the angles 1 and - a@

1
2 p2
d* *LPs= - — dadash ) P e o) 7 (19.16)
2
and the denom inator of (1.8.14]) as
2
Mmi1Lh)myLk)= TO mig(l <cos 1)A + Bsin jcos o+ Ccos 1); (1917)

wheremq{ = m0(1;0;0;1) and m, = (A;B ;0;C) with A% = B4+ C2%, The
num erator of (1.9.14]) doesnot nvolve ; or L and we lave itasN (P, ) fornow .
W e thus have
Z Z . .
d1d (sin )t 2 (sih ) ?

1 dw o , : (L.9.18)
(1 cos 1)A+ Bsin 1cos 2+ C cos 1)

w here

i 1=2

= A, 1919
' 2 Fa a= )y ( )
N (P
, = LEelpa (1.9.20)
2
m10P0
dp 2.
ar = (2 1) BF,) -2 (1.921)

2 2 21 :
PL;Z PL 1

The ntegralover ; and , hasbeen performed In 213]and we borrow the result

In aform from [214]. Converting A ;B ;C ;m 1p and Py back into Lorentz-invariants

2’See A ppendix[C] for details.
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we obtain:

1
4 1= dwW (P7,) oF1 1; ;1 ;aPf, (1.922)

In Equations (I.9.14), (I.9.19) and (I.927]) above, is the gamm a function and
2F1 the G auss hypergeom etric fiinction. T hey can be de ned by

Z
(z) = datt? e v <[z]> 0; (1.923)
0
() 21
F, (@;bjciz) = ————  dtPla v Pcla t=z)® 1924
2F1 ( ) © € b . ( ) ( ) ( )
w here the second de nition hodswhen < [c]> < [b]> 0 and jarg(l z)j< . a,

isde ned to bea, = (1j)=N (Pr) and so isequalto (mim )N (P ;) In this

case.

5. Finally, we woul lke to evaluate this dispersive integral (I.8.22]). In [37], thiswas
done by com bining di erent term s com ing from di erentR . to give a convergent
Integral. In fact thedi erentR o that cine mPust com ]%:ine com e not from di erent
iand jin R (1j) as obtalned from R = R ! Re ,but from R, with
the same iand j com ing from di erent term s in the overall sum m ation over all
the cuts of the oneloop integralm entioned at the end of .87 and not so far
allided to in this section. This summ ation is just a summ ation over all cyclic
partitions of the extermal particles between the two M HV vertices, but at the level
of the Integrals we have arrived at in (1.9.27)) the summ ation over R o (1j) with
the sam e values of i and j from di erent orderings of the extemal particles serves
to reconstruct the 2m e box functions from their di erent cuts.

T he Integrals are explicitly done by expanding the hypergeom etric functions above
In an expansion ln  In term s of polylogarithm s (generalisations of L3 ) and then
com bining di erent cuts of the sam e box function to give a convergent answer. A

key ingredient in all this is the know ledge that the nalresultw illbe independent
of . has already been elin nated from the dispersive integration m easure by
converting the integralover z and z° into an integral over Py, =, S0 Onem ay expect
that even before we evaluate this dispersive integral we should be abl to pick
a particular value for to sin plify the calculation. However, in [37] a stronger
gauge Invariance was proposed; nam ely that one may choose separately for
each box function. T his was checked num erically in [37]and independently (also
num erically) in [209]and further evidence was provided in [79] Tt m eans that
one can write N (P, ;)= N (P, ) ifone chooses = m; or = m, iIn all four
Re (mim ) which contribbute to that particular box function.

303ee also A ppendix [E] for an analytic proof of the sam e statem ent for triangle functions.
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The nalresult (up to niteorderin ) given In Equation (5.16) of [37]is that the
contribution of a particular box function (say a generic box function such as that
n Figure 1.8, which would com e from combining the four term swith m 1 = ki

andm2= ki 1)JS

1 h i
2m e [r+ 1] [r+ 1] [r] n

Fn:r;i = 2 Tﬁ. 1 + Tﬁ. ) ( Tﬁ. ) t—j_+rf12

+ Li 1 tﬁr] + Ly 1 atﬁrflz]

[+ 1] [r+1]

L 1 ay L 1 at ; (1.9.25)
w here : - . 1]
n r r+ r+
tl +t1+r+1 g 1 (1.926)
n r 2] r+ 11, [+ 1] -
g, gy

Equation (I.9.29) is in fact equal to (I.9.4) but is an altemative form which
was discovered in [215] and independently derived in [37] and involves one less
dilbgarithm and one less logarithm than (1.9.6)). A fter sum m ing over all partitions
of the extermal particles between the two M HV vertices we recover (L.9.]]).

T he calculation outlined above is essentially what we w ill ollow in Chapters 2 and
3fortheN =1land N = 0M HV am plitudes. For fillldetails of the am plitudes In N = 4
see [37]and for a short discussion on the overall -nomm alisation of the result obtained

there com pared w ith the one obtained originally in [39] see A ppendix[C].
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CHAPTER 2

MHV AMPLITUDES IN N =1
SUPER-YANG-M ILLS

In Chapter 1 we descrlbed som e of the hidden sim plicity of perturbative gauge theory —
in particular in the context of m axin ally supersym m etric Yang-M ills —and saw how it
m ay be applied to sim plifying the calculation of perturbative quantities such as scatter—
ing am plitudes. Them any technigues available to illum inate the perturbative structure
included colour stripping, the use of a helicity schem e and supersym m etric decom posi-
tions. A perturbative duality w ith a tw istor string theory highlighted the unexpected
com pactness of the M HV am plitudes at treelevel and provided m otivation for a new

perturbative expansion of gauge theory —the CSW rules.

TheCSW ruleshavebeen shown to be valid even at loop level —~despite the faiure of
the duality w ith tw istor string theory —and the M HV am plitudes In N = 4 superY ang-
M ills were derived using these rules in [37] and shown to be dentical to the original
derivation of [38]using 2-particle cuts. A s a bonus, the CSW rules also gave rise to a
representation of the 2-m ass easy box functions that is sin pler to that originally used
in [38]. However, at the tin e it was far from certain that these rem arkable techniques
would be applicable to other gauge theories. O nem ight not have been surprised if such
results only held fora theory w ith an extrem ely high am ount of sym m etry such asN = 4
SYM .

In [40,l141]1a st step towards establishing the general validity of the M HV <vertex
form alism was taken and it was shown independently by Bedford, Brandhuber, Spence
& Travagliniand Quigley & Rosali that the CSW rules correctly calculate the M HV
am plitudes in theories w ith less supersym m etry such as N = 1 and N = 2 superY ang-
M ills. In particular theM HV am plitudes for scattering of externalglionsw ith an N = 1
chiral multiplet running in the loop was calculated and it was found that the results
exactly agree w ith those originally obtained by BDDK in [42]. T his chapter follow s 40 ]
and showshow theN = 1M HV am plitudesm ay be obtained from M HV vertices.

21 TheN = 1M HV am plitudes at one-loop

T he expression for the M HV am plitudes at onedoop N N = 1 SYM was obtained for
the rsttine by BDDK in [42]using the cutconstructibility m ethod. W e w ill shortly
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give their explicit result and then rew rite it by introducing appropriate functions. T his
tums out to be usefulwhen we com pare the BDDK result to that which we w ill derive
by using M HV diagram s.

In order to obtain the onedoop M HV amplituides in N = 1 and N = 2 SYM it
is su cient to com pute the contribution A gzlphjml to the one-loop M HV am plitudes
com Ing from a single N = 1 chiralm ultiplet. Thiswas calculated in [42], and the result

tums out to be proportional to the ParkeTaylor M HV tree am plitude [170]

5 e i 3

o " Hck+ 1i

(21.1)

as is also the case with the onedoop M HV am plitudes n N = 4 SYM . However, In
contradistinction w ith that case, the rem aining part of the N = 1 am plitudes depends
non-trivially on the position of the negative-helicity gluions iand j. T he result obtained

in [44] is:
Xt ox1
N =1xhiral tree i 5 m], L mo 1]l s 1]
AH i = An b;j;SB (t_m+1 ’t}ElS m]’t_m+1 '1—3+1 )
m=1i+1s=7j+1
> 1 @ m] @ m+1]
. X X q}n,] ]Og(tm+1 =t )
= @ m] @ m+1]
m=1i+1a2Dn JEm+1 e
;1 m al ,m a 1]
+ X X o 09t =h )
a m a] m a 1]
m=Jj+1a2Cy td+1 td+1
Ci;j i7]
1A 1 2] 114 2]
t o Ko )+ /Koy )
g G
i';jl i1 2 Ci';jl ' 2
+1; ;
o Aok v R0 (212)
E !
k] _ 2 k]_ . k]
wheret = (pi+ pir1+ w#p1) ork O,and t =t fork < 0. The sum s
in the second and thid line of (2.1.2) cover the ranges C, and D, de ned by
8
§ fi;i+ 1;:::;7 29; m= j+ 1;
2
Cn = fi;i+ 1;:::;7 1g; j+ 2 m i 2; (2.13)

72



21. THEN = 1MHV AMPLITUDES AT ONE-LOOP

and

8
§ £3;3+ 1;:::;1 29; m = i+ 1;
<

D, = £+ 1;:::5;1 1g; i+ 2 m i 2; (2.1.4)

. i i
T he coe cients bm];s and ij;a are

try (kikiky ko)t (kikjksky )
; (2.1.5)
[(ki+ k32 F [kn + ks)?F

i
bn,;s -

try (e kar 1kki) o (e kakjki) o (kikjknoh p) o (Rikyshn akn ) |
(Kas 1+ K )? (ka + kn )? [ki+ ks)? P ’
o (21.6)
where g5 = 1 k;. Notice that both coe cients b and G, are symm etric under

Crln;j;a

the exchange of i and j. In the case of b this is evident; for ¢ it is also m anifest as c
is expressed as the product of two antisym m etric quantities. The function B in the

rst Iine of (2.1.7) is the \ nite" part of the easy two-m ass (2m e) scalar box function
F (s;tiP?;0%), with

h i
1
F(sitiP?;0°) = = (s) + (1) ( P%) (0%  + B(sitiP%0%) :
(21.7)
Asin 37]we have Introduced the follow ing convenient kinem atical invariants:
s = (P +p); t = (P +qg?; (2138)

where p and g are nullm om enta and P and Q are in generalm assive. W e also have
mom entum conservation n the form p+ g+ P + Q = 0 In [37] the follow ing new

expression for B was found:

B (s;5;P%;0°%) = Li(l aP?)+ Lib(l a0?) Li(l as) Li(l at); (219)
w here
P2+ 0% s t 2110)
a = : Jdo
P202 st

T he expression (2.1.9)) contains one less dilogarithm and one less logarithm than the

! The kinem atical invariant s= (P + p)2 should not be confiised w ith the label s which is also used
to label an extemal leg (as in Figure 2.1 for exam ple). The correct m eaning w ill be clear from the
context.
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21. THEN = 1MHV AMPLITUDES AT ONE-LOOP

Figure2.: The box function F of (Z.1.]), whose nitepartB ,Eq. (2.1.9), appears in the
N = 1 amplitude (Z.1.7)). T he two externalgluons w ith negative helicity are lakelled by i
and j. The kgs lbelled by s and m correspond t© the nullm om enta p and g respectively
in the notation of (ZIJ). M oreover, the quantities t°,% 7, &5 ™/, 5.7 1, {1
appearing in the box function B in (2.1.19]) correspond to the kinem atical invariants

t= Q+p)P,s= P +p)?, 0% P? in the notation of (Z.13),withp+ g+ P + Q = 0.

traditional form used by BDDK,

. . p2 . p2 . 02 . 02
B(s;;p°Q°) = L 1 — + L1 — 4+4LL 1 — + L 1 —
S t s t
Li 1 P0° 1102 S (2111)
+ - - 1.
2 st 2 d t

T he agreem ent of (2.1.9)) with (2.1.11]) was discussed and proved in Section 5 of [37 ]H
In Figure 2.1 we give a pictorial representation of the box function F de ned in (Z.1.7)
(with the leg lBbels denti ed by s! p,m ! qg).

’M ore precisely, this agreem ent holds only in certain kinem atical regin es eg. in the Euclidean
region where all kinem atical Invariants are negative. M ore care is needed when analytically continuing
the am plitude to the physical region. T he usual prescription of replacing a kinem atical invariant s by
s+ i" and continuing s from negative to positive values gives the correct result only for our form of the
box function (2.1.9]), whereas (Z.1.11]) has to be am ended by correction tem s 216].
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21. THEN = 1MHV AMPLITUDES AT ONE-LOOP

Figure 2.2: A trianglk functon, corresponding to the rstterm T (Bg /G+1m 1/ +1a)
in the seocond line of (2.1.19). p, Q and P oorrespond t© By , Gh+1a @nd Gay 150 1 10

the notation of Eq. (Z.1.19), where § 2 Q, 12 P. In particular, Q2 ! §E1a+?]and
P2 &t

F inally, nfrared divergences are contained in the bubble functionsK g (t),de ned by
Ko(t) = — : (2.112)

W e notice that in order to reexpress (2.1.2)) in a sin pler orm , it is useful to introduce
the triangle function [73]

Iog(Q ?=P ?)

02 b2 ; (2.1.13)

T (piP;Q)

withp+ P +Q = 0. A diagram m atic representation of this finction isgiven in F igure 2 2
withm™®™ ! p).Wealso nd itusefulto introduce an -dependent triangle function

1
T (piP;Q) = — : (21.14)

AslngasP 2 and 0 2 are non-vanishing, one has

n T (piP;Q) = T(@Pi0); P?6 0;0°6 0: (21.15)

*The function T (p;P;Q ) de ned in (2.1.14)) arises naturally in the tw istor-inspired approach which
w ill be developed in 2.7.
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21. THEN = 1MHV AMPLITUDES AT ONE-LOOP

Figure 23: This triangk function corresponds to the second term in the second line
of (2.1.19]) { where i and j are swapped. As in Figure 2.2, p, Q and P correspond to
PnsGn+1a @nd Gay 15 1 in the notation of Eq. (Z1.19), wherenow i2 Q,j2 P. In

m a 1]

particular, Q 2 ! tc[ﬁla]ansz! i1

If either of the Invariants vanishes, one hasa di erent Iim it. For exam ple, if Q 2= 0one
has
. 1(P?
T EiPiQ)Heeg ! —T; ' 0: (2.1.16)

W e w il call these cases \degenerate triangles".

T heusefiilness of the previous ram ark stam s from the fact that precisely the quantity
(1= ) ( P?) =P? appears in the last line of (Z.12J) { the bubble contributions.
T herefore, these can be equivalently obtained asdegenerate triangles ie. trianglesw here

one of the m assive legs becom es m assless.

Speci cally, we notice that the four degenerate triangles (bubbles) in the last line of
(2.1 2) can be precisely obtained by including the \m issing” index assignm ents in D
and C, :

m =1+ 1;a=1 1); m =3 1;a= 7j) forDy ; (2.1.17)
w hich correspond to two degenerate triangles, and
m=Jj+ 1;a=3 1); m=1 1;a= i) for Cy, ; (2.1.18)

corresponding to two m ore degenerate triangles.
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22. MHV ONE-LOOP AMPLITUDES IN N = 1SYM FROM MHV VERTICES

In conclusion, the previous ram arks allow us to rew rite (2.1.2]) in a m ore com pact
form as follow s:

y 1 ir 1
N =1xhiral _ tree X X i3 s ml s mj s m 1] m s 1] 211
An = Aj B &1 it e} i1 ) (21.19)
m=1i+1s=3j+1
Pl o9 1
1 X X

+ Ci];jaT Pn 7%+ 1w 1%+ 1a) + (@ES J)

m=i+1la=j

1 2

In this expression it is understood that we only keep temm s that survive in the I it
! 0. This means that the factor 1=(1 2 ) can be replaced by 1 whenever the
term In the sum is nite, ie. whenever the triangle is non-degenerate. However, in
the case of degenerate triangles, which contain Infrared-divergent term s, we have to
expand this factor to lnear order .n . In the notation of RII9), ¢, ., = g

@ m+1]

and q§+1m 1=
respectively,where j2 Q ,12 P . Inthesum withi$ j,onewould haveqfﬁlkEl = érila],
Liip 1= t;mﬂa Y corresponding respectively t0 Q2 and P2 in Figure 2.3, with 12 Q ,
j 2 P . It is the expression (2.1.19) for the N = 1 chiralm ultiplet am plitude which we

w ill derive using M HV diagram s.

; In Figure 2.2, these nvariants correspond to Q2 and P ?

22 MHV one-loop am plitudesin N = 1 SYM from M HV vertices

It Jwereviewed how M HV vertices can be sew n together into one-loop diagram s, and
how a particular decom position of the loop m om entum m easure leads to a representation
of the am plitudes strikingly sin ilar to traditional dispersion form ul . Thism ethod was
tested successfully in [37] for the case of M HV one-loop am plituldes In N = 4 SYM as
reviewed in A1.9. In the ollow ing we will apply the sam e philosophy to am plitudes in
N =1 SYM , in particular to the in nite sequence of M HV one-loop am plitudes, w hich
were obtained using the cutconstructibility approach [44], and whose tw istor space
picture hasbeen analysed in [73].

Sin ilarly to theN = 4 case, the one-loop am plitude hasan overall factor proportional
to theM HV treedevel am plitude, but, as opposed to the N = 4 case, the ram aining one-
Joop factor depends non-trivially on the positions i and j of the two external negative—
helicity gluons. Thisisdue to the fact thata di erent set of eldsisallowed to propagate
in the loop.

TheM HV diagram s contributing to M HV one-loop am plitudes consist of two M HV
vertices connected by two o —shell scalar propagators. If both negativehelicity ghi—
ons are on one M HV vertex, only gluons of a particular helicity can propagate in the
loop. This is Independent of the num ber of supersym m etries. O n the other hand, for
diagram s w ith one negative-helicity gluon on oneM HV vertex and the other negative-
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helicity gluon on the other M HV vertex, all com ponents of the supersym m etric m ul-
tiplet propagate in the loop. In the case of N = 4 SYM this corresponds to helicities
h= 1; 1=2;0;1=2;1 with multiplicities 1;4;6;4;1, respectively; for the N = 1 vector
m ultiplet the m ultiplicities are 1;1;0;1;1. Hence, we can obtain the N = 1 (vector)
am plitude by sim ply taking the N = 4 am plitude and subtracting three tim es the con—
trbution ofan N = 1 chiralm ultiplet, w hich hasm ultiplicities 0;1;2;1;0

T his supersym m etric decom position of general one-loop am plitudes is useful as it
splits the calculation into pieces of increasing di culty, and allow s one to reduce a one-
loop diagram w ith gluons circulating in the loop to a com bination of an N = 4 vector
am plitude, an N = 1 chiralam plitude and nally a non-supersym m etric am plitude w ith
a scalar eld running in the loop as in Equation (I.3.3)).

In our case, the supersym m etric decom position takes the form

A N =1liector _ A§:4 3A§:1;chjral; (22.1)

n

w here n denotes the num ber of external lines. Since the N = 4 contribution is known,
one only needs to determ ne AN~ Lichiral using M HV diagram s. To bem ore precise, we
are solely addressing the com putation of the planar part of the am plitudes. H owever,
this is su cient since at one-loop level the non-planar partial am plitudes are obtained

as appropriate sum s of perm utations of the planar partial am plitudes [38], as discussed

in SN

Figure 24: A one-loop M HV diagram , com puted in (2.2.4]) using M HV am plitudes as
interaction vertices, with the CSW o -shell prescription. T he two external gluons with
negative helicity are lakelled by i and j.

“W e can also obtain the N = 2 am plitude in a com pletely sin ilar way.
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221 The procedure

O ur task therefore consists of:

1. Evaluating the class of diagram s where we allow all the helicity states of a chiral
m ultiplet,
h2 f 1=2;0;0;1=2g ; (222)

to run in the loop. W e depict the prototype of such diagram s in Figure 2.4.

2. Summ ing over all diagram s such that each of the two M HV vertices always has
one extemal gluon of negative helicity. A ssigning i to the left and j to the
right, the sum m ation range ofm ; and m , is determ ined to be:

j+1 m, i i my, J 1: (223)
Hencewe get
N=1 iral X ’
AR TR dM A ( Ljmaqjrsdlojriimoggl)
mimoh
A(dhmo+ 15033 jiiymy 15L) 5 (224)

w here the summ ation ranges ofh,m ; and m , are given in (2.2.20), (2.2.3). N otice that,
in order to com pute the loop am plitude (Z.2.4]), we m ake use of the integration m easure
dM given in (I.8.I7).

A fter som e spinor algebra and after perform ing the sum over the helicities h, the
integrand of (2.2.4]) becom es

i tree Imy mo+1)ihm, 1)m ihikihjhihibihjlLi

n — . . . : (225)
i ; Lihm; 1)Lilm , Lihm o+ 1) bi

T he focus of the ram ainder of this section will be to evaluate the integral in (2.2.4)
explicitly. Since 1A I factors out com pletely, we w illnow drop it and only reinstate
it at the very end of the calculation.

The integrand (w ithout this factor) can be rew ritten in term s of dot products of

m om entum vectors,

@ P Dmi 1) Dmz D(ma+1) 2

w ith
N =t Gk, 1k, EkkD T Gk, ko, 1kik) (22.7)
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22. MHV ONE-LOOP AMPLITUDES IN N = 1SYM FROM MHV VERTICES

A is a product of D rac traces, where the tr, symbol indicates that the projfctor
(1+ °)=2 hasbeen nserted.

N ext, notice that each of these D irac traces Involring six m om enta can be expressed
in term s of sin pler D irac traces involving only four m om enta. For the st factor of
Z220) we nd

T @k, 1k Ekk) = 21 Dt (eikgkg, 1F) 2(m1 1) Do (kikikn ,F) 5
(2.2.8)
w here

T Kkpkkg)=2 (@ b)c d) (@ c)b d)+ (@ d)b 28)a;bjc;d): (22.9)

T he second factor in (Z.2.7) takes a sin ilar form . C onsequently, the integrand becom es

a sum of four tem s, one of which is

try (Rikjkn  F:) . (kikjkn ,®2)

; (22.10)
1 Pmi Dm, 2D

T he other three term s are obtained by replacingm ; withm, land/orm,withm,+ 1
in (2.2.10) and com e w ith altemating signs. N ote that the original expression (2.2.9]) is
symm etric in i, and j, although when we m ake use of the decom position (Z2.I0) this
symm etry is no longer m anifest. W e will sym m etrize over i and j at the end of the
calculation in order to m ake this exchange sym m etry m anifest in the nalexpression.

In the next step we have to perform the phase space jntegratjgn ,which is equivalent
to the calulation of a unitarity cut with momentum P, = ijlkl z ow Ing
through the cut. Note that, as explained in 1.7.]], them om entum is shifted by a tem
proportionalto thereferencem omentum . Theterm (3 m)(L m) in thedenom inator
of (2.2.10]) corresponds to tw o propagators, hence the denom inator by itself corresponds
to a cut box diagram . H ow ever, the num erator of (2.2.10)) depends non-trivially on the
loop mom entum , so that in fact (2.2.10) corresponds to a tensor box diagram , not
sin ply a scalarbox diagram . U sing the PassarinoVelm an m ethod [214], we can reduce
the expression (22.10), integrated with the LIPS m easure, to a sum of cuts of scalar
box diagram s, scalar and vector triangle diagram s, and scalar bubbl diagram s. This
procedure is som ew hat technical and details are collected in A ppendix [E]l. Luckily, the

nal result takes a less intin dating form than the interm ediate expressions. W e will
now present the result of these calculations after the LIPS Integration.

222 D iscontinuities

W e rstobserve that loop integrations are performed n 4 2 dim ensions. It tumsout
that singular 1= temm s appearing at interm ediate steps of the phase gpace integration
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cancel out com pletely. N otice that this does not m ean that the nalresult will be free
of infrared divergences. In fact the digpersion integral can and does give rise to 1=

divergent temm s but there cannot be any 1= 2 tem s, as expected for the contribution
of a chirmlmultiplet [44]. The 1= divergences in the scattering am plitude correspond
to the bubble contrbutions in (2.1.2), or degenerate triangles contributions in (Z.1.19)),
as explained in s2.Jl. T A ppendix[E] we show that the nite term s of the phase space

integral com bine into the follow Ing sin ple expression :

¢ = Cmq; 1;my) Cmimy)+ Cmimo+ 1) Cmg I,mo+ 1) ; (22.11)
wjﬂﬁ
2 P7,) TmmimoiPr,) T (mami;Pry)
Cmq;m ) ;
1 2@ Pmq, m) mi; By) m, PBg)
2 Tmymopmyz) 5
_ P’.) 1 a,Pr., ; 2212)
i Pm, mz)z(L’ g b (
w here
Tmimo;P) = o (kikjky  B) o (kikikyg b0, )
a, = 1 ®. (2213)
N(PL;z)
and
NP®P) = m; mP? 2m; P)lm P): (2214)

A closer inspection of {2.2.12) reveals that the rst line of that expression corresponds
to two cuts of scalar triangle integrals, up to an -dependent factor and the explicit
z-dependence of the two num erators. The second line is a termm fam iliar from [37],
corresponding to the PLZ;Z—cut of the nite part B of a scalar box function, de ned in
(Z.19) (see also (2.1.7)). The full result for the onedoop M HV am plitudes is cbtained
by summ ing over allpossible M HV diagram s, as speci ed in (2.2.4)) and (2.2.2), 222.3)).

223 The fullam plitude

W e begin our analysis by focusing on the box function contributions in (2Z.2.12), and
notice the follow ing In portant facts:

1. By taking into account the four term s in (Z2.11]) and summ ing over Feynm an
diagram s, we see each xed nite box function B appears In exactly four phase

°In (Z2.12) we om it an overall, nite num erical factor that dependson . This factor, which can be
read o from (E.2.12)), is irrelevant for our discussion.
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space integrals, one for each of itspossible cuts, iIn com plete sin ilarity w ith [37]. Tt
was shown in Section 5 of that paper that the corresponding dispersion integration
over z will then yield the nite B part of the scalar box functions F . Tt was also
noted in [37] that one can m ake a particular gauge choice for such that the
z-dependence in N disappears. T his happenswhen  is chosen to be equal to one
of them assless external legs of the box function. T he question of gauge invariance
is further discussed in A ppendix [El.

2. The coe cient multiplying the nite box function is precisely equal to b ol o,
de ned n (Z.1.0).

3. Finally, the functions B generated by sum m ing over allM HV Feynm an diagram s
w ith the range dictated by (2.2.3) are precisely those included in the double sum
for the nite box functions in the rst line of (2.1.2)) (or (2.1.19))) upon dentifying
m andm , with sandm . To beprecise, (2.23)) includes the case w here the indices
s and/orm (in the notation of (2.1.7) and (2.1.19)) are equal to either i or j; but
for any of these choices, it is easy to check that the corresponding coe cient b rin"j;s

vanishes.

T his settles the agreem ent between the result of our com putation with M HV vertices
and (2.1.19]) for the part corresponding to the box functions. Next we have to collect
the cuts contributing to particular triangles, and show that the z-integration reproduces
the expected triangle functions from (2.1.19), each w ith the correct coe cient.

To this end, we notice that for each xed triangle function T (p;P ;Q ), exactly four
phase space integrals appear, two for each of the two possible cuts of the function.
M oreover, a gauge Invariance sin ilar to that of the box functions also exists for triangle
cuts (see Appendix [E]), so that we can choose i a way that the T num erators in
22.12l) becom e independent of z. A particularly convenient choice is = k;, since
it can be kept xed for all possible cuts. Choosing this gauge, we see that a sum ,
T, of temm s proportional to cut+riangles is generated from (2.2.11]) (up to a comm on
norm alisation):

T = TA + TB + TC + TD H (2.2.15)
w here
S (i;3;m 1 ;m S (i;73;m 1;m o
T = (i;J/m 1 ;m 2) (L;Jrm 1 2) S (49m 2Py ) a s 2216)
my, m) (m; 1) m)
S(i;jmo;m 1) S(i;jmz+ 1;mq) .
Tp = S(L;jm1;PL) B
my, m) (mo+ 1) m)
S(i;jmo+ 1;mq 1) S(i;jmomy 1) .
Te = S(i;jymq1  1;Py) ¢ ;
(mo+ 1) (m 1)) my @ 1))
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S (17 3;m Iimo+ 1 S(i;jmymo+ 1 .
Tp = (1737m 1 2 ) (1737m 1 2 ) S(i;jmo,+ 1;Py) bp
(my 1) m+ 1)) mi (p+ 1))

Here we have de ned
S(ajbjcid) = tro (eakpkeky) (22.17)

and 1,I= Aj:::;D,are the ollow ing cut-riangles, all in the Py, ,-cut :

1
A = ———— = Q%cutof T m,PL, my; P, ; (2218)
(m2 ]'E;z)
1 2
5 = = P <cutof T mq; PppiPLy m1 ;
(ml E;z)
! 0%-cutof T 1; Po, (1 1)
= = -cut o m ; ; m 7 7
¢ (m1 1) Ep) Lo e
1
D = = Pz—CUtOf T mo+ 1;PL;Z; PL;z (m2+ 1)

Figure 2.5: A trianglk function with m assive lgs hlelled by P and Q , and m assless kg
p. This function is reconstructed by sum m ing two dispersion integrals, corresponding to
the P2-and Q 2-cut.

N ext, we notice that the prefactorsmultiplying 5, ¢ become the same,up to a
m inus sign, upon shiftingm 1 1! m 1 in the second prefactor; and so do the prefactors
of A, p upon shiftihgm, ! m,+ 1. Doing this, g and the shifted  become
the two cuts of the sam e trdangle function T (m 1; Pr, z;PL m1),and sin flarly, a
and p give the two cuts of the function T (m ;P my2; Pr). Furthemore, in
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Figure 26: A degenerate triangk function. Here the leg hlelled by P is stillm assive,
but that lbelled by Q kecom esm asskess. T his function is also reconstructed by sum m ing
over two dispersion integrals, corresponding to the PZ2— and Q ﬁ—cut.

Appendix[E]lwe will show that sum m ing the two dispersion integrals of the two di erent
cuts of a triangle indeed generates the triangle function { in fact this procedure gives
a novel way of obtaining the triangle functjonsH Speci cally, the result derived in
Appendix[E] is

Z
z ®7) . Q3
z (P,p)  (Q.p)

= 2 cse( )T (p;P;Q) (2219)

where the -dependent triangle function T (p;P;Q ) (with p+ P+ Q = 0) was Introduced
in (Z.I.14)) and gives,as ! 0, the triangle function [0.1.13) (aswellas the bubblesw hen
efther P? or Q 2 vanish). The result (2.2.19) hoHds for a generic choice of the reference
vector , see [ELLA)HE.LII). W e give a pictorial representation of the non-degenerate
and degenerate triangle functions in Figures 2.5 and 2.6, respectively.

°A rem ark is in order here. In our procedure the m om entum appearing in each of the possible cuts
is always shifted by an am ount proportional to z ; the triangle is then reproduced by perform ing the
appropriate dispersion integrals. B ecause of the above m entioned shift, we produce a non-vanishing cut
(w ith shifted m om entum ) even when the cut includes only one external (m assless) leg, say K, as the
momentum owing in the cut ise ectively K, = Kz ,sothatkf & 0.
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At this point, it should be noticed that for a gauge choice di erent from = k3
adopted so far, the num erators T in (Z.2.17)) do acquire an -dependence. T his gauge
dependence should notbepresent In the nalresult for the scattering am plitude. Tndeed,
it is easy to check that, thanks to (E.L.4), the coe cient of the -dependent tem s
actually vanishes.

Usihg 22I9)-2.2.19) and collecting tem s as speci ed above, we see that the
generic term produced by this procedure takes the form

S (i;3;a7Pn ) S(i;jra+ 1;p0 )
ks B) Kar1 B

S(143em O) T (om ;PO ) (2220)

WithP = Gy1n 18and Q = Gt 154-

Finally, we in plem ent the sym m etrization of the indices i, j, as explained earlier,
and convert (2.2.20) into

GaT (on iP3Q) ; (22.21)
. i3 Jﬂ
w here the coe cient ¢y a
. 1 S@Eijia+ Lipn)  S(ijiaibn ) SEiJiPn i% a) S (LiJi%h @ibn )
a2 Kar1 ®) ka ®) [(ki+ kg)? P ’
(2222)

which coincides with the de nition of cni{',.a given in (Z.1.6). Lastly, it is easy to see
that in summ ing over the range given by (Z.2.3), we produce exactly all the triangle
functions appearing in the second line of (Z.1.19). It is also in portant to notice that
the bubbles, w hich appear in the last line of (Z.1.2)), are actually obtained as particular
cases of triangle functions w here one of the m assive legs becom es m assless, as observed
at the end of »2.1l.

In conclusion, we have seen that allthe term s in (2.1.19)), i.e. nitebox contridbutions
and triangle contributions —which inclide the bubbles as special (degenerate) cases —

are precisely reproduced in our diagram m atic approach.

"In writing {Z2.22]), we m ake also use of the fact that S (i;7;% laiPn )= S (3% ;2 iPn )-
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CHAPTER 3

NON-SUPERSYMM ETRIC M HV
AMPLITUDES

Having seen that the CSW rules can be applied at loop level in supersym m etric gauge
theories, the obvious question is whether the sam e also holds in non-supersym m etric
gauge theories. To this end the onedoop M HV am plitudes in pure YangM ills w ith a
scalar running in the loop were com puted in 43]. This is the last contribution to the
M HV am plitudes for gluon scattering in Q CD in the supersym m etric decom position of
Eq. (I.33)) and has only been com puted previously in certain special cases in 42Z,1441].

In this chapter we follow [43]and apply the CSW rules to this scalar am plitude in
the generalcase of ngluion M HV scattering w here the tw o negative-helicity ghions sit at
arbitrary positions. W e nd that the results agree perfectly w ith those already obtained
in [44,l44]7and we go on to present the general result for the cutconstructible part of
the one-loop M HV am plitudes in pure YangM ills. Tt tums out that the CSW rules
only com pute this cutconstructible part and the rational term s (which do not contain
cuts) are not found. This is discussed in [43] and 327 below . They can and have,
how ever, been recently com puted using an on-shell unitarity bootstrap [45]which thus
com pletely determ ines the one-loop M HV n-gluon am plitudes in QCD .

3.1 The scalar am plitude

In com plete sin ilarity with the N = 4 and N = 1 cases — see Chapters[d & [@ and
eg. [37,l40] -we can Inm ediately write down the expression for the scalar am plitude
in term s of M HV vertices as

X
Z—\Isfahr = dM A( L jmqjiidojiriimgl)

mim2;

j+1 m, 1i; i moy J 1: (31.2)
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31. THE SCALAR AMPLITUDE

A typicalM HV diagram contrbuting to Affahr, for xed m 1 and m ;, is depicted in
Figure 31. The o —shell vertices A in (B.1.Il) correspond to having com plex scalars

Figure 3.1: A one-loop M HV diagram with a com pkx scalar running in the loop, com —
puted in Eq. (3.1.0). W e have indicated the possible helicity assionm ents for the scalar
particle.

running in the loop. It follow s that there are two possible helicity assignm ent@ for the
scalar particles in the loop which have to be summ ed over. T hese two possibilities are
denoted by i (B11J]) and in the internal lines in Figure 3.1. It tums out that each
of them gives rise to the sam e integrand for (3.1.1):

mee MmMomo+lim: 1miihik#hjLi*hilbi®hjLi®
n hiji4hm; Lhitm, 1Limm, Lilm o+ 1Lihy Li2 °

(313)

A crucialingredient in (3.1.]]) is (asbefore in C hapters[l & [2) the integration m easure
dM . Thism easure was constructed in [37,l79]using the decom position L = 1+ z for
a nonnull fourvector L in term s of a null vector 1 and a real param eter z as review ed
n AT.87. W e refer the reader to and [37,l79] for the construction of thism easure,
and here we m erely quote the result:

2
Lz

2 2 4y
PL;Z PL 1

M = 2 i () - d' PLIPS(L; L iPrg): (314)

In order to calculate (3.1.]), we will rst integrate the expression (3.1.3) over the
Lorentz-invariant phase space (appropriately reqgularised to 4 2 dim ensions), and
then perform the dispersion integral.

For the sake of clarity, we w ill separate the analysis into two parts. Firstly, we w ill

'For scalar elds, the \helicity" sin ply distinguishes particles from antiparticles (see, for exam ple,
[1547).
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32. THE SCATTERING AMPLITUDE IN THE ADJACENT CASE

present the (sin pler) calculation of the am plitude in the case where the two negative-
helicity gluons are ad pcent. T his particular am plitude has already been com puted by
Bem, D ixon, D unbar and K osower In [42]using the cutconstructibility approach; the
result we w ill derive here w ill be in precise agreem ent w ith the result in that approach.

Then, n B3 we willm ove on to address the general case, deriving new results.

3.2 The scattering am plitude in the ad jacent case

T he ad pcent case corresponds to choosing i= m;,j=m; 1 in Figure3.1. T herefore
wenow have a single sum overM HV diagram s, corresponding to the possible choices of
mo.Wewillalso seti= 2, j= 1 for the sake ofde niteness,andm , = m .

A frer conversion into traces, the integrand of (3.1.1]) takes on the form :

( )
T kB ) BB, Ekhax) ks )

22 (k1 kP (L 22 (b m+1) (o m)

;(321)

where we note that (3 ) = PL2,,Z=2 by m om entum conservation.

T he next step consists of perform ing the Passarino-Velm an reduction 212] of the
Lorentz-invariant phase space integral of (3.2.1l). T his requires the calculation of the
three-ndex tensor integral

bbb

I m;PLy) = dLIPS (I, Ja;PL,z)m)z

(3.2.2)
This calculation is perform ed in Appendix [Gl. The result of this procedure gives the
follow Ing term at O ( 0),whjd1 we w ill Jater integrate w ith the digpersive m easure:

( )
_( p2 o (e kokn Pro)l to GkoProkn) 200 k)

" 3 Le) 25 (ky k)3 m B,)? m B)?
m$ m+1); (32.3)

and we have dropped a factor of 4 ~A ™2 on the right hand side of (323), where ~ is
de ned n (G_II1l). W e can reinstate this factor at the end of the calculation. W e also
notice that (3.23) isa nite expression, ie. it is free of infrared poles.

321 Rationaltemm s

An Im portant rem ark is in order here. O n general grounds, the result of a phase space
integral in, say, the P 2—d1annel, is of the form

I() = ( P?) £(); (32.4)
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32. THE SCATTERING AMPLITUDE IN THE ADJACENT CASE

w here

R R ; (32)
and f; are rational coe cients. In the case at hand, Infrared poles generated by the
phase space integrals cancel com pletely, so that we can in practice replace (3.2.0) by
£f()! &+ £ + . The am plitude A is then obtained by perform ing a dispersion
integral, w hich converts (3.2.4l) into an expression of the form

A()=—" g()=2 qbg( P+ g+ 0(); (326)

whereg( )= g+g1 + ,and the coe clengsge rational fiinctions, ie. they are free
of cuts. Im portantly, errors can be generated in the evaluation of phase space integrals

if one contracts (4 2 )-dim ensional vectors w ith ordinary four-vectors. T his does not
a ecttheevaluation ofthecoe cientg ¢ = g( = 0),and hence the part of the am plitude
containing cuts is reliably com puted; but the coe cients g ; for i 1, In particular
g1, are in general a ected. This in plies that rational contributions to the scattering

am plitude cannot be detected [42] in this construction. A notable exception to this is
provided by the phase space integrals w hich appear in supersym m etric theories. T hese
are \fourdim ensional cutconstructible" [42], in the sense that the rational parts are
unam biguously linked to the discontinuities across cuts, and can therefore be uniquely

determ ined |9 T hisoccurs, for exam ple, in the calculation oftheN = 4 M HV am plitudes
at one-Joop perform ed in [37]and reviewed in 1.9 and theN = 1 M HV am plitudes at
one-loop in Chapter[J. In the present case, how ever, the relevant phase space integrals
violate the cutconstructibility criteria given in [42 H , Since w e encounter tensor triangles
w ith up to three loop m om enta in the num erator. Hence, we w ill be able to com pute
the part of the am plitude containing cuts, but not the rational term s. In practice
thism eans that we w ill com pute all phase space integrals up to O ( °) and discard O ( )
contributions, w hich would generate rational term s that cannot be determ ined correctly.

322 D igpersion integrals for the ad pcent case

A fter this digression, we now m ove on to the dispersive integration. In the center of
m ass fram e, where Py, ,, = Py, (1;0), all the dependence on P, , in (32.3) cancels out,
as there are equal powers of Py, , In the num erator as in the denom inator of any temm .
A s a consequence, the dependence on the arbitrary reference vector  disappears (see
41] for the application of this argum ent to the N = 1 case). W e are thus left with

’For m ore details about cut-constructibility, see the detailed analysis in Sections 3-5 of [42] and
A ppendix D] of this thesis for a brief review .

*An exam ple of an Integral viokhting the pow er-counting criterion of [42] is provided by {G_.1J3).
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32. THE SCATTERING AMPLITUDE IN THE ADJACENT CASE

dispersion integrals of the form
2 g 1
S
I(P7) = SO—PLZ@O) = -l cx( )ICE) (32.7)

Taking this into account, the dispersion integral of {3.2.3) then gives

el _ o LPE) I Gekek BT
" 3 25#}(1 k)3
T (ke Bk ) 200 k)

m R) ’ m B

m$ m+1): (328)

Themom entum ow can be conveniently represented as in Figure 32, wherewe de ne

P = &@n 17 Q = th+1p = DL (3.2.9)

P
and q, p, = Iijpl ki.Wealsohave P, = q¢p = Q.

Now wew ish to com bine the temm s w ritten explicitly in (3.2.8)) w ith those that arise
underm $ m + 1. Since (32.8) is summed overm ,we sinply shiffm + 1 ! m in
these lJatter term s. Let usnow fcus our attention on the second term in (3.2.3) (sin ilar
m anipulationsw illbe applied to the rsttem ). W riting them $ m + 1 term explicitly,
we obtain a contribution proportional to

o [ty (e ko Ry By )T ftr, (e ko k4 1 BT
( Pg) > 2
@ P) (m +1) B)

(3.2.10)

By shiftingm + 1 ! m in the second term of (3.2.10), we change its P;, so that
P, ! &m 1= P (whereas, n thenon-shifted term ,P;, = Q). T heexpression (3.2.10)
then reads

h i
kk
[t‘f-f-( 1 2k-m @)]2 ( Q2) ( PZ) ; (32.11)
m Q9
whereweused try (ki ko k&)= tn Rk B)andQ m = P m.Noticealso that
m Q= (1=2)F@ P?).

N ext we re-instate the antisym m etry of the am plitudes under the exchange of the
indices1$ 2 (which ism anifest from equation (3.1.3))). D oing thiswe get
2 1h 2 2i
try (b ko ki &) ! > try (b ko by &) try (e ko @Ky ) (32.12)
h i
= 2k Km Q)M (kmkky &) 1t (kikGky)

Follow ing sin ilar steps for the rstterm in (3.2.8), we arrive at the follow ing expression
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32. THE SCATTERING AMPLITUDE IN THE ADJACENT CASE

Figure 32: A triangk function contributing to the am plitude in the case of adjcent
negative-helicity glions. Here we have de ned P

= Jdjm 1/Q = G+14= T (In
the text we set i= 1, j= 2 for de niteness).
for the am plitude before taking the ! 0 Iim it:
A = Ay, + Ay, ; (3213)
w here
A, = 2T ¢ o mkknshy) Ekagaik) T MiDn 1790 )/
g
Atree h 2
A, = 2T o mkk o) o kg 1k )
3 3
g)
2i
tr (ki ko kn gn ) o i koo nke ) - T M jn 1i%m ) i (32.14)

and tizl follow s from the de nition of equation (1.9.0). In order to write (3.2.14) in a

com pact from ,we have ntroduced -dependent triangle functions|f(]as in the previous
chapter (c.f. Eq. (2.1.14))

1( P?) ( Q2%
T (p;P; = - ;
(PP ;0 ) 07 Doy

(3.2.15)

wherep+ P + Q = 0,and risaposﬁ/ejntegerH

‘Forr= 1 wewilom it the superscript (1) in @,
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32. THE SCATTERING AMPLITUDE IN THE ADJACENT CASE

W e can now take the ! 0 lin it. A s Jong as P? and Q ? are nonvanishing, one has
in T EP;0) = T EP0); P 60;0°60; (3216)

where the -independent triangle functions are de ned by

og@*=p?)
®) (oD - — .
TV (p/P;Q) = 02 piy° (32217)
If either of the invariants vanishes, the 1lim it of the -dependent triangle gives rise to
an Infrared-divergent term (which we calla \degenerate" triangle —this isone w ith two
m assless legs). For exam pl, ifQ 2 = 0, one has
. 1(P%

T (PiPiQ)Haeg ! R ; ! 0: (3.2.18)
T he two possible con gurations which give rise to infrared-divergent contributions cor-
respond to the follow ing tw o possibilities:

a.on 1=k (hencqu’m ;= 0). In thiscasewe also haveqﬁ;m = t£2].

b. @n =k (hencqu’m = O).Thereforqu’m 1= .

W e notice that infrared poles will appear only In term s corresponding to the trian—
gl function T . Indeed, whenever one of the kinem atical mvariants contained in T )
vanishes, the com bination of tracesm ultiplying this function in (3.2.14l) vanishes aswell.

In conclusion w e arrive at the follow Ing result, w here w e have explicitly separated-out

the infrared-dvergent term s

ATRET = Apcest A1+ Ap; (32.19)
w here
1 b -
Apoes = gAt‘fee— () + (&) (3220)
1 1 X 'h i
A = gAtree?] (kg ke ike) T ;20 1:%m ) 7
t1 m=4
1 tree 1 X th 2
Ay, = gA 215 tr R kokn &) o (Rikoch gkn )
(t ) m=4

i
2
tr, ki ko kn &)t i kognakn ) TO M jom 15Dpm ) ¢

°A factorof 4 " willbe understood on the right hand sides of Eqgs. (3.2.19)), 3.221) and (3.2.23),
where " is de ned i (G_111)).
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33. THE SCATTERING AMPLITUDE IN THE GENERAL CASE

M ore com pactly, we can recognise that A ;s and A 1 reconstruct the contribution of
an N = 1 chiralm ultiplet, and rew rite (3.2.19) as

1
1T oo 1 1 X
AgeRr — cpl bRl e BT m jqp 1i@n ) (3221)
3 3 )
il m=4
w here
2
BY, = tr (kikokn ehya) o kikoGhaka ) (3222)

2
tn kg ik ) o (Rikoky gnp)

and

1
Ay, = AL— tr (e ko ko ong)  to G koen gk )

O
T ;9 1/ Qm) - (3223)

T his isour result for the cutconstructible part of then-glion M HV scattering am plitude
w ith adpcent negative-helicity gluons in positions 1 and 2. T his expression was st
derived by Bem, D ixon, D unbar and Kosower in [42], and our result agrees precisely
w ith this. A ram ark is in order here. In [42], the nalresult is expressed In term s of a
function

ogx (x 1=x)=2

L,(x) = T ; (3224)

which contains a rational part (x 1=x)=2(1 x)3 which rem oves a spurious third—
order pole from the am plitude. W ith our approach however we did not expect to detect
rational term s in the scattering am plitude, and indeed we do not nd such tem s
Furthem ore, we do not nd the other rational term s which are known to be present in
the one-doop scattering am plitude 44,145].

3.3 The scattering am plitude in the general case

T he situation where the negative-helicity gluons are not adpcent is technically m ore
challenging. O ur starting point willbe (3.1.3)), to which we will apply the Schouten
dentity (see A ppendix[A] for a collection of spinor dentities used). Eq. (3.1.3) can then

®In our notation L, corresponds to T ) which, however, lacks a rational term .
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33. THE SCATTERING AMPLITUDE IN THE GENERAL CASE

be written as a sum ofﬁjurtemlsﬁ
C=%Fmimo+1) Fmim, Fm, lmr+1)+ Fmi 1lm,) (331)

w here

hilihjLi?hibi?hjki hiaihjbi
Clajo) » oDl MRt Rt HMADH (332)
hiji* hl i hl; aihl bi

T he calculation of the phase space integralof this expression isdiscussed in A ppendix[G].

The resul is

7
d* LIPS(L; L;Pr.) €(ab)
" #
1 tr, &5b=) . , o B5aB ;) 21 3J)
= - — = tr B ., b
3T @ p R e e, @ @D
" 2 #
1 tr. E5ba)tr, E5ad) tr G5B, &)
- i b
’ 2 @ » (PL. & s
" #
tr, @5ab)tr, &5bs) tr E5ab)tn 5B, &)
+ (@$ b
(@ b PrL, a)
tr, G5ab)’tr, Egba)’ @ b),
log 1 ;
+ o B g N Lz (333)
where N NP) = (a b)P 2(P a)P b), and we have suppressed a factor of
4 "( P2 @1  H] ' on the right hand side of (3.3.3), where ~ is de ned in

(G_I.II). W e notice that (333) is symm etric under the sim ultaneous exchange of i
with j and a with b. This symm etry is m anifest in the coe cient multiplying the
logarithm { the last term in (3.33); for the ram aining tem s, nontrivial gam m a m atrix
entities are required. For instance, consider the temm s in the second line of (3.33)).
These temm s are present In the ad jcent gluon case (3.2.3), and it is therefore natural
to expect that the trace structure of this term is separately nvariant when i$ j and
a $ b. Indeed this is the case thanks to the dentity

2 Ugr é?‘aBL;z) n 2(1 j)

32(1 ) = tr G5B =) (334)
j3) J b (PL;z a% (PL;z a2)
. tr, G5B ; &) 21 3J)
+ tr, G5B .Z)2 - +
3 b (PL;z a3) (PL;z a2)

"W e drop the factor of iA 7°° from now on and reinstate it at the end of the calculation.
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33. THE SCATTERING AMPLITUDE IN THE GENERAL CASE

Sin ilar dentities show that the third and fourth line of (3.3.3)) are invariant under the

sin ultaneous exchange i$ jand a $ b.

T he next step is to perform the dispersion integral of (3.3.3), ie. the integral over
the variable z which has been converted to an integral over Py, ,. The relevant temm s
are thus those nvolving P, , In (3.33), and in an overall factor (Pf;z) arising from
the din ensionally regulated m easure.

T he Integral over the term nvolring the logarithm has been evaluated in [37], w ith
the result

2 gp2 ( bﬁ) ( b%

Lz 2 a 2 . a 2
—— (P~ o 1 = L 1 O : (335
o7 5Pl o 7, b1 gt ():335)

N otice that these term s were not present In the ad pcent negative-helicity ghion case
considered in 332

Next wem ove on to the rem aining term s in (333]). Inspecting their z-dependence,
we see that, in com plete sin ilarity w ith the ad pcent case of 3.2, in each term there are
the sam e powers of Py, ; In the num erator as in the denom inator. Hence, in the centre
ofmass fram e In which Py, = P, (1;0), one nds that P, , cancels com pltely. Note
that this also Inm ediately resolves the question of gauge Invariance for these term s {
this occurs only through the dependence n P, = Py, z . Furthem ore, the box
functions com ing from (3.3.9) are separately gauge-invariant [37]. The conclusion is
that our expression for the am plitude below , built from sum s over M HV diagram s of
the dispersion ntegral of (3.3.3]), w illbe gauge-invariant. M oreover, apart from (3.3.9),
the only other dispersion integralwe w illneed is that com puted in (3.2.7).

It ©llow s from this discussion that the result of the dispersion integral of (3.3.3) is
(suppressing a factor of 4 " PLz) A Pt [ ese( )
Z Z
d* 2LPS(L; LiPLz) €@

( n #
1, 1t G5ba) L, tnEsaR) 20 5)
= —( P - B
( P) 3 @ b try @58 &) 5. 2 + b, @ @$ b
n #
+ } tr, B5bs)tr, E5ab) tro E5B 3)2 + @s b
2 @ 1B P, &
n # )
tr, G5ad)tr, G5b=) I, E3sd)tr, G5B &)
+ @$ b
@a b (Pg a)
PSRY: Ry
+ tr, G5ab) tr, E5ba) Li 1 a b f (336)

@ B * N (P )
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Now , due to the four tem s in (3.3.1]), the sum over M HV diagram s w ill include a
signed sum over four expressions lke (3.3.8]). Let us begin by considering the last line
of (33.4). Thisisa term fam iliar from E ]Jand ]and corresponds to one of the four

dilogarithm s in the novel expression found in ] for the nite part B of a scalar box
function,
2.2 (@ b, , @ b,
B (s;5,P7; = L + L 1
(s Q) h2) N ©) h2) N © )5
p 1 2B .y, B (33.7)
S ; .
* N @) * N@E)

withs = P+ a)z,t:= P + b)z,andP + Q + a+ b= 0. By taking into account the four
term s in (3.3.0]) and summ ing over M HV diagram s as speci ed in (B.1.1) and 3.1.2),
one sees that each of the four term s In any nite box function B appears exactly once,
in com plete sim ilarity w ith E]and @]. The nalcontrbution of this term w ill then
b

%1 %!
5 2
5 btjlmg B(Oﬁl;mg l;oﬁl+lm2;q;12\1+1m2 l;oﬁﬁlml 1); (3'3'8)
m1=j+1m2=i+l
k] _ 2 kl_ .o k] L
wherety"" = (pi+ pu1+ w#p1)ork O,and = ¢ fork < 0. In writing

(338), we have taken into account that the dilogarithm in (3.3.4) is multiplied by a
coe cient proportional to the square ofbrinj1m , rWhere

u+ (klkjkmlkmg)tgr (klkjkmgkml) .
[ki+ k5)*F [k s + K, 2 F ’

Bl ., = (339)

W e notice that binjlm , 1s the coe cient of the box functions in the onedoop N = 1
M HV am plitude, origihally calculated by Bem, D ixon, D unbar and K osower in ],
and derived n @jﬁ]

Furthem ore, we observe that binjlm , isholom orphic In the spinor variables, and as such

has sin ple Jocalisation properties in tw istor space. Indeed, from (3.3.9)) it follow s that

using the M HV diagram approach for loops proposed in E].

; ~ 2himlihim 2ibjm ;ihjm o1 (33.10)
Biim, = hiji2tm ;m ,i% . .

Summ Ing over the four tem s for the rem ainder of (3.3.68) can be done in com plete
sim ilarity w ith 2.7 (and Section 4 of @])H W e will skip the details of this derivation

and now present our result.

*Wem ultiply our nalresults by a factor of 2, which takes into account the two possible helicity
assignm ents for the scalars in the loop.

° 32 we have illustrated in detail how this sum is perform ed for the sin pler case of ad fcent
negative-helicity gluons.
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m1-1

Figure 3.3: A box function contributing to the am plituide in the general case. The
negative-helicity gluons, i and j, cannot ke in adpcent positions, as the gure shows.

In order to do this,we nd it convenient to de ne the follow ing expressions:

iy ijmo,+ 1m ijm om
AS - (1jm, 1) (1jmom ) (3311)
(mo+ 1) m) my m)
o . .. h‘(‘l2m2+ 11
= 2[ijlhm g iihm g Ji , -
hT‘l2+ 1m11hn1m21
iy ijmimo+ 1)@Ajm,+ 1m ijmim ijmom
s = (Ijmiymp+ 1)(] 22 1) (Agmg 2)(]22 1); (3312)
(mo+ 1) m) my m)
i ijmim,+ 1)2(@AJm, + 1m ijmim ) (1jm om
e (1jmimy )7 (1] 23 1) (1jmy 2)(]32 1);(33.13)
(mz+ 1) m) my m)
w here for notational sin plicity we set (a1 azazas) = tr, (1a&a3a,) In the above. W e

also note the sym m etry properties
alt = Al st =i (33.14)

mim 2 mimyz / mim 2 mimyz *°

Themomentum ow is best describbed using the triangle diagram in Figure 3.4, where
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we use the follow ing de nitions:

P = Gnyeimy 1= Sym, i (33.15)

Q = CJin1+1;m2:

T he triangle In Figure 3.5 also appears in the calculation, and can be converted into a
triangle as in Figure 34 —butwith iand j swapped — if one shiftsm; 1! m;,and

then swapsmi1 $ m,.

N ext we introduce the coe cients

h
AD L, = 2 84 j)4A§31m2 (1jm 10 )*(1jom )
1

(ijm10)(Ejom ) ; (3.3.16)
h .

204 = 2841 4%l L 2 L 21_

maim, T i J) Ay, (AJmi1Q) (1jomq) ; (3317)
h i

sPL, = 2°%G@ 9fsP,. @m0V + ({jomq)? (3318)

g h ) i

ID., = 2% P 18, djom+ I (i9miQ) ¢ (3319)

W e will also m ake use of the -dependent triangle functions introduced in [B2.19),
whose ! 0 I its have been considered in [B2.16){(3.2.18)). This is in order to w rite
a com pact expression which also incorporates the infrared-d vergent term s

W e can now present our result for the one-loop M HV am plitude:

v 1 g1
Ascalar X 1 s 2
- = _h'ln]lmz B(qil,mz l;q§1+l,m2;qr2n1+1m2 1iq§2+1m1 1)
A tree m1:j+lm2:i+l2
g X' xth . ) ) i
3 AS T®mqpi0) @ YL, TPmPi0)
mi=Jj+lmy=1
¥1 %1h i
1] (2) D . ij . . G
+ 2 S, TWmP;0)+ IJ . Tmi;P;0) + (1S ) ;

m1=j+lm2=i

(3.3.20)

where on the right hand side of (3.3.20) a factorof 4 ~ isunderstood and ~ isde ned

The infrared-divergent tem s w ill be described below and used to check that our result has the
correct infrared pole structure.
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in (G_I.11]). W e can also Introduce the coe cient

o _ 1 (@jmo+ 1m,) (ijmomi) (1jm1Q) (1jOmyq)
mmz 2

— ; 3321)
mo+ 1) m m, m) [(1+ §)°F (

w hich already appears as the coe cientm ultiplying the triangle function T in theN =1
am plitude, (see eg. Eq. (2.1.19)), and rew rite (3.320) as

X1 %1,
i+ 2
F = Ebi\]lmg B(Qél;m2 l;q§1+lm2;oﬁ]1+lm2 l;oﬁ]2+1m1 1)
mi=Jj+rlmo=i+1
i 1 ;1 h,.. . i
1 X X1, (1jm1Q)(1jQmy)
> < Sin : T mPi0)+ Tm1PiQ)
2 , 3 21 P
mi=j+lm=1
x1 %xth Ny i
+ 2 Swim, TWm1;P;0)+ I, Tm;P;0) + (1S §)
m1=j+1m2=i
(3322)

where F = A o012r7A tree -

Figure 34: One type of triangk functon contributing to the am plitude in the general
case, where 12 Q ,and j2 P .

Several rem arks are in order.

1. Asusual, the variables o L P \+1m, correspond to the s—and tchannel of
the nite part of the \easy two-m ass" box function w ith m assless legsm ; andm 5,
andmass:iyeJegsqﬁﬁlmz l’oﬁngrl,ml ; (Figure 3.3).
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33. THE SCATTERING AMPLITUDE IN THE GENERAL CASE

Figure 3.5: A nother type of triangle fuincton contributing to the am plitude in the general
case. By rstshifingm; 1! mq,and then swappingm 1 $ m,, we convert this into
a triangle function as in Figure 3.4 { butwith i and j swapped. T hese are the trianglke
fiinctions responsibke for the i$ j swapped term s in (3.3.20)) { or (3.3.22).

2. Com pared to therangesofm ; andm , indicated in (3.1.2),wehaveom ittedm ; = i
n the sum m ation of the triangles as for this value the coe cients A , S, I de ned
in (33.14){ {3.3.19) vanish. Notice also that wehave 12 Q and j2 P .

3. In the case of ad pcent negative-helicity gluons, the only surviving term s are those
containing the coe cient crinjlm ,ron the second line of (3.3.20)) or (3.3.22). W e
w ill retum to this point in 3.4l.

4. W e comm ent that, in contrast to the adjcent case (see (3.2.21)), in the general
case theN = 1 chiralam plitude doesnot separate out naturally in the nalresult.
O ne can quickly see this from the coe cient of the box fiunction B 1 ([3.3.20) for

exam ple.

Next we wish to explicitly separate out the infrared divergences from (3.320). W e
can Inm ediately anticipate that there w ill be four infrared-d ivergent term s, correspond-—
ing to the four possible degenerate triangles. Two of these degenerate triangles occur
when either P ? orQ 2 happen to vanish. T he other two originate from thei$ 7 swapped
term s.

Let us st consider the term s arising from the summ ation with 1$ J unswapped.
WhenQ?=0,itolowsthatm; =1 landm,= i(seeFigure34).W henP?= 0,1t
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33. THE SCATTERING AMPLITUDE IN THE GENERAL CASE

follows thatm 1= j+ landm,= j 1 (seeFigure 34). Hence

T®@EPi0) ! () — i Q%! 0 (3323)
Wy
[2]
10879
T® (piPi0) ! —%; P21 0:
(&5

T he frared-divergent tem s com ing from Q 2 = 0 are then easily extracted, and are

1 o (91 1i+ 1)
— gy 4 ) 3324
2 Cfy) el D i+ 1) G 1) ( )

8 (dji+ 11 1) . . (dji+ 1i 1)@djgi 1i+ 1)

_(l 32 2 . . 1 j) + 2 ;

3 (i+1) @@ 1) i+ 1) @ 1)

and from P%= 0

1 99 19+ 1
= (¥) aq I I (3325)
2 g+ 1) (o 1)

8 . (ijy+ 13 1) . . (ijj+ 13 1)djj 13+ 1)

SRER , —— G §) -+ .

3 g+ 1) G 1) G+ 1) (G 1)

Likew ise, from the \swapped" degenerate triangles we obtain the follow Ing infrared—
divergent tem s:

1 . (ijj+13 1)
— ) 4 ) 3326
2 CR A T T D R
i 1441 L : L ,
§(i 4 2 (1.jj j+‘ ) i j)+(1jj 1j+ D@Ejj+ 123 1) ;
3 Gg+1) G 1) G+ 1) (G 1)
and
1 iji+ 11 1
() aq gt b (3327)
2 i+ 1) @ 1)
§(i 5 (.iji 1i+. 1) q 9+ (iji 1i+ 1)(dJi+ 12'1 1)
3 (i+1) @ 1) G+ 1 d 1)

331 Commentson twistor space Interpretation

W e would lke to m ake som e brief com m ents on the interpretation in tw istor space of
our result (3.327)).

1. A s noticed earlier, the coe cient brinj1m , appears already in theN = 1 chiralmul-
tiplet contribution to a onedoop M HV am plitude, where it m ultiplies the box
function. It was noticed iIn Section 4 of 73] that b%jlm , is a holom orphic func-
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tion and hence it does not a ect the tw istor space localisation of the nite box
function.

2. The coe cient crinjlm , also appears In the N = 1 am plitude as the coe cient of
the triangles (see eg. Eqg. (219) of [40]). Tts twistor space interpretation was
considered In Section 4 of [73], where it was found that cniqjlm , has support on
two lines in tw istor space. Furthem ore, it was also found that the corresponding
term in the am plitude has a derivative of a delta function support on coplanar

con gurations.

3. The com bination cﬁjlm , (1dm1Q)(1jOomq)=(1 32) already appears in the case of
ad pcent negative-helicity gluons. T he localisation properties of the corresponding
term In the am plitude were considered in Section 5.3 of [73]and found to have,
sim ilarly to the previous case, derivative of a delta function support on coplanar

con gurations.

4. On general grounds, we can argue that the rem aining term s In the am plitude
have a tw istor space interpretation which is sin ilar to that of the term s already
considered. Thegluonswhosem om enta sum to P are contained on a line; likew ise,

the gluons whosem om enta sum to Q localise on another line.

W e observe that the rational parts of the am plitude are not generated from the
M HV diagram construction presented here. Such rational term s were not present for
theN = 1 and N = 4 am plitudes derived in [37,140,141]. However, for the am plitude
studied here, rational tem s are required to ensure the correct factorisation properties
42]. These term s have recently been com puted using an on-shell unitarity bootstrap
45]which m akes use of the cut-constructble part (3.3.20) (or (33.22])) as input.

34 Checks of the general result

In this section we present three consistency checks that we have perform ed for the
result (3.3.20)) (or (3.327)) for the one-doop scalar contribution to the M HV scattering
am plitude. T hese checks are:

1. For adpcent negative-helicity glions, the general expression (3.3.20) should re-
produce the previously calculated form (3.2.27]).

2. In the case of ve glions in the con guration (1 2" 3 4" 5"), the result (3.3.20)
should reproduce the known am plitude given in [44].

3. The result (3.320) should have the correct infrared-pole structure.
W e next discuss these requiram ents In tum.
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341 Adpcent case

T he am plitude w here the two negative-helicity external gluons are ad jacent is given in
Section 7 of [4Z2]and was explicitly rederived in 3.2 of this thesis by com bining M HV
vertices, see Eq. (3.2.21]). It is easy to show that our generalresult (3.3.22) reproduces
(3.2.27]) correctly as a special case.

To start w ith, recall that our result (3327]) is expressed in term s of box functions
and triangle functions, see F igure 3.3 and Figures 3.4, 3.5 respectively. In the ad pcent
case, the box flinctions are not present. Indeed, in the sum (3.3.8)) the negative-helicity

gluons can never be in ad pcent positions (see F igure 3.3).

Next, we focus on the triangles of F igure 3.4. In tem s of these triangles, requiring i
and j to bead pcent elin natesthe sum overm ,,aswemusthavem , = iandm ,+ 1= 7.
M oreover, in thiscase Q = ¢ ,+1;i,P = Qju, 1 and one has

mim . .
Ay o= 4d )

sIm = 0 I = 0 (341)

(form, = i,and m, + 1 = j). Sin ilar sim pli cations occur for the swapped triangle.
Hence the only surviving temm s are those in the second line of (3.3.20)) (or (3.3.22))), and
it is then easy to see that they generate the sam e am plitude (3.2.8]) already calculated
in 32

342 Fiveglion am plitude

T he other special case is the non-adpcent ve-ghion am plitude (1 2* 3 4* 57 ), given
in Equation (9) of [44]. This am plitude m ay be w ritten a C A tree thh &

1 110 ( - tr, F325)° tr, (3352)° 5 055550)
— — S S51;512;0;s
6 6 g 34 272 H1 R 517512 34

1 tr, (£325) tr, (352 Io =

1t ( )ty ( ) tr, @352) g (S12=S34 )

3 242 51 3B) (s12 sx:)?

log (s34=s
+ (%3%5)2 M

(s30  s51)°

e = r =(4)? isgiven in temn sofEq. {C3.).

12T he derivation in [44]used string-based m ethods which a ect the coe cient of the pole term . In
Eq. (3Z2) we have written the pole coe cient which m atches the ad fcent case.
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1 1 g (S34=
s T tr, (3342)tr, (2325) 19(834=851)
3231 3 (s34 s51)°

try (#325)° tr, (3352)°  log(sip=s3z) g (s3a=ss1)
262 AR A (s12 S34)° (s34 s51)°

tr, (#325)° tr, (3352)° log(s12=S34) , Jg(ssa=ss1)

202 DA 3 (s12 s34) (832 s51)
1 1 tr, (x325) log (s34=ss1)
3221 3) (53¢ ss1)
+ (1;4)8 (3;5) ; (342)

where the interchange on the last line applies to all term s above it In this equation,
including the rst two tems. The box function B is de ned in (3.37). In deriving
(342) from [44], we have used the dilogarithm identity

Li(l 1)+ Lk@ s)+ bgrbg(s) = Li X +Lp =2 Ljp L3z
W e have checked explicitly that our expression for the n-gluon non-ad acent am plitude
(3.3.20)), w hen specialised to thecasew ith veglionsin thecon guration (1 273 4% 5%),
yields precisely the result (3.4.2) above. For the tem s involving dilogarithm s, this is
easily done. For the rem aining term s, which contain logarithm s, a m ore involved calcu-
lation is necessary using various spinor identities from A ppendix[B]. A straightforward
m ethod of doing this calculation begins w ith the explicit sum over M HV diagram s in
this case, isolating the coe cients of each logarithm ic function such aseg. log(s 12 ),and
then checking that these coe cients m atch those in ([3.4.2). The rem aining 1= tem

arises from the follow Ing discussion.

343 Infrared-pole structure

T he iInfrared-d ivergent term s (poles in 1= ) can easily be extracted from [B.3.24)){ (3.3.27)

by sin ply replacing ( tf]) ' 1 (=1 1;i;,7 1;j). Consder st the term s in

(3329) and (3324). A fter a little algebra, and using
(133+ 13 L+ ({33 14 1) = 4G HG 1) G+ 1); (343)
one nds that these two contributions add up to

64
3¢ 9 (3.4.4)
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Sin ilarly, the pole contribution arising from (3.3.24) and (3.3.27) gives an additional
contrbution of (64=3 ) (1 9§) Remstatinga factorof 2 281 §)* Apee,wesee
that the pole part of (33.20) is sin ply given by

A tree

Asanr] poe = — (34.5)

Hence our result (3.3.20) has the expected infrared-singular behaviour.

3.5 TheM HV am plitudes in QCD

W e conclude by m entioning that the full one-loop n-gluon M HV am plitudes (w ith arbi-
trary positions for the negative-helicity glions) in Q CD can now be constructed. T hese
are given by:

MHV MHV MHV MHV
Agcp = By-4 4Bylighialt Ascalar 7 (351)

w here in contradistinction w ith {I.3.3) we have w ritten the scalar contrbution in tem s
of a com plex scalar rather than a real scalar. The ndividual pieces (to nite order in
) can be found as follow s:

AYEY was rst computed in [3€]and can be found there as Equation (4.1). AL
tematively it is given as Equation (1.9.1]) in C hapter 1 of this thesis. N ote that an

altemative form to Eq. {1.9.8) for the 2m e box flunctions is given by Eq. (1.9.29).

Ay Y e was rst computed in [42]and can be found there as Equation (5.12)

orm ore com pactly as Equation (2.1.19]) in C hapter 2 of this thesis.

In contrast to the N = 4 and N = 1 cases, ALY is an amplitude in a non-
supersym m etric theory and as such its cuts are not uniquely determ ined by its
cut-constructible part @M EV ). AYHY was rst com puted in [43]and can be ound

scut scut

there as Equation (4.20) or Equation (4.22). A ltematively it can be found earlier
in this chapter as Equation (3.3.20) or Equation (3.3.27)).

Buiding on the results of|43], the rational part of ALY @MHY. ) was com -
puted In [45]. In doing this it was found that it is useful to ‘com plete’ the cut-
constructible parts obtained in [43] by introducing certain prelin inary rational
term s in order to rem ove spurious singularities. T he cut-com pletion of A 2Y i
given by Equation (A1) of Appendix A of [45] and the full am plitude is then
obtained by adding the ram aining rational term s as given in Equation (5.30) of
that paper. Explicitly, the full scalar am plitude is given by Equation (5.1) (for
negative-helicity gluons 1 and m ), where ¢ is given by (A1) and R by Equation

(530) o£ 45].
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AJ &Y can then be found using the decom position (3.5.]1) and

AYIY - Eq.(41) of 3§]
Ay Ij{;chjral = Eqg.(512) of [42]
AMHY = Eq.(51)of 49]:
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CHAPTER 4

RECURSION RELATIONS IN GRAVITY

T he proposal of a tw istor string dual to perturbative Yang-M ills in [31] led notonly
to the advances described in C hapters 13 of the so<called M HV rules for perturbation
theory, but to m any others as well. T he support of m any quantities such as scattering
am plitudes, their integral functions and the coe cients of these functions in tw istor
space has led to m any insiohts 31,43,14%,153,74,173,175,174,/91,/179,18C,/181,/1182,1183,
184] as has the use of signature + + (or equivalently the restriction of m om enta
to be com plex rather than real). In particular, this second technigue of using com plex

m om enta has proved very pow erfiil, leading to the dea of generalised unitarity (47,841
and then to the treelevel on-shell recursion relations [48,/49]which will be central to
this chapter.

R ecursion relations have been known forsom e tin e in  eld theory since B erends and
G Jele proposed them in term s of o <shell currents [171]. H owever, the gluon recursion
relations introduced by Britto, Cachazo and Feng in [48] (stem m ing from observations
in [46]) and then proved In 49] are n som e ways much m ore powerful. They apply
directly to on-shell scattering am plitudes and are particularly apt when the am plitudes
are written in the spinor helicity form alisn , which as we have seen In the preceding
chapters is a form alisn which tends to favour sim ple and com pact expressions.

T he proofof the on-shell recursion relation for glionspresented in [49 ]isvery sin ple,
only relying (essentially) on the ability to express an am plitude as a function of a
com plex variable z and then the asym ptotic behaviour of this function asz ! 1 .As
such, it is natural to ask whether such a recursive structure m ight persist in other eld
theories and even in grav'w T his question was answered independently in [50] and
511 in the a m ative, where the authors of [150] (including the present author) used
it to present a new com pact form ula for ngraviton M HV am plitudes at treeJevel in
general relativity (GR ). Such com pact form ul are particularly interesting as gravity is
very-m uch m ore com plicated than YangM ills — the 3point vertex of GR for exam ple
contains 171 term s In total, while the 4-point vertex has 2850 altogether [165].

In this chapter we will follow [50] and describe the recursion relation in E instein
gravity at treedevel. W e w ill not sum m arise the proof of the relation in YangM ills as

'Here wem ean gravity asa eld theory (rather than as a string theory).
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it is aIm ost identical to that In gravity. Any di erences between the two are pointed
out n what follow s.

4.1 The recursion relation

In this section we closely follow the proof of the recursion relation in YangM ills [49],
which we w ill extend to the case of gravity am plitudes. A swe shall see, the m ain new
ingredient is that gravity am plitudes depend on m ore kinem atical nvariants than the
corresponding Yang-M ills am plitudes, nam ely those which are sum s of non—cyclically
adjpcent m om enta; hence, m ore m ultijparticle channels should be considered.

To derive a recursion relation for scattering am plitudes, we start by introducing a
one-param eter fam ily of scattering am plitudes, M (z) [49], where we choose z In such
a way that M (0) is the am plitude we wish to compute. W e work in com plexi ed
M inkow ski space and regard M (z) as a com plex function of z and them om enta. O ne
can then consider the contour integral [103]

1 ! M (z)

C, = - dz ; (41.1)
2 1 z

where the integration is taken around the circle at in nity in the com plex z plne.
Assum ing that M (z) hasonly sin ple poles at z = z;, the Integration gives

X ResM (2)}-s

Zi

(412)

In the In portant case of YangM ills am plitudes, M (z) ! Oasz ! 1 , and hence
C, = 0 [491.

N otice that up to this point the de nition of the fam ily of am plitudesM (z) hasnot
been given { we have not even speci ed the theory whose scattering am plitudes we are

com puting.

T here are som e obvious requirem ents forM (z). Them ain point istode neM (z) in
such a way thatpoles in z correspond to m ultiparticle poles In the scattering am plitude
M (0). Ifthisoccurs then the corresponding residues can be com puted from factorisation
properties of scattering am plitudes (see, for exam ple, [3,1154]). In order to accom plish
this,M (z)wasde ned In [48,49 by shifting them om enta of tw o of the extemalparticles
in the original scattering am plitude. For this procedure to m ake sense, we have to m ake
sure that even w ith these shifts overall m om entum conservation is preserved and that
all particle m om enta rem ain on-shell. W e are thus ked to de neM (z) as the scattering
am plitude M (pr;::;pc(Z)5:501(2)5 202500 ), where the m om enta of particles k and 1
are shifted to

ex(z) = pe+ 2 ; p(z) = pr z (41.3)
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M om entum conservation is then m aintained. Asin 48], we can Sokiepﬁ (z)= pf(z) =0
by choosng = 17x (or = 71), which makes sense In com plexi ed M inkow ski

space. Equivalently,
k(z) = x+ 2z 17 1z) = 71 27 (4.1.4)

with ;and 7y unschifted.

M ore general fam ilies of scattering am plitudes can also be de ned, as pointed out

in [103]. For instance, one can single out three particles k, 1,m , and de ne

P(z) = P+ 2x; pi(z) = i+ z 1; Pn(Z) = Pnt+ 2Zn ;7 (4.1.5)

where |, ;and , arenulland + 1+ , = O. Bnposjngpﬁ(z)= pf(z)= plfl (z)= 0,

one nds the solution
Kk = k1 kK m i 1= K17 m=  k m ; (4.16)

for arbitrary and . This has been used in [103]. Tn the follow ng we will 1 it
ourselves to shifting only two m om enta as in [48]and [49].

At tree level, scattering am plitudes in  eld theory can only have sim ple poles in
m ultipparticle channels; forM (z), these generate poles in z (unless the channel contains
both particles k and 1, or none). Indeed, if P (z) isa sum ofm om enta including p(z)
butnotpg (z), then P?(z)= P? 2z (P ) vanishes atg = P2=2(P 4B 1. Tn Yang—
M ills theory, one considers colour-ordered partial am plitudes which have a xed cyclic
ordering of the extermal legs. T his In plies that a generic Yang-M ills partial am plitude
can only depend on kinem atical invariantsm ade of sum s of cyclically ad pcentm om enta.
Hence, treedevel YangM ills am plitudes can only have poles in kinem atical channels
m ade of cyclically ad Acent sum s of m om enta.

For gravity am plitudes this is not the case as there is no such notion of ordering for
the extermal legs. T herefore, the m ultiparticle poles w hich produce poles in z are those
obtained by form ing all possible com binations of m om enta which include py (z) but not
pri(z). This is the only m odi cation to the BCFW recursion relation we need to m ake

in order to derive a gravity recursion relation.
For any such m ultiparticle channelP ?(z), we have

X

M (z)! M P (zp) M "z ) ; (41.7)

P2(z)

asP?(z)! 0 (or,equivalently, z ! zp ). The sum is over the possible helicity assign—
m ents on the two sides of the propagator which connects the two low erpoint treelevel
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am plitudesM P and M b It ollow s that

L R

X h Zp h
ResM (z)h-, = M L(ZP)EM r (Zp) (4.1.8)
h
so that nally
X ymnh M b
M (0) = C + ) — ) (419)
P
Ph

The sum is over all possible decom positions of m om enta such thatp, 2 P butp; 2P .

IfC; = 0 there isno boundary term in the recursion relation and

X M b M D
M (0) = Lz Mg () (4110)

P2
P

In [49] it was shown that for Yang-M ills am plitudes the boundary tem s CEM always
vanish. Two di erent proofsw ere presented , the rstbased on theuse of C SW diagram s
33 ]1and the second on Feynm an diagram s. An M HV -vertex form ulation of gravity only
recently appeared [77], so at the tin e the authors of [50] could only rely on Feynm an
diagram s. This is also the case for other eld theories we m ight be interested in (such

as *,forexample).

Aswehave reamarked,C; = 0 ifM (z)! Oasz! 1 .M (z) isa scattering am —
plitude w ith shifted, z-dependent extermal nullm om enta. O ne can then try to estim ate
the behaviour of M (z) for large z by using power counting (di erent theories w ill of
course give di erent results). In 4 the Feynm an vertices arem om entum independent
and C; = 0 (see4.3); in quantum gravity, how ever, vertices are quadratic in m om enta,

and one cannot determ ine a priori whether or not a boundary term is present.

From the previous discussion, it follow s that the behaviour of M (z) asz ! 1
is related to the high-energy behaviour of the scattering am plitude (and hence to the
renom alisability of the theory). T he ultraviolet behaviour ofquantum gravity, how ever,
is full of surprises (for a summ ary, see for exam ple Section 2.2 of 217] and also m ore
recent results of 53,156,157, 158,159, 160]). W e may therefore expect a m ore benign
behaviour of M (z) asz ! 1 . Speci cally, In the next section we w ill focus on the
n-graviton M HV scattering am plitudes which have been com puted by Berends, G iele
and Kuiff (BGK ) in [218]. Perform ing the shifts (£.1.3) explicitly in the BGK formula,

one nds the surprising resu

lin M oygy(z) = 0O (4111)
Z.

’W e have checked thatM (z) O (1=z®’)asz! 1, analytically for n 7 legs and num erically for
n 11 legs.
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In m ore general am plitudes one can (at least n principle) use the ( eld theory
lim it of the) KLT relations [219], which connect treelevel gravity am plitudes to tree—
level am plitudes In Yang-M ills, to estin ate the largez behaviour of the scattering
am pilji:udeH A s an exam ple, we have considered the nextto-M HV gravity am plitude
M (1 ;2 ;3 ;4";5";6%),and perform ed the shiftsasin (4.1.4),withk= 1 and 1= 2.
Sin iarly to theM HV case,we nd that
Jmo M2 53 ;47 ;57 ;6" )(z) = 0 (4112)
In Bl]it was shown thatM (z) vanishesasz ! 1 forallam plitudes up to eight
gravitons and also for allnpointM HV and NM HV am plitudes. Further to this, recent
work [54 ]provides a proof of this statem ent for all treelevel ngraviton am plitudes thus
establishing the validity of the recursion relation In gravity unam biguously.

In the next section we willapply the recursion relation (£.1.10) to the case of M HV
am plitudes in gravity and show that it does generate correct expressions for the am —
plitudes. A s a bonus, we will derive a new closed-form expression for the n-particle
scattering am plitude.

4.2 Application to M HV gravity am plitudes

In the ©llow ing we w illcom pute theM HV scattering am plitudeM (1 ;2 ;3% ;:::;n")
forn gravitons. W ew illchoose the tw 0 negative-helicity gravitons1 and 2 asreference
legs. T his is a particularly convenient choice as it reduces the num ber of term s arising
in the recursion relation to am lnimum . T he shifts for the m om enta of particles 1 and
2 are

;! i+ z 271 p2! P2 oz 271 (421)
In term s of spinors, the shifts are realised as

A

1b 1= 1tz 2l To= Ty 27 (4.2.2)

with 5 and 7; unm odi ed.

Let us consider the possible recursion diagram s that can arise. T here are only two
possibilities, corresponding to the two possible intemal helicity assignm ents, (+ ) and
(+):

1. The am plitude on the kft isgoogly (+ + ) whereason the right there isan M HV
gravity am plituidewith n 1 legs (see Figure 4.1).

’See A ppendix [H] for explicit exam ples of K LT relations for four, ve and six legs.
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42. APPLICATION TO MHV GRAVITY AMPLITUDES

2. The am plitude on the right is googly and the am plitude on the left sM HV (see
Figure 4.2).

W e recall that a gravity am plitude is sym m etric under the interchange of dentical
helicity gravitons; this in plies that we have to sum n 2 diagram s for each of the
con gurations In Figures 4.1 and 42. Each diagram is then com pletely speci ed by

However, it is easy to see that diagram s of type 2 actually give a vanishing contri-
bution. Indeed, they are proportional to
N kPPi kPP

Pl= =
KE] W 24 W 21

0; (4.2.3)

where the last equality follows from P = py + pp. Hence we will have to com pute
diagram s of type 1 only. W e w illdo this in the follow ing.

421 Four-, ve-and six-graviton scattering

To show explicitly how our recursion relation generates am plitudes we w ill now derive

the 4-, 5—and 6-point M HV scattering am plitudes.
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42. APPLICATION TO MHV GRAVITY AMPLITUDES

Figure 4.2: T his chss of diagram s also contributes to the recursion relation for the M HV

(422 are perform ed.

W e start w ith the four point case. T here are two diagram s to sum , one of which is
represented In F igure 4 3; the other is obtained by swapping the labels 4 and 3. For the

diagram In Figure 4.3, we have

(4) 1
T S (@24)

w here the superscript denotes the labelon the positive-helicity leg in the trivalent googly

M HV vertex,
|
A . 2
4
41]1P ]
B 2i3
W2 3P i

and P? = (p + ps)?. Using
hiPi= ; (426)

we nd,after a little algebra,

) h123°[14]
= ———: (42.7)
h14ih231213412
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42. APPLICATION TO MHV GRAVITY AMPLITUDES

4 3"

Figure 4 3: O ne of the two diagram s contributing to the recursion relation for the M HV
amplilide M (1 ;2 ;3% ;4" ). The other is obtained from this by cyclically perm uting
the klkels (3;4) { ie. swapping 3 with 4.

The fullam plitude isM (1 ;2 ;3" ;4" )=M &+ M @), Thus, we conclude that the
four pointM HV am plitude generated by our recursion relation is given by

M (1 ;2 ;37;4) = er 3s 4: (428)
hl4ih23i2h3412

It is easy to check that this agrees w ith the conventional form ula for this am plitude

. h12i®[12]
M @1 ;2 ;3;4)= —73 (4.2.9)
N (4)h34i
w here v
N (n) = hiji; (4.2.10)
1 ikjn

or, equivalently, w ith the expression from the appropriate K LT relation, Eq. (H.0J]).

For the vegraviton scattering case our recursion relation yields a sum of three
diagram s. A calculation sim ilar to that ilustrated previously for the fourpoint case
leads to the result

h12i° 151341

M (1 ;2 ;3";4";57) = + P°(3;4;5) ; 4211
(52 534550 hl15ih23ih241ih341h35ih451 (3:473) ; ( )

where P©(3;4;5) m eans that we have to sum over cyclic perm utations of the labels
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42. APPLICATION TO MHV GRAVITY AMPLITUDES

3;4;5. The conventional form ula for the ve graviton M HV scattering am plitude is

n12i®
M (1 ;2 ;3";4";5" )=
N (5)

[12]34 h13i24i [13]24hl2ih34i : (42.12)

U sing standard spinor identities and m om entum conservation, it is straightforward to
check that our expression (4.2.11]) agrees w ith this (altematively, one can use the K LT

relation {H.03)).

For the six graviton scattering am plitude, our recursion relation yieldsa sum of four
term s,

b b s e hi2i°[16] 1
M (1 ;2 ;3 ;4";5;6") = : — (4213)
h6i  h26ih34ih3 5 51
4] MR+ 4P]  @45] WP+ 5Bl B3] WP+ 33
h23i24i 1561 h24i25i 1361 I23i25i 61
+  P(3;4;5;6):

The known form ula for this am plitude is

. 12745]3# + 5%1
wofEome_ e HASBRLOPL o o) L 4204
h15ih1 61h1 2ih?31h?261h34ih36iM5ih61ih561

whereP (2;3;4) indicatespem utations of the labels 2;3;4. W e have checked num erically
that the form ula {£.2.13)) agrees w ith this expression.

422 Generalformula forM HV scattering

R ecursion relations of the form given in [48], or the graviton recursion relation given
here, naturally produce general form ul for scattering am plitudes. For a suitable choice
of reference spinors, these new formul can often be sim pler than previously known
exam ples. For the choice of reference spinors 1;2; which we have m ade above, the
graviton recursion relation is particularly sim ple as it produces only one term at each
step. This Inm ediately suggests that one can use it to generate an explicit expression
for the npoint am plitude. This tums out to be the case, and experience w ith the use
of our recursion relation leads us to propose the follow Ing new general form ula for the
n-graviton M HV scattering am plitude. This is (labels 1;2 carry negative helicity, the
rem ainder carry positive helicity)

3
. . M2i%[Md, 2] . . . Y TR+t i 1)
M (1;2;11; n) = ————— G (i1;12;13) —
hli, 21 oy sds g dhPisqd
+ P (ig;unin 2); (4.2.15)
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43. APPLICATIONS TO OTHER FIELD THEORIES

w here ..
1 [ 1]

2 h21; ih21, ihiy 3p hip dgihi; i34

G (i 732713) = (42.16)

(Forn = 5 the product term is dropped from (4.2.19)). It is straightforward to check
that this am plitude satis es the recursion relation with the choice of reference legs 1
and 2

Theknown generalM HV am plitude for tw o negative-helicity gravitons, 1 and 2,and
the rem ainingn 2 w ith positive helicity is given by 218 ]

" #
2;n 2n 1] 1 Y’>Y¥'
M (1;2;3; ;n)=1’%L21 - 13 hijiF + P (2;:::;n 2) ;
n * N (n)izlj:i+2

(42.17)

w here ( ;
L5 Diow1+ pua+ #P)Hi n 6
1 n=>5

F o= (4218)
W e have checked num erically, up to n = 11, that our ormula (£2.19) gives the sam e

results as (£.2.17).

Tt is interesting to note that the very existence of this recursion relation in gravity —
described here and in 50,151 ]-has som ething to say about the divergences of quantum
gravity. A central feature of the recursion relation is that it requiresM (1 ) = O,
and the behaviour of M (z) asz ! 1 is related to the high-energy behaviour (and
hence the renom alisability) of the theory. It is not a priori clear that gravity has this
behaviour, though the analyses of [50,51] and m ore recently the com plete analysis of
54] show that indeed M (1 ) = 0 for any treedevel am plitude In gravity. Thism eans
that at treelevel, gravity has divergences in the UV that are perhaps better than one
m ight expect. T his supports recent argum ents that gravity m ay not be as divergent as
previously thought and m ore speci cally that 4-dim ensionalN = 8 supergravity m ay be

nite [55,154,157,58,59,601].

4.3 A pplications to other eld theories

O ne of the strking features of the BCFW proof of the BCFEF recursion relations is that
the speci cation of the theory w ith which one is dealing is alm ost unnecessary. Indeed
In [49] the only step where specifying the theory did m atter was in the estin ate of
the behaviour of the scattering am plitudes M (z) asz ! 1 ,which was in portant to
assess the possible existence of boundary term s in the recursion relation. T his leads us
to con pcture that recursion relations could be a m ore generic feature of m assless (or

spontaneously broken) eld theories n four dim ensionsl] A fter all, the BCF recursion

“This was also suggested in [103].
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44. CSW ASBCFEFW

relations — as well as the recursion relation for gravity am plitudes discussed in this
chapter and in [51]-just reconstruct a tree-level am plitude (which isa rational function)
from its poles.

Let us focus on m asslkess ( y)2 theory In four din ensions. W e use the spinor
helicity form alism , m eaning that each mom entum willbe written as pag = a2 a. A
scalar propagator 1=P ? connects states of opposite \helicity", which here jist m eans
that the propagator ish (x) Y(0)i,with h (x) (0)i= hY(x) Y(0)i= 0. Now consider
a Feynm an diagram contributing to an n-particle scattering am plitude, and let us shift
them om enta of particles k and las n {(£13). A s for the YangM ills case discussed in
149], there is a unique path of propagators going from particle k to particle 1. Each of
these propagators contributes 1=z at large z, w hereas vertices are Independentofz. W e
thus expect Feynm an diagram s contributing to the am plitude to vanish in the largez
I it.

An exception to the above reasoning is represented by those Feynm an diagram s
where the shifted legs belong to the sam e vertex; these diagram s are z—-independent,
and hence not suppressed asz ! 1 . In order to dealw ith this problem atic situation,
and ensure that the full am plitude M (z) com puted from Feynm an diagram s vanishes
asz! 1 wepropose two altematives.

F irstly, if one considers ( Y)? theory w ithout any group structure, one can rem ove
the problem by perform Ing m ultiple shifts. T his possibility has already been used In
the context of the rational part of one-loop am plitudes in pure YangM ills [103]. In our
case, it is su cient to shift at least four externalm om enta.

A ltermatively, we can consider ( Y)? theory with global symm etry group U (N )
and n the adpint. In this case we can group the am plitude into colour-ordered
partial am plitudes, as In the YangM ills case. T hen, for any colour-ordered am plitude
one can always nd a choice of shifts such that the shifted legs do not belong to the
sam e Feynm an vertex. The procedure can be repeated for any colour ordering, and
the com plete am plitude is obtained by summ Ing over non-cyclic perm utations of the
extermal legs.

In this way, the appearance of a boundary term C; can be avoided, and one can
thus derive a recursion relation for scattering am plitudes akin to (4.1.I0). A similar
analysis can be carried out in other theories, possibly in the presence of spontaneous

symm etry breaking etc. W e expect this to play an im portant rdle in future studies.

44 CSW asBCFEFW

Finall, we would lke to point out the connection between the CSW rules at treelevel
33]and the BCFW recursion relation introduced in [48,/49] and discussed for gravity
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44. CSW ASBCFEFW

in this chapter. Thiswas hinted at in [49] where it was noted that the existence of
BCFW recursion (which can construct any gluon am plitude solely from a know ledge of
its singularities) provides an indirect proofofthe CSW rulessincetheC SW rulesprovide
resultsw hich are Lorentz-invariant, gauge=nvariant and have the correct singularities. Tt
was also brie y touched on in [50 ]w here som e form al observations were m ade regarding
the relation between the way that the shifts of Eq. {4.1.3)) are perform ed —so as to keep
the corresponding m om enta on-shell in the BCFW recursion relation —and the way that
the intemal legs in the CSW rules are shifted (Eq. (ILZ1)).

H ow ever, R isager show ed that the C SW rulesare in fact a specialcase of the BCFW
recursion relation when speci ¢ shifts of m om enta are m ade [34]. The m ost natural
shifts to m ake when using the recursion relations are those which m Inin ise the num ber
of term s appearing and thus the work that one has to do. In [34], however, a di erent
set of shifts was em ployed which a ects every propagator that m ay appear in a C SW
diagram . T he propagators arede ned by them om enta that ow through them and thus
by a set of consecutive external particles. In the case of CSW diagram s, the vertices
are M HV vertices and thus this set of consecutive particles (and its com plin ent on
the other vertex to-which the propagator is attached) m ust contain at least one glion
of negative helicity each. Exactly this set of propagators is a ected if every external
negative-helicity gluon is shifted, provided that the sum of any subset of the shifts does
not vanish. In addition, the shiftsm ust all nvolre the antiholom orphic spinors so that
all 3-point googly am plitudes drop out.

U sing these shifts (see Eqg. (5.1) of [34] for an explicit exam ple of the shifts for
an NM HV am plitude), R isager used induction to prove the CSW rules directly thus
highlighting their connection w ith the BCFW recursion relation. In [77] these deas
were then used to construct an M HV wertex form alism for gravity, thus accentuating
the rem arkable sim ilarities between gauge theory and gravity despite the latter’s m ore
com plicated structure.

118



CHAPTER 5

CONCLUSIONS AND OUTLOOK

In the previous chapters we have studied gluon scattering am plitudes in perturbative
gauge theory and have seen how they can be stripped of colour and w ritten in term s of
spinor variables to illum inate their basic structure In a uni ed context. T heir tw istor-
space localisation then allow s for an understanding of the unexpected sin plicity ofm any
n-point processes. The treedevel M HV am plitudes were seen to lie on sim ple straight
lines in tw istor gpace and it was shown how they could be calculated from a topological
string theory as an integral over the m oduli space of holom orphically em bedded, degree
1, genus O curves. This In tum motivated a new perturbative expansion of Yang-
M ills gauge theory w here tree-level M HV am plitudes are taken o —shelland jpined w ith

scalar propagators to create treelevel am plitudes w ith successively greater num bers
of negative-helicity particles. The M HV vertices e ectively com bine m any Feynm an

diagram s into one and thus provide a great sin pli cation which aids calculation and

highlights the underlying geom etrical structure.

W e saw how these technigues could be applied at loop-level to calculate the M HV
am plituides in N = 4 super ang-M ills,which isa slightly surprising result as the duality
w ith the tw istor string theory constructed In [31] (and also that in [112]) fails at loop—
level. T hese string theordies contain conform alsupergravity states w hich do notdecouple
at one-loop and this suggests that the application of the CSW rules to loopsm ight fail
or sin ply calculate am plitudes In som e theory of Yang-M ills coupled to conform al su—
pergravity. Indeed, a recent calculation of various loop am plitudes in B erkovits’ tw istor
string theory appears to give am plitudes in such a theory [1141].

Onem ight also expect that such a surprising result would only apply to m axim ally
supersym m etric Yang-M ills. However in Chapter 2 we saw that M HV vertices can be
used to calculate am plitudes at loop—level in theories w ith less supersym m etry such
as N = 1 superYangM ills. There we calculated the onedoop M HV am plitudes and
found com plete agreem ent w ith the known results in [44]. T he calculation itself ism ore
involved than the corresponding one in N = 4 presented in [37]and reviewed in C hapter
1 because the reduction in supersym m etry leads to few er cancellations. H appily though,
this does not gpoil the technique of using M HV am plitudes as e ective vertices.

In Chapter 3 we applied the loop-level CSW rules to pure YangM ills w ith a scalar
running in the loop. Pure YangM ills is a non-supersym m etric theory and as such the
calculation is even m ore involved than before. T his stilldoes not invalidate the process,
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although itwas found that theuse of M HV vertices only calculates the cutconstructible
part of the am plitude. T he rational parts, which are intrinsically linked to the cuts for
supersym m etric theories, were thus m issed. Nonetheless, the results obtained m atch
perfectly w ith the known (special) cases [42,/44]and provide the cutconstructible part
of the M HV am plitude in pure YangM ills w ith arbitrary positions for the negative-
helicity glions for the rst tine. The rational part of the am plitude has since been
calculated in [45]buiding on the results described in C hapter 3.

In Chapter 4 we tumed our attention to gravity and another interesting develop—
m ent stemm Ing from tw istor string theory, nam ely that of on-shell recursion relations.
R ecursion relations have been used before in the construction of am plitudes [171], but
it wasn "t until recently that they were used to recursively tum on-shell am plitudes into
am plitudes w ith a larger num ber of extermal legs. T hey were introduced in [48]at tree—
level and have since been usad in a bootstrap approach to loop am plitudes which was
in fact one of the technigues applied in [45].

W e saw that on-shell recursion relations can also be applied at treedevel in gravity
and it is a beauty of the proof of these relations in gauge theory [49]which m eans that
they can be proved in gravity without too much (!) extra work. The m ain additional
ingredient is a proof of the behaviour of tree-level ngraviton am plitudes as a function of
a complex variable z asz ! 1 . In Chapter 4 we argued the case for m any am plitudes
of interest, but a recent proof that Ilim,1 ;1 M ,(z) = 0 establishes that the recursion
relation In gravity can construct any treedevel n-graviton am plitude [54].

W e showed how this recursion relation could be used to construct M HV am plitudes
w ith successively m ore extermal gravitons and as a by-product constructed a new com —
pact form for the n-graviton M HV am plitudes w hich provides an interesting altemative
to the previously-known form in 218]. W e nished by comm enting on the relation be-
tween the treelevel C SW rules and on-shell recursion relations both in eld theory and
in gravity and also m ade som e observations on the existence of recursion relations in

other theories such as scalar * theory.

U nsurprisingly, this is not the end of the story. In the introduction we already
m entioned som e of the directions that have been explored follow ing from and related
to them aterial presented here. T his Includes the construction of tw istor string theories
describing N = 4 Yang-M ills as well as ones describing other eld theories such as a
recent description of E instein supergravity 39 ], the use of on-shell recursion relations at
loop level in both gauge theory and gravity [111,1220 Jand in provem ents to the unitarity
m ethod [47]. Tt m ay be particularly interesting to note that in [39], one of the theories
for which a tw istor description is found isN = 4 Yang-M ills coupled to N = 4 E instein
supergravity. Tt appears that there exists a decoupling lin it for this theory which gives
pure Yang-M ills and thus opens the door to the possibility of understanding loops in
YangM ills from tw istor strings.
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From the point of view of theM HV diagram form ulation of gauge theory there has
also been som e considerable progress. T heir use at treelevel is already w ellestablished
and a Lagrangian form ulation now exists [35,[80,[203]. In this scenario, a non-local
change of variables is m ade to the lIightcone YangM ills Lagrangian which yields a
kinetic term describing a scalar propagator connecting positive and negative helicities
and Interaction termm s consisting of the in nite sequence ofM HV am plitudes.

Q uantisation of this Lagrangian, how ever, is stillan open problem . O ne of them ain
points here is the fact that —as dem onstrated in C hapter[d - the use of M HV diagram s
alone is not enough to generate a com plete am plitude at the quantum level in non-
supersym m etric theories and rational term s are m issed. A s such, one m ight ask how
one could com pute the oneloop allplus (and + :::+ ) am plitude in pure Yang-M ills
from M HV diagram s. A t tree-level this vanishes, but at one-loop it is a purely rational
function — see eg. Equation (34) of [84]. Construction of a one-loop am plitude from
M HV diagram s w ill alw ays give g negative-helicity gluons that satis esq 2, and thus
the allplus am plitude (and also the + :::+ am plitude) cannot be constructed from
M HV vertices alone. In [73] it was con ctured that perhaps the allplus am plitude
could be elevated to the status of a vertex to generate these m issing am plitudes, but at
the tin e an appropriate o —shell continuation for this am plitude could not be found.

R ecently, however, m ore progress has been m ade in this direction [81,184,/83]. It
appears that the allplus am plitude is ntin ately connected w ith the regularisation pro-
cedure needed to evaluate loop diagram s as was initially hinted-at by the fact that
the parity conjugate of this am plitude, the allm inus am plitude, arises from an 1=
cancellation in din ensional regularisation [81]. Inspired by this, Brandhuber, Spence,
Travagliniand Zoubos showed in [82]thata certain one-loop tw o-point Lorentz=riolating
counterterm is the generating function for the in nite sequence of one-loop allplus am —
plitudes in pure Yang-M ills although therem ust be another contribution in this story to
correctly explain the origin of the + :::+ am plitude. In their approach it was found
that a certain fourdin ensional reqularisation schem e (rather than din ensional regular-
isation) [221,1222,1223 Jwasm ost usefull. Tt m ay be interesting and insightful to see ifa
light-cone approach and such a regularisation schem e is also helpful for com puting the
cuteconstructible term s of am plitudes using M HV diagram s.

D egpite these advances, the M HV diagram technigue is still practically-speaking
lin ited to treedevel am plitudes and the cutconstructible part of one-loop M HV am pli-
tudes. This is lJargely because of the intrinsic com plexity of loop calculations, though
there are other com plications. For exam ple, the topologies involved In calculating the
cutconstructible part of am plitudes w ith m ore than 2 negative-helicity glions can in-
clude (in the case of the NM HV am plitude say) triangle diagram s w here each vertex is
an M HV vertex. In such diagram s one has 3 di erent intemal particles to take o —shell
and it is not clear whether the m easure can be found in term s of LIPS integrals and
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dispersion integrals such as that described in [37,/79] which has been so instrum ental
in the application of the CSW rules at loop-level so far. Such issues are comm on to
one-loop am plitudes which have g > 2 negative-helicity gluons and higher loops aswell.
It would be desirable from both a theoretical and a phenom enological perspective to
understand how theM HV rules can be used to calculate such quantities and would also
help to give theM HV rules a m ore solid footing.

A nother interesting avenue of exploration is the suggestion that (planar) higher-loop
am plituides in N = 4 Yang-M ills m ay be expressed (essentially) as an exponential of
certain one-loop am plitudes [224,1225,1224,12271,1228 ,1229]. Such expressions are term ed
cross-order relations and m ay be ram arkably pow erfill if m ore generally applicable than
has been found to date. They could allow the summ ation of am plitudes In N = 4 Yang-
M ills to allorders in perturbation theory and so to non-perturbative inform ation which
may be connected to perturbative string theory via the AdS/CFT correspondence
It would be interesting to see how the known cross-order relations arise from M HV
diagram s. It is possible that the di erent term s in the cross-order relations m ay arise
naturally from M HV diagram swhich m ight then provide a fram ew ork for proving their
valdity m ore generally.

T he situation forgravity is In som eways even m ore exciting, w ith the possibility that
there m ay exist UV - nite eld theories of gravity. Such proposals have recently been
made for N = 8 supergravity [53,154,155,154,157,158,/59,160]and it would be interesting
to m ake contact betw een this and the tw istor approach. O ne such point of contact m ay
be the recent proposal of a tw istor string theory describing N = 8 supergravity 391].
A nother possibility is that of loop am plitudes from M HV vertices in (N = 8 super-)
gravity. T hese have not yet been understood and their explication would provide a new
prescriptive m ethod for the calculation of loop am plitudes in gravity which could shed
light on their UV properties

A further possibility that has not been explored so far (in either gauge theory or
gravity) is a m ore direct connection between recursion relations and loop am plitudes
than those already m entioned. R isager [34 ] showed that the CSW rules at treedevel are
really just a speci ¢ case of the on-shell recursion relations proposed by B ritto, C achazo
and Feng [48]. A swe have seen throughout this thesis, the CSW rules can naturally be
extended to loop am plitudes w hich begs the question of whether the sam e can be done

for other cases of the on—shell recursion relation in either YangM ills or in gravity.

'a very recent paper 230]by A day and M aldacena appears to have taken a step in this direction.
They show how to calculate gluon scattering am plitudes at strong coupling from a classical string
con guration via the AdS/CFT correspondence. As a result the full nite form of the urglion
scattering am plitude in N = 4 superY ang-M ills is presented. See also 231 ]which addresses the npoint
case.

2Short.ly after the com pletion of this work [232]appeared which deals w ith precisely this point.
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In this thesis we have seen som e of the In provem ents that can be m ade to pertur-
bative technigues in eld theory and gravity and the power that they can have. T hese
also hint at new underlying structures w hose elucidation could prove extrem ely inter—
esting if not revolutionary in our understanding. Could such structures presage the
existence of new sym m etries and w ill they end up replacing Feynm an diagram s entirely
in the future? W hatever the outcom e, these are exciting tin ely developm ents that are

sure to aid the discovery of new physics at colliders such as the LHC and deepen our
understanding of nature.
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APPEND IX A

SPINOR AND DIRAC-TRACE IDENTITIES

In this appendix we present som e useful dentities pertaining to the spinor helicity
form alism and also to help in dealing w ith D irac traces.

Al Spinor identities

W e take them etric to be theusual eld-theory one = (1; 1; 1; 1)and theepsilon

tensors w ith which we raise and low er indices to be

= ——=12= ; aJadl)
1 0
w ith = ) = and
!
- 01
10
|
2 o i
- 4
i 0
|
, 1 0
= : A l1l2)
0 1
Wealohave = (1;~) with~= (*; ?; *)),giving
P_ = P '
_ Po+ P3 1= jP2
P1+ jP2 PO P3
|
p? p? plt+ ip?
_ ; A13)

pt ip? pl+p’
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and - = - = - = (1; ~),giving

PO P3 P+ jP2
P jP2 Po+ P3
|

po+p3 pl ip2

= : A 14)
pt+ 2?2 pl0 p3
Som e useful dentities involving and are:
- = 2 (A 15)
- = 2 ~; A 1l6)
w hich m eans thatwe can interpret asactingas2 _  and asactingas -— =2
in spinor space, giving = = = 4 as it shoud.
W e are concemed w ith m assless particles for which we can w rite
p_ = o
— 1 ~ ~
- L 2
2
!
- Peot ey A 1.7)
2 1 2
which i plies (by raising indices) that
p- = - )
~1 :
- 1 2
~2
!
~L 1 ~L 2
- ~2 1 N2 02
!
_ =22ty @ 138)
12 11
which ollow s from having = ( )= T and “—-= (~ =)y = ——T
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A 2. THE HOLOMORPHIC DELTA FUNCTION

For scalar products we take

h 1 = |
_ 1 2 1
2
= T ; @ 19)
and
C~]1 = 7 ~- |
1
= L2 2
= ~ T = (& 110)

Note that  and " - arem ost naturally associated with colum n vectors, while © and

are m ost naturally associated w ith row vectors.

For spinorm anipulations, the Schouten dentity is very useﬁllﬂ

hijitk 1i= hikihj i+ hilihk 9i;
[ijlk1]l= [k]1G1+ [A1]k 3] : (A 1.11)

For other Introductions to the spinor helicity form alian see eg. [153,/1154].

A .2 The holom orphic delta function

Consdder the x vy plane in real coordinates and ket (x;yv) = (x';x%). Now change to
com plex coordinates by letting

z = x'+ ix? @a.2l)
z = x'  ix?: A 2.2)
A Iso de ne derivatives
@ 1 @ @ 1

, = —=- — i— == i A 23
@ @z > e l@x2 > (@ i@p) ( )
@ = ¢ _1 @+‘ —l(@+i@)‘ A 24)
2T ez 2 ext Texe T RN '

'R ecall that we have the shorthand notation h ; ;i= hiji etc.
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A 2. THE HOLOMORPHIC DELTA FUNCTION

w hich have the properties that

@Qz=1; @,z=0; Q,z=1; @,z=0:

W e take the area element In the x vy plane to be d?x = dx'dx? = x! ~ dx?5,
w here jjjust Indicates that one picks a plus sign to de ne the orientation. For the area
elem ent in the z z plane we take d°z = iflz » dzjso that we have d°z = 2d°x.

W e nom alise delta functions in the x y plane as

Z
d?x (2)(x a)=1; A .2.5)

where @ (x a)= K al) ¥ az),andaftertl:ansﬁ)mjngthjstothez z plane
(wih b= a'+ ia? and b= a' ia?) we have

7
&z Pz p=1; @ 26)

w here

1
> @lx  a): @ 27)

W e now de ne a holom orphic delta function as

z b= Nz bdz; @ 28)
which gives us
v4 v4
dz (z b) = dz~dz Yz b)

= i: A 29)

A s can be seen the holom orphic delta function is a @—<closed (0;1)-form and is de ned
for a general holom orphic function £ by (£)= @)(f)df.
A representation of this holom orphic delta function which w illbe particularly useful

for us is the follow ing [33]. Consider a m om entum vector described by  and ™ w ith
“ = D ordertoensurethatp = ~ isreal Go to coordinates where = (1;z)

and choose an arbitrary spinor = (1;b) w ith ba com plex num ber. T he tilded spinors
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A 3. DIRAC TRACES

are then ! !

andwehaveh 1=z bandh d i= dz. So,am ore covariant statem ent of[&_2.9) is

Z Z
hdih 1F () = dz (z D)F (z)

A .3 D irac traces

(A 2.10)

Som e basic form ul for converting between spinor nvariants and D irac traces are

hi ji[j1]

tr (kiky) 7

hiji[j1lJhlm im 1]

try (kikjkikn ) 7

hijillhlm ik nlnpifpil = tr Gekskokn knkp) ;

A 31)

A 32)

(A 33)

form om enta ki;k;:ki7kn jkn jkp and where the + sign indicates the insertion of

1+ 5)=2:
1
Iy (kiky) = E‘EL (14 s5)kiky) :

W e also note that

try (}éi}éj) = 2(kj_ ]§)
I, (eakepkcky)

|

e

~
o
z
=
o
o

2(ka K)o k)
+ 2(ka Kk k) 21"(kajkpikeikg) :

T he follow Ing dentities are additionally usefiil:

e (kikjkikn ) = o G kkiki) = o (ks kiky)

try (eikikkn )

try &5 B)tr, &5 =) = 0

try &5 B)tn G5m= )

41 J)rEsmER)
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A 34)

(A 35)

A 36)

A 3.7)

(A 3.8)

(A 39)

(A 3.10)



A 3. DIRAC TRACES

for sin ilarly generic m om enta and where we use the shorthand tr, (kiky) = tr, &35) etc.
If ki7ky7kn, and ky, are massless, while P;, is not necessarily so, then we have the
rem arkable dentity:
2(kn, ko )try (eikgkn B )t (eikskn ,Br)
+ P try (kikikn , ko, ) (Rikgkn , K, )
2(km 1 E )Uf+ (klkjkm 1 km 2 )&+ (klkjkm 2 BL )

20k, B Oeikskn, Bt (eikikn,ke,) = 0 : (& 311)

W e also have, for nullm om enta i;j;k;a;b;

tr Ggebr (Gakb) |t Ggba)m Hakd) @ 312)
3 a 1 a)
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APPEND IX B

FEYNMAN RULES IN THE SPINOR
HELICITY FORM A LISM

In this appendix we present the Feynm an rules form assless SU (N ) Yang-M ills theory
In Feynm an gauge w ritten In the spinor helicity form alisn for com parison w ith those
laid out at the start of Chapter 1. Asm entioned in a otmote in LIl we will use the
nom alisation tr(T2T?)= 2 for the Lisalyebra in order to reduce the proliferation of
factors of 2.

B.1l W avefunctions

E xternal Scalar:
=1 B.O1.1)

External outgoing ferm ion i, helicity plus:

Yooy = [ (B12)

= , = hij B.13)

; = “y= 1] B.14)

= 5 =i B.15)
E xternal outgoing vector p= 7, helicity plus:
p- - P—3i[7j
S S P i (B 16)
- h 1 h 1
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B.2. PROPAGATORS

E xternal outgoing vector p= 7, helicity m inus:
p—-  ~ P— g il~j
_ P - Ppai, (B .1.7)
- [~7] [~
whereq= ~ isan arbitrary reference spinor that can be chosen independently for each

extermal particle. A 1l the above wavefunctions are understood to be multiplied by a
factorofexp(ix = 77),wherep = ~ isthemomentum of the particle.

B .2 Propagators

Scalars w ith kinetic term (@ =2:

i
) B.2.1)
b
Ferm ions w ith p= 7 and kinetic term i @
i i i i~ 5
_ 3l B22)
p 2p? 2p?

V ectors w ith kinetic term (QA §=4:

2i
— B 2.3)
P
B .3 Vertices
 P= _
Ferm ion Vertex: = 1g 2 _
Tpl = —pg[—‘ P11 P2)-
F3 1 P2
3-Boson Vertex: ‘p3/ + = (P2 P33~
o< L _ + — (@ p)7 ]
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B4. EXAMPLES

4B oson Vertex: _ _

Figure B .1: T he Vertices of the colbur—stripped schem e in term s of spinors.

For m ore details on how these arise see for exam ple 153 1.

B .4 Exam ples

4Point M HV gluon scattering

Let us consider how we get the A (1 ;2 ;35 ;4;j ) gluon am plitude. T he diagram s
contributing to this am plitude are shown in Figure B 2

P, N

| b3 B, p;

+
p p
B 4 Py 4 i< PZ

Figure B 2: T he diagram s contributing to the 4glion M HV treeam plitude. A llexternal
mom enta are taken t e outgoing.

In order to calculate the am plitude we need to gpecify extermal wavefunctions as
prescribed by the Feynm an rules and for gluons this includes a choice of reference
momentum . In order to m Inin ise the num ber of tem s we need to consider we w ill

m ake the choices g = o = ps and g3 = gz = pP1. Thism eans that the wavefunctions
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B4. EXAMPLES

are
P— 1~2 P_ 2~
1= Zmm o2 _T ZaEr
P— 1-~3 P— 1~4
+ _ - + _ .
3 - 2h13i 4 - 2hl4i r

while m om entum conservation for the second (going from left to right) two diagram s
readsPip= (P11 + p2)=pP3+ prandPig= (p1+ pa)= p2+ p3 where P, and Py
are the m om enta of the propagators of the respective diagram s. By w riting down the
Feynm an rules for the di erent diagram s it can quickly be seen that the contributions
of the 1st and the 3rd diagram s both vanish. T he 2nd diagram gives:

2 1~4 2~4 1~3 1~41

A, = —pZ pE ’ e L )=
f 03 [41]/4 21l 44hl 31 b1 P2
i 2i
+ = (P2 Pu2)m + — (P12 m1) ~
h 12 i
— (s pa) + = (Pat+tPipx) + — (P p3)—
sig? (2 IR0 DT =) 2
T Mm2ip1] [41]4 2l 4ihl 31
h2i[34F
= i B 4
a2 ®41)

This is our answer, though it is in a rather unfam iliar form ! W e can convert it into
som ething m ore fam iliar by m ultiplying both top and bottom by h23ih34i. W e then
use m om entum conservation in the num erator in the form h23i[34]1= h21i[l14]and

recognise that s33 = 2(p3  p)= h34i[43]= s1, = hl 2i[21] to give

. ,hl 21(23i[34))(h341i[4 3))
(1212 3ih3 41 1141 ]
., hi2i?
439 P
h2 33 4ik 11

Ay =

(B 42)

w hich is the usual form for the Parke-Taylor am plitude at 4-point.

MHV gg! gg

Again we take allm om enta to be outgoing. M om entum conservation is the sam e as
for diagram s 2 and 3 of the previous exam ple and for the gluon wavefunctions we take
a3 = pa and g = p1. This gives polarisation vectors

P— 3~

N P—- 1~
3% 293y o4 .= Zyamt
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B4. EXAMPLES

i Dy ) P
+
N
pl p4 +

pl p4

Figure B 3: T he diagram s for X" (1, ;2;I i34 145 ).

T he second diagram can be seen to vanish while the rstgives:

Ry

~_ 1,2 - — .9 o
("3 ) (ig D ez e (®3
P 3~4 1~4
= +P)- + P — - -
(P4 12) ( P12 p3) ( 2) Z3T0 4L
. B (O L )
d hl2i21]4 31l 41
4 h1‘3i2[42]‘
hl2i211H4 11
, h3i
49’f
hl 213 4ihd 11
231 N +
i BiA (1, 725 i34 i45 ) s

Pa)”

(B 4.3)

thus verifying the relations between am plitudes that we derived from supersym m etric
W ard dentities in AT4.

MHV ggq!

aq

Asa nalexam pl let us consier the am plitude AA(lOI 724 i34 #45 ). This tin e both

of the diagram s are non—zero. The rst one gives

A1
A4

= ("5 Mg 2 ) —————— (ig 2 (2

= 4ig

= 4ig

S 21 o
_ P122 _

~D o~ 1
5 )

hl2i[21]
i , 241314

hl2i[21]
, 3

hl2ih341

2
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p; P 3 p2 p3
+
+
p1 p4

P, Py

Figure B 4: The diagram s forAA(lq ;23

5 i3 04 )-

q ;

A sin ilar calculation —or equivalently the realisation that diagram s two is sin ply the

sam e asdiagram onewith 2 $ 4 —gives

K2 = 4ig” 317 (B 4.5)
S TV EE] '
for the second diagram and thus the total is
K, = K+ A7
5 hl 3i° o o
= 4ig — (h12iM34i+ h23i1i)
hl 2ih?2 3ih34id 11
- o .. hl2im34i+ W23iM1i
= A (1g ,2g ,3g ,4g ) 382 (BA46)
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APPEND IX C

DDIM ENSIONAL LORENTZ-INVARIANT
PHASE SPACE

In this appendix we expound on the D -din ensionalm easure for Lorentz=nvariant two-

body phase space, ultin ately focussing on thecaseD = 4 2

C .1 D -spheres

O ne thing that we w ill need to consider is the volum e of a D -dim ensional unit sphere
V (SP ). Wemean this in the sense of a D -sphere regarded as a m anifold. Thus the
volum e we are taking about is the volum e of that m anifold rather than the volum e
enclosed by it when it is regarded as being em bedded in onedin ension higher. T hus
V (S')= 2 —the circum ference ofa circle —and V (S2) = 4, the surface area ofa sphere
such as the Earth.

In fact we can param etrize a round D -sphere in term s of D angles ;. In this case
the volum e elem ent of an SP is given by

dv (P )=d ;:::d p(sh 1)° (s ,)° Ziii(sin p 1) ; (€ 11)

w ith the result

Z 4= 6D
vh) = 0o avsP)
;=0
D+ 1
2 2
_ . C12)
2
C.2 dLIPS
Recall from Chapter 1, Equation (I.8.13)) that
LPsL; L;p)=dyd’y @) @) Ple+ L n); Cc21)
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C2. DLIPS

where ¢ )(12) = (1) (f), is the unit step flll’lCthl’H and Jy the O-com ponent (en—
ergy) of 1. Ifwe also ram em ber that

z
dxg(x) (f(x) a)= — C22)

x=x0;f (Xp)=a

then we can Integrate over the 0-com ponents of ; and 1, to get

dD 1 dD 1
T? T? ©e+ 1 1) ; C23)
2307 23ko] Lo= T ]

Lo= J&J

P LIPS =

w here T represents the spatial com ponents of the D <rector 1. Furthemm ore, going to the
center of m ass fram e for the vector P ,P = (Py;0) we can use D 1 of the ram aining
delta functions to localise the Integral:

dD 11:'LdD 1& o 1)

dLrs = - _ L) ® 23J
23 237
14 ! P
_ 1 5 LI C 24)
2 4353‘2 2
Now , ford"Twe can write
d"1= df P fav (s” ) ; C25)

so we have

dfijf T 2d 1d a(sin 1) (sh )P ¢

)D

S &
ds:i:dp 2(sin 3 5:::(sjn D 3)

AT %d 1d o(sh 1) S(sin L) fav(s® Yy (€ 26)

For our case of a 2-particle phase space In 4 2 dinensions, 2 angles ; and ; are
su cient and none of them om enta w illdepend on any of the other angles. W e can thus

integrate over them to get

& 5 dfim T 2d 1d a(sin ()P S(sin )P ‘v s® 4

D 3

2 2
S——dEiEP 2did s )P s P o ©27)
2

!N ot to be confiused w ith the angles ; of {C.1.1]) and {C.12).
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C3. OVERALLAMPLITUDE NORMALISATION

WihD =4 2 thisladsusto

143 2 =
d* ‘LIPS = = %y =2
243§ 2
3 p2
R TO d1d 2(sin 1) ? (sih 5) 7
2
i 2
: P : 12 ;. 2
- 4 1 —  ddalshoa) “(sho2) 75 (€C28)
2
and
V4 1 , Z V4
4 2 2 P ‘ 1o 5
d LIPS = T e dd 2(sin 1) (sin ») : (C29)
2 1=0 2=0

C .3 Ovwverall am plitude nom alisation

In the original papers of 3§,142], the one-loop am plitudes derived are nom alised w ith

a factorofc = r =(4 )2 w here

r = : (C 31)

In 37,140,143 ] and this thesis, however, the nomm alisation m ost naturally arises as

1

: 1
SN 3

; (C 32)

w here thegam m a function com es from the LIPS m easure described above and the factor
of csc com es from perform ing the dispersion integral (see eg. Section 5 ofiJi]).
W e are m ostly interested in the results of these am plitude calculations up to order °,
and as (C32) = 1=F O ( ) we have usually dropped it as an uninteresting overall
factor. N onetheless, the allorders In = results can be usefuland we w ill here show how
the two are related.

To start w ith there is the product dentity for gam m a functions:

(z) 1 z)= — ; (C 3.3)
sin =z
which can be combined with the wellknown recurrence relation z (z) = (z+ 1) to
give
— = 1+ ) Qa ) : (C34)

T here is also the Legendre duplication form ula:
() (z+ 1=2)= 21 225~ (2z) ; (C 35)
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C3. OVERALLAMPLITUDE NORMALISATION

which in plies that

(1=2 ) = @ 2 )p—22 : (C 36)
a1 ) : .
T his therefore Jeads us to
1 1 oa+ a0
sin z o4t 1 2)
. NI € 37)

and we can see that the two are the sam e up to a sin ple factor.
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APPEND IX D

UNITARITY

U nitarity is a wellknown and usefill tool in quantum el theory [210,1233,1234,1235,
234,237 ]H T he unitarity of the S-m atrix, S’s = 1, is the basic starting point and leads
to the possibility of being able to reconstruct scattering am plitudes from the know ledge
of their properties as functions of com plex m om enta. In certain cases thiscan lad to a
purely algebraic construction of am plitudes.

Tt can be checked that each Feynm an diagram contributing to an S-m atrix elem ent
S ispurely realunless som e denom nator vanishes, in which case the i" prescription for
treating poles becom es relevant. W e thus get an Im aginary part for S only when virtual
particles in a Feynm an diagram go on-shell.

Consider now S (s) as an analytic function of a com plex variable s. s is the square
of the centre of m ass energy, and while this is physically real we w ill consider it to
be com plex for now . If 5p is them Ininum (square of the) energy for production of the
lightest m ultiparticle state (ie. them inin um energy for the creation of an interm ediate
m ultiparticle state such aswhen a loop is form ed in a Feynm an diagram ), then for real
s Iying below sy, the interm ediate state cannot go on-shell. S (s) is thus real and we
have

S(s)= S(s) : (D 01)

However, as we are regarding S (s) as an analytic function of s, we can analytically
continue this equation to anyw here In the com plex plane. Ifwe explicitly split S (s) into
its real and In aginary parts, S (s) = < [S(s)]+ i=[S (s)], then at a point s > sy that is
" away from the real line (D_0.1l) in plies that

<[S(s+1iM)] = <[S(s 1iM1;

=[S(s+ i")] = =[S(s 1i")]: (D .0.2)

T here is thusa branch cut along the positive realaxis starting at sg and the discontinu ity

D of S (s) across the cut is

DI[S(s)]l= 2i=[S(s+ i")]: (D 0.3)

!N ote that som e of this appendix is based on Section 7.3 of [4].
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DJ1. THE OPTICAL THEOREM

It tums out that this discontinuity —which only arises because we have intermm ediate
m ultiparticle states and thus loop contributions to Feynm an diagram s —can be related
to sim pler am plitudes w hich m ay be known already or m ore easily com puted. T his is
the content of the optical theoram which we review below .

D .1 The optical theorem

The S-m atrix is a unitary operator which evolves the initial states k, so that onem ay
com pute their overlap w ith the nalstates p; in a scattering process:

outlPiKalin = Mo P Kad: (Db a1d)

Tt is conventional to split S into the part that describes unin peded propagation of the
initial particles and a part T due to interactions, S = 1+ iT . The m atrix elem ent
(D_1.1) taken w ith the interacting part of S is what then gives a scattering am plitude.

M ore concretely, we can w rite

X
o kai= (2 )0 @ (Ei+ ka) S(ka! pi); (D 12)

w here we have taken all particles to be outgoing.

Unitarity of S, S’'S = 1 in plies
AT T H)=T'T ; (D 13)

and we m ay extract som e usefuil inform ation by taking the m atrix elem ent of this be-
tween som e particle states p; and k,. The LHS of (0_1.3) gives

i Tpljf jiaj— hkajr Pll

X
= i » W Ei+ ka) S(ka! pi) S(pi! ka)

Wi kai i kai)

X
= i@ p W (Ei+ ka) D IS (piska)l: (D 14)

On theRHS of (D_.1J) we can insert the dentity operator asa sum over a com plete set
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D2. CUTTING RULES

of Interm ediate states to cbtain
0 1

L ¢ iR o il ad

Il
@

i T kai

0 1
X vt g

4 ) 2 o

= @)y @ o T miRrsSE! L)Ska! L)
n =1
X ’ X
@ty Y ke L)
Z
X _

= @ p W (Pi+ ka) dLPSM)S(pi ! L)S(ka ! L) ;

(D .1.5)

wheredL.IP S (n) is the n-body Lorentz—jnvarjan;éahase Spacem easure. Putting the LH S
and RHS of (D_.1.J) back together again we n

Z
X _
iD [S (pika)]= dLIPS()S (b ! 1S (ka ! ) : (D 16)

Equation (D_1.4) says that the discontinuity of a scattering am plitude m ay be ob—
tained asa sum of integrals over the phase spaces of interm ediate m ultiparticle states of
the am plitudes for scattering of the nitialand nalstates into these interm ediate states.
In particular, for a one-loop process, the am plitudes arising on the RHS of (D_L.4) are
treelevel am plitudes and the phase space is a 2-particle one.

D .2 Cutting rules

Cutkosky showed that using som e cutting rules, one m ay com pute the physical dis-
continuity of any Feynm an diagram and prove the optical theorem to all orders in
perturbation theory [210]. The rules are as follow s [21:

1. Cut through a diagram in allpossible ways such that the cut propagatorsm ay be
put on-shell.

2. For each cut (m assive) propagator replace 1=(p° m 2+ i") with a delta function
2 1 (@ m?). This explicitly provides the delta functions which generate the
dLIPS m easure in (D_L.5). The o -shell vertices that are separated by the cut are

thus put on—shell. Form asslessm om enta the replacem ent is sin ply 1= (p2 + i) !

2 i ©@).

’In fact the optical theorem isusually stated in term s of the forward scattering am plitude, in which
case we have k; = pi. The theorem ism ore general than this though and can be applied to generic
asym ptotic states.
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D2. CUTTING RULES

3. Sum the contributions of all possible cuts.

For exam ple, for a Feynm an diagram in massless  ° theory such asFigure D .1, the

j<i 2

Figure D 1: The cut of a bukbk diagram in masskss ° theory.

Feynm an rules would give

z
da*y 4%y, 11

A/ Pt P) g 77 Do+ L L) (D 2.1)

Cutkosky’s rules on the other hand would give

a‘y gt
DRI / o+ p) —]14 ]24 G & Yo+ n k)
2 Fe)
/2 W+ p) dLPS(L; Lpr) s (D 22)

w hich allow s one to calculate the discontinuity of the diagram concemed.

D 21 BDDK ’'sunitarity cuts

In [38,142] Cutkosky’s rules were applied at the level of am plitudes to derive one-loop
M HV am plitudes in supersym m etric and non-supersym m etric gauge theories. In this
case the factors on either side of the cut are not vertices (eg. the factors of ([D_2.2)),
but fullam plitudes. In fact for the one-doop M HV am plitudes these factors are treelevel
M HV am plitudes.

C onsider for concreteness the npoint one-loop M HV am plitudes for gluon scattering
in N = 4 super-YangM ills as reviewed in £1.9. W e would lke to see how these can be
obtained from 2-particle cutsas in [381].

By analogy with the Cutkosky rules, the procedure is to consider “cuts’ in every
possible kinem atical channel and then add the contributions w ithout overcounting. W e
are then left with LIPS integrals as above (but this tin e w ith non—trivial kinem atic
factors in the integrand) which can inprinciple be evaluated to reveal the discontinu—
ities of the am plitude. However, BDDK recover the am plitude by using an algebraic
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D2. CUTTING RULES

My ma+1]

FigureD 2: The cut of a one-loop M HV am pliude in the &, channel.

procedure w hich m eans that these digpersion integrals do not actually need to be done.
T his nvoles replacing the delta functions associated w ith the cuts w ith propagators
(@ procedure that is known as “reconstruction of the Feynm an integral’) which then
produces Feynm an integrals rather than LIPS integrals. T hese integrals contain cuts in
the channel being considered (as well as cuts in other channels too) and by considering
all channels and avoiding overcounting the am plitude can be reconstructed.

W hen we cut the am plitudes, we m ust assign helicities to the particles that were In
the loop. Since we use conventions In which all particles are outgoing, the helicities of
these Intemal particles are reversed. For the one-loop M HV am plitudes there are two
distinct cases. Case (a) is where the negative-helicity extermal particles 1 and j are on
the sam e side of the cut, and case (b) is where they are on opposite sides of the cut.
Case (a), Is a priori the sim pler of the two as the two intemal particles m ust have the
sam e helicities and thus am plitude relations of equations (I.2.9) and {I.£.10) m ean that
only gluons can circulate in the loop. T his is the situation regardless of the am ount of
supersym m etry present. Case (b) involves the entire m ultiplet circulating in the loop
and form axin ally supersym m etric Yang-M ills it tums out that this case is the sam e as
case (a) after applying identities such as the Schouten identity (B_1.11l). For the case
being considered of N = 4 Yang-M ills it is thus enough for us to treat case (a) only.

Consider now a cut in the channelwhere P;, , them om entum on the left of the cut,
Vand where k; jk; 2 Py, .

. . 1
isgiven by P2 = (kp, + kn,s1+ tit+ kn, 1+ kn,)2 = 2 "7
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D 3. DISPERSION RELATIONS

T his situation is shown in Figure D 2 and the rules that we have outlined above give

d411 d412 MHV

e mi+1llyy _ ot e C ... C .. + Lt
D[A(Jl_mlz + )] = WWAUE(% ( ]1,1“[11,...,1 RS ,...,m2,]2)
§3) @)ADQK;;V& Lmo+ 1% jiirmq 1751)
L ammv o dLPS(L; L;P.)K D223
(2 )4 tree (l 7J ) (:IQI llr L) ( )
z
i 11 .
! WADQI;V i i3) d411d4]2£ER ; (D 2.4)
w here

g L M Im,ihb 41 tm,m,+ lihg Li 0 25)

hmy 14ih hmii moLbih Lmo,+ 11
asin (1.9.12) and theM HV am plitudes for negative-helicity gluons 1;s are de ned as in
m): !
hlsit

AMEV (1 ;s = i@ ¢ W k; :
ree (L 75 ) (2 ) o I;:lhrr+ 1
1

(D 26)

N ote that Equation (D_2.4]) is a Feynm an integral rather than a LIPS integral

Now recall from #1.9 and [3§,142] that the basis of integral functions at one-loop
is known and the Feynm an integrals can be done to give explicit expressions (see eg.
Appendix Tof [42]). TheFeynm an integrals generated in ({0_2.4)) (and for other channels)
can then be com pared w ith the Feynm an integrals for the known integral functions
and the am plitude recreated. Since the integral functions are already known one can
reconstruct the am plitude in a purely algebraic m anner. A s a strong check of the nal
expression, the results can be com pared w ith the know n behaviour (on generalgrounds)

for the collinear (pa ;pp ! Pa Kpp) and soft (ps ! 0) lim its of such an am plitude.

For supersym m etric theories any term swhich do not contain cutsare uniguely linked
to the cutcontaining term s and thus the entire am plitude is reconstructed. In partic—
ular, the N = 4 am plitudes discussed above can be com pletely constructed in this way
leading to (I.8.l). In non-supersym m etric theories m ore inform ation is needed to get
the rational (cut-free) term s and thus only the cut-constructible part m ay be obtained
this way.

D .3 D ispersion relations

Im agine now that we stop at {D_2.3)) and proceed to do the LIPS integral rather than
uplift to Feynm an integrals. If we can actually do this Integral we can calculate the
discontinuity of the am plitude directly. H ow ever, we would really like to know thewhole
am plitude rather than just the In aginary part of it and the natural question is w hether
it is possible to arrive at this from what we have so far. For a function w ith a branch
cut, it is In fact possible to reconstruct the real part from the in agihary part and the
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D 3. DISPERSION RELATIONS

relations which allow one to do this are known as dispersion relations (or som etin es

K ram ersX ronig relations).

By considering a function & (z) which isanalytic in the com plex planew ith a branch
cut along the positive real axis starting at xgp, it is possible to show using com plex
analysis that

T
<l (x)]= =P

X0

0

1
= o7 (x)]+ Sb (D 3.1)

0 x i

X

wherex 2 R In the rangeg (x0;1 )and P denotes theC auchy principalvalue prescription
(1e. the value of the integral w ithout consideration of the pol at x°= x)IJ I; is the
contribution from the contour at in nity which represents the am biguity due to possible
rational termm s (i.e. term s which are cut—free functions of the kinem atic invariants).

I; wvanishesin any supersym m etric gauge theory, and w hile these do contain rational
term s they are xed unigquely by the supersym m etry once one know s the cutcontaining
term s [3§,142]. Such theories are said to be cutconstructdble (in 4 din ensions). Non—
supersym m etric theories are not cutconstructibble in 4 dim ensions, but are in 4 2
dinensionswih & 0186,187,1213]. W hile this is a pow erful statem ent, it does m ean
that one has to consider the prospect of using am plitudes w ith particles continued to

4 2 dinensionswhich are not sim ple.

In a sense, the one-loop C SW rulesm akeBD DK ’sapproach prescriptive fortheM HV
am plitudes. T he in aginary part of the am plitude is constructed asa phase space integral
and then the dispersion integral over Pf;Z in (L8.17) perform s (0_3.0]) with I; absent.
For supersym m etric theories this is su clent to construct the fiill am plitude, while in
non-supersym m etric theorieswem ust nd otherm ethods to calculate the rational part.

*For purely m assless theories, xo = 0.

4 See eg. 238] for a fuller explanation of these ideas.

146



APPEND IX E

INTEGRALSFOR THE N=1AMPLITUDE

In this appendix we give details of the Integrals needed to com pute the discontinuities
of theN = 1 am plitude discussed in C hapter[2.

E .l Passarino-Veltm an reduction

In 2 we saw thata typicalterm in theN = 1 am plitude is the dispersion integral of
the follow Ing phase space integral:
Z

tr, (kik + )t (ki ks =R
Cmimy) = dLIPS(L; L;PLz) + (eikejln , 1 )E0 (eikejn ,3) .

E1l1
1 PAmi Dmo 2D ( )

The full am plitude is then obtained by adding the dispersion integrals of three m ore
term s sin ilar to (E.L1.I]) butwithm ; replaced bym; 1 and/orm , replaced by m, + 1.
Thegoalofthisappendix isto perform the Passarino-Veltm an reduction 212 ]of (E.LI),
which will lead us to reexpress C(m 1 ;m ») in term s of cutboxes, cut+triangles and cut-
bubbles.

T he explicit form s for the D irac traces involve Lorentz contractions over the various

m om enta, so in a short-hand notation we can w rite these as
TE;gmay) L = to (eikjky  F1) ¢ (E12)

C(m ;,;m ) can then be recast as

T(d;dmq) T(L;m2)
Cmqimy) = I mim2;PrLz) s (E.13)

i P

wherd]

L b

I ; ;P = dLIPS(l; ;P : El4
(m 1,m ;P ) (L; & L)(ml D, D ( )

I (mq,m;;Py) contains three independent momenta m 1, m, and Py . On general

'For the rest of this appendix we drop the subscript z in Py, ;;, for the sake of brevity.
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EJl. PASSARINO-VELTMAN REDUCTION

grounds we can therefore decom pose it as

I = Iop + mm;I; + mym,I, + P, Py Iz + mmjyIy

+ moym;Is + m;P, Ig + Pm;I7; + m,P,Ig + P,m,Ig; (E15)

of the independent m om enta in order to solve for the I;. For instance, two of the
integrals that we w illend up having to do are I andm ym;I .Usingmomentum
conservation L, L + Py, = 0 and the dentity a b= (@a+ B=2= (a b)’=2 orab

m asslessm om enta, we can convert these integrals into ones w hich have the general form

dLIPS(; L;Pp)
(L m)P(l mpP

I(ab) — ; (E .1.6)

possibly with a kinem atical-invariant coe cient, and with a and b ranging over the
values 1;0; 1. The results of these integrals are collected in sE 2. A s an exam ple, we
nd that

Z
dLIP S (L; P
mm,;I = dLIPS(L; ]EL;PL)M mi B) (o7 hiPL) :(E17)

(L m) L B)

Considering the values (a;b), the case (1;1) isa cut scalar box, (1;0) and (0;1) are cut
scalar triangles, (1; 1) and ( 1;1) are cut vector triangles, whilst (0;0) is a cut scalar
bubble.

Because of the structure of T (i;j;m 1) and T (i;j;m ») , term sw ith coe cients such
as T (i;3;m 1) T (i;j;m2) m1 m, are zero, and thus som e of the I; do not contrbute
to the nalanswer. The only contributing term s are found to be I3, Is,I7 and Ig,and
we nd that

try (kikiky By ) (kikjken , By )
i P
try (kikiky b, It (el k)

Cmq;my)

I;

+ I
i P ’
try (kikiky By ) (kikjken Ry )
+ - I7
i@ P
y = (kikjg“lk‘zé )U% (eikeskn ,Pr ) g (E18)
i

T he inversion of (E.L5) in orderto nd the coe cients is tedious and som ew hat lengthy,
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EJl. PASSARINO-VELTMAN REDUCTION

SO we just present the results for the relevant I; in (E.1.8) above:

11’1
Iy = =5 2m1 mPITOP N@p )T+ N, B)rt”
O
+ 2my; BRPTCY 4 2m, pyrW b (E19)
(
Is = _ 4m; BYPm, B)
(mi mp)°N?
6m: B)m> B)m: mP + 3m; m) p2° T
2 3 2 (1,0)
+ 2m; RB)Ym2 R) E(ml m)P, N@m; R)I
3 . .
2m; PBYm, B) S ma mPZ N m, p)roh4 — @b

m, P)m, B) m, RPTEH L (£ 110)

I; = 2m; B)Pm, B

3mi; R)mz ER)mi m)P{

1O+ @y mP/N g R)TYY @y RN @, BYPTOV
)

2m; BR)m, BPT Y m, mPfm, pyr® P ®111)

m; mP m, BFTY 2m; BPm, pHr® Y ; (®112)

whereN = (mq I'TQ)PLZ 2m1 PRP)m, P).Theexplicit expressions for the relevant
T@® gre summ arised in & J.

Combhing (E.LJ) and E.LI)HE.IID) with the Hentity (A_3.11l) and the explicit
expressions for the ntegrals T@®) i fE 2, we arrive at the nalresult (2.2.12).
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E2. BOX & TRIANGLE DISCONTINUITIES FROM PHASE SPACE INTEGRALS

E .2 Box & triangle discontinuities from phase space integrals

T he integrals that arise in the Passarino-Veltm an reduction in sE 1l have the general

form : 7 42
d* “LIPS(kL; L;PLz)

(L mP@k mP
w here we have introduced dim ensional reqularisation in dinension D = 4 2 [R39]1in
order to dealw ith infrared divergences.

I(a;b) —

7 (E21)

T here are six cases to dealw ith: T0) @0 7O @1 01D 10 D though
due to symm etry we can transform T@9) into TO1) and T¢ ') into T Y so we only

need consider four cases overall.

G enerically we w ill evaluate these integrals in convenient special fram es follow ing
Appendix B of [37], with a convenient choice form ; and m ,. For instance, in the case
of T01) it is convenient to transfom to the centre of m ass fram e of the vector ; L,
so that

1 1
L = EPL;Z 1;v ; L = EPL;Z 1;v ; (E22)
and w rite

¥ = (sin 1cos ,;sin 1sin ,;co0s 1) ¢ (E 2.3)

U sing a further gpatial rotation we w rite
mi= (mq1;0;0;mq); my= (A;B;0;,C); (E24)

w ith the m assshell condition A% = B2+ C 2.

A fter integrating over all angular coordinates except 1 and ,, the two-body phase

spacem easure in 4 2 din ensions becom es (see A ppendiKC])

2
PL;Z

2

2

d* 2LPS(L; L;PLp) = d1d, (sih )t 2 (sin »)

i
Nl D=

(E2.5)
A's a result of this and of our param etrizations of ; ;1 ;m ; and m ,, the integrals take

the form ,

PrLy g @b

2

I(ab) _ (ab)

7 (E26)

i
Nl D=
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E2. BOX & TRIANGLE DISCONTINUITIES FROM PHASE SPACE INTEGRALS

w here

(0,0)

= ]_; (E .2.7)
(1,0) _ 2
- 4
PL,—Zml
©01) _ 2
14
PL;sz
(1) _ 4 .
- 4
Pf;zml
11 _
( ) mi ;
1; 1) _
( ) ms ;
and J ©@®) is the angular integral
Z Z
(sin 1)" ? (sih ,) ?
geP = d;  d, - 2 - (E28)
0 0 (1 cos 1A+ Ccos 1+ Bsin 1cos )

T he integrals (E.2.8) have been evaliated in [213] or the values of a and b speci ed

above, and we borrow the results in a form from [2141:

2
g 00 _ —— E 29)
guo —
1 A C
gt = —Z,F 1;1;1 ;
A 251 ’ oA ’
. 2 (1 A C
gtw - 2% D gaa
1 2) 27

Here,A and C willdi erdepending on which case we are considering and our particular
param etrization for it, but in all cases the com binations that arise can be re-expressed
in tem s of Lorentz-nvariant quantities using suitable dentities. In the case of J )

for exam ple, one uses the easily veri ed dentities
NP®Lz) = P ,A+Cm;; m; m=mi@& C); (E 210)

whereN (Pr, ) wasde ned in (2.2.14).

Eventually, after reexpressing A and C in this way, and upon application of som e

151



E2. BOX & TRIANGLE DISCONTINUITIES FROM PHASE SPACE INTEGRALS

standard hypergeom etric identities we nd the follow ing:

2
14000 ; (E.2.11)
1 2
1 2
lr(l;O) _ - ;
m 1 E;z
p 1 2
lI(Oll) = ———
m E;z( | )
. 8 1 m; m)P7,
1@ - —— —+ g 1 — TP L0() ;
N (PL ) N (Pr )
1I( 1:1) _ N (PL;z)
(ml E;z)2
2 2
+ 1 > (ml E,’Z)(m2 E;z) (ml HQ)PL;Z 7
1I(l; 1) _ N (PL;z)
(mZ E;z)2
2 2
+ 1 > (ml E,’Z)(m2 E;z) (ml HQ)PL;Z 7

where is the ubiguitous factor

PL;Z

(E212)

sy
N[ D=
N
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APPEND IX F

GAUGE-INVARIANT TRIANGLE
RECONSTRUCTION

In this appendix we nd a new representation of the triangle function

Iog(Q ?=P ?)

0? b2 ; (F001)

T@E/P;Q) =

as the dispersion Integralofa sum of two cut—tn'ang]es

A comm ent on gauge (in)dependence is in order here. R ecall from 1.7.1l, Equation
({LZI), that in the approach of [37] to loop diagram s one introduces an arbitrary null
vector In order to perform loop integrations. T he corresponding gauge dependence
should disappear in the expression for scattering am plitudes. In what follow s we will
work in an arbitrary gauge, and show analytically that gauge-dependent term sdisappear
in the nalresult for the triangle finction. Perhaps unsurprisingly, this gauge Invariance
willalso hod for the nite- version of T (p;P;Q ), which wede nein [21.14).

F.1l G auge—-invariant dispersion integrals

To begin with, recall from (2.2.18)) that the basic quantity we have to com pute reads

? 4z (P2) ©Q2)
X = — z + z ; (F11)
z  (P,p) ©.p)

whereP + Q + p= 0. W ewillwork in an arbitrary gauge, w here
P, = P A Q, = Q +z : (F12)
A short calculation show s that

P,p = Ppl b (®? P2?) ; (F13)

Q,p = 0pl k©% Q%) ; (F14)

'For a review of dispersion relations see [237]and A ppendix [D].
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Fl. GAUGE-INVARIANT DISPERSION INTEGRALS

w here

p p
o 2( P)(pP) R ( )

Tt is also usefiil to notice the relation

aswellas Pp)= @Qp)= (1=2)Q? P?),whith trivially follows from m om entum
conservation. W e can then rew rite (E.L.1l) as

R = 5 I F17)
w here
1 2 1
I, = as? (s° F1.8
! e ) @1 mer 9 F19)
- =) (e > ;
Pp) P 1
1 z 1
T = ds® (s F19
2 ep °8) @ o1 mez o F12)
= &) QZ) 72]%
Pp) n 0 1
But (E.1.4) in plies
S = 2 ; (F.1.10)

kP2 1 ho? 1
so that we can nally recast (E.L) as:
1( P2?) (0%

KX = 2 csc( )— 07 p? = 2 cse( )T (p;P;Q);  (FAa1)

where the -dependent triangle function J@

1( P?) (0%
T p/PiQ) = — 0?7 b2 : (F.112)

T his is the result we were after. N otice that all the gauge dependence, ie. any depen—
dence on the arbitrary nullvector ,has com pletely cancelled out in [E.III).

W enow discussthe ! 0 lin it ofthe nalexpression [E.1.I1]). A s already discussed
in 27 (see (ZII0) and (ZII1€)), in studying the ! 0 linit of Z (and hence of
T (p;P;Q)) we need to distinguish the case where P 2 and Q? are both nonvanishing

’The -dependent triangl function already appeared in (2.1.14]).
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Fl. GAUGE-INVARIANT DISPERSION INTEGRALS

from the casewhereoneofthetwo,say Q 2 ,vanishes. In the form er case, w e get precisely
the triangle function T (p;P;Q ) de ned n (E.Q.I):

JJI'mOQ= 2T (p;P;Q); P26 0;0%260: (F113)
In the Zlatt:ercase,whereQ2= 0, we have instead

m# = -—5—; P’60;0°=0; (F 1.14)
1o P

w hich corresponds to a degenerate triangle.

The nalissue is that of the gauge invariance of the contributions to the am plitude
from the box functions B (this is also relevant to the issue of gauge invariance in the
N = 4 calculation of [37],and in that paper a general argum ent for gauge invariance was
also given —further evidence can be found in [79]). W e expect that an explicit analytic
proof of the gauge invariance of the box function contribution to the am plitude could
be constructed using dentities such as those In Appendix B of 37]. In the m eantin e,
num erical tests have shown that gauge invariance is present [209]. Indeed, it would be
surprising if this were not the case given that the correct, gauge-invariant, am plitudes
are dertved w ith the choices of gauge we have m ade here and in [37]. W e have also
carried out the M HV diagram analysis of this paper using the altemative gauge choice

= ky, ;one obtains (Z.1.19)).
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APPEND IX G

INTEGRALS FOR THE
NON-SUPERSYMMETRIC AMPLITUDE

In this appendix we give details of the integrals needed to com pute the discontinuities
of the non-supersym m etric am plitude discussed in C hapter[3.

G .1 Passarino-Velm an reduction

In 33 we saw that a typical term in the cutconstructble part of the YangM ills
am plitude is the digpersion integral of the follow ing phase space Integral:
Z

tr (kP .5t (kBB ) (kik Ky %
“m)= dLPS(L; L;PrL) + (RkoPy o3 )t (kikodoPy )t (kiko ko %2)

L m)k kZ3@7,)?

G a11)

T hegoalofthis appendix is to perform thePassarino-Velm an reduction 212 ]of {G_L.).
To thisend,we rewrite ¥ m ) as
try (}"51 ]"52 EL 7z ) try (}"51 }"52 EL 7z ) try (}"51 };—2 k‘m )

= ’ z ) 1
v . KPEZ, P PomiFe) i (G42)

1
I m;P,) = dLPS(L; L;Pp) bhh G 123)
O n general grounds, I (m ;P1, ) can be decom posed as

I =mmm # + mmP, +m Pm + P mm )%
+ (m PP, +Pm P +P Pm ) 73+ P P P 2

+ ( m + m + m ) _Zs+ ( P, + P, + PL)/G(G.lA)

'For the rest of this appendix we w ill generally drop the subscript z in Py, ,, for the sake of brevity.
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G.l. PASSARINOVELTMAN REDUCTION

of the Independentm om enta in order to solve for the /i. Introducing the quantities

A = m m m I ;

B = m m Py I ;

C = m Py Py I ;

D = Py Pp Pp I 7

E = m I = 0;

F = Py I = 0; (G 15)

is:

5P7)P=2m BR) ; 6P’=m B);3=m B)P;0 ;

S

Js = 2P?=m B)*;3=m B)P;0;0 ;
F4 = 1=@m E);0;0;0
Js = P2y¥=2m B)* ;3pf=2m B ; 1=m R)¥;0 ;

(
FJs = P/=2m E)); I=m B);0;0 : G 16)
W e om it the decom position for ¢ as the corresponding term in (G_1.4]) drops out of
all fiiture expressions due to k2 = 0.

Finally, using the m ethods of [40] and the results of G_J3, the ntegrals in (G_1.9)
are found to be, keeping only temm s to O ( 2),

24 A
A = m PRFP- ", G 1.7
3
B = P’m B) ; G 18)
c = @2 7 G 19)
P2y 4 .
b By 4 ~, G 1.10)
8m E)
w here )
Fﬁ: (G.l.ll)
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G 2. EVALUATING THE INTEGRAL OF % (a;b)

G .2 Evaluating the integral of % (a;b)

T he basic expression which arises In theM HV diagram construction in this paper is

hikihjLi*hili*hjLi hiaihjbi

¢ @) = P18l L 12 Tl aihl i |

G 21)

W e wish to integrate this expression over the Lorentz-=nvariant phase space. W e begin
by sim plifying it, using m ultiple applications of the Schouten dentity. F irst note that
using this dentity tw ice, one deduces that

hb ai

hibihjhi 5 bi + Ho5ihibi
Li blhi

- -labi® = hiaitbji+ hiaila jihJi
hl; aihl bi ha

G 22)

el e . ...hh Liabi
ha jihibi ha jihibi———— :
ha L ilbli

+

Now use this dentity in € (a;b). This generates ve tem s, which we will label (in
correspondence w ith the ordering arising from the order of term s in (G_2.2) above) as

may use the phase space integrals of 3G 3 to calculate then . The term U is more
com plicated ; how ever, one m ay again use the dentity {G_2.2), generating another ve

m ay be calculated using the integrals of G 3. Finally, the term V m ay be sin pli d,
here using the dentity (G_2.2)) with iand j interchanged. T his generates a further ve

tr, Bba)’tn B33 1)t G5 %)
T = . ; G 2.3)
! 221 PHa DL

T _ tr, B3adb)tr, @5ba)tn, 65F H))tn, G55 F )t G+ &) . G 2.4)
? 290G fla BE DG bl ’ '

T tr, G5ab)tr, Ggba)tn, G5F )t G558 )0 Gafwd) G 2.5)
3 200G fla BEL D2 a)b)l ’

_— tr, G5ab)tr. E5ba)tr. E5F H)tr, G55 %) G 26)
4 221 PHla BL D? ' .

and

tr, G3ba)’tr, E3ad)tr, 655 %)
T = . ; G 2.7)
> 221 PHa OE D

tr, é?lg:b)zugr E5ba)tr, 65% F )t &b &)
Te = - - ; (G 2.8)
2101 fHla PG NHE b@an
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G 2. EVALUATING THE INTEGRAL OF % (a;b)

tr, B3ab)tr, B5ba)’tr, 3% & )tr, Batb)
T7 = - - H (G .29)
201 fHa BL DA a)b )l

tr, G3ab)’tr, G3ba)tr, G353 %)
Tg = : ; G 210)
; 21 Pa D& 2D

and

tr, G3ab)’tr, G3ba)
T = ; G211
’ 221 Pa Y ( )

tr, E@5ab)’tr, E5ba)’tr, (Sb% &)
T = ; G 212
o 201 fia B b 1 ( )

tr, B3ab)’tr, G5ba)’tr, Gat D)
T = ; G 213
H 209G fia BE a)b o)l ( )

tr, B5ab)’tr, B3ba)’
T = ; G 214
e 261 Pa B ( )

tr, G3ba)’tr, G3ad)’tr, % F &)
= ; G 215
e 201 fHla BPa b 2D ( )

B efore perform ing the phase gpace integrals, it proves convenient to collect the re—
sulting expressions in pairsasT1 + Ty, T3+ Ta,Ts+ T, T7+ Tg,To+ T11 and T1p+ T1s.

T his leads us to the follow ing decom position :

tr, B5F Bt B85 F ) E5F &)t E5b%)

% (a;b) = -
(@b 221 PHE W a)d b
1
= m(Hl + +4H; (G .2.16)
w here

q — tr, B5ba)tr. 33 )t B5F F ) o E5FH &) tr, E5%H) .

b (L 2@ b) L a) L b
g . [ ESsbim Ggbatn G5k E) tm Gshia) W E3hb)

2 L D@ B L a) L b
g L (o EgeR)’m dgke) o E5ha) @ HgbhE)

3 - 7

@ b (L a) (Db

iSab))’ (tr, G5ba))’tr, (& abk
T (tr H3ah)) (tr Egha))tr @ abds) G 217)
4da V@& a)ed b

Finally, we perform the phase space integrals of the above expressions, using the
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G 3. PHASE SPACE INTEGRALS

ormul in xIG_ 3 below . One quickly nds that the divergent (as ! 0) part of the
total expression is zero. The nite part, after further spinor m anipulations, becom es

the expression we have given in (3.33).

G 3 Phase space integrals

T he basic m ethod which we use for evaluating Lorentz=nvariant phase space integrals
has been outlined in 37,1401 and also discussed in #1.9 and Appendix [El. Here we
w il just quote %:{he IE?su]ts which we need. In the ollow Ing we w il use a shorthand

notation where d* 2 LIPS(L; 4P z),and a comm on factor of 4 “( PL,.Z)2 is
understood to m ultiply allexpressions, where ~ is the ubiquitous factor of [G_1.11). W e
alsodene =@ P), =0 P)NEP)= (a PP 2@ P)bd P ) and drop the L ;z

subscripts from Py, ,, for clarity.

F irstly we quote the results from A ppendix B of 40 ]up to tem s of O ( ©):

1 = 1; = — = — 3 G 31)

w here
(a b]; 2 .
N :

L=1g 1

From this, we can recursively derive the Hllow ing integrals (up to O ( °)):

Z Z
1 1
1 = 5P ; L, = 5]:-3 ; G 3.2)
Z Z 1
1L = LL=5 PP 7 PY
g 1 p? 1 p?
(a ]_) = > 2a + —P —2a H
1-
z 2 2
L P 1 P
. b + —P —b ;
b 2D 2 2 2
and
4 4 2 4 2
1L P [, 3P 2
= aa+—PP +—P'a ——a a — ;
(a 11) 4 3 2 3
Z
Ll p4 1 2 4 p2
2
Z
1L 1 p? p? 2L
= — 2P —a + —b + — P a + b
(@ Db 2D N (a b) (@ b)
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G 3. PHASE SPACE INTEGRALS

Finally, there are integrals involring cubic powers of loop m om enta In the num erator.
The rstis

pt p? 1
N T
(a 10 4 3 4 2 3
pt p?
8_2<a> 4_<p>; G 34)

w here we have suppressed term s cubic in a as they prove not to contribute when this
integral is contracted into the products of D irac traces w hich appear In the expressions
in G 2. The second cubic integral required is

v4
1 p4 p? 1
2hh _ P pipy o Plpippyteppop
(b 2D 4 3 4 2 3
P ) P’ )

again suppressing termm s cubic In bwhich w ill not contribute.
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APPEND IX H

KLT RELATIONS

For com pleteness, in this appendix we w rite the eld theory Iim it of the KLT relations

219] for the cases of four, ve and six points:

M (1;2;3) = 1A (1;2;3)A (1;2;3) ; (H.0.1)
M (1;2;3;4) = is1o A (1;2;3;4)A (1;2;4;3) ; (H.L0.2)
M (1;2;3;4;5) = 1is12s34 A (1;2;3;4;5)A (2;1;4;3;5)
+  ds13sp4 A (1;3;2;4;5)A (3;1;4;2;5) ; (H.0.3)
M (1;2;3;4;5;6) = is12845 A (1;2;3;4;5;6) s35A (2;1;5;3;4;6)
+  (s33+ s35) A (2;1;5;4;3;6) (H.LO04)
+ P (2;3;4) :

In these formul ,M (i) (A (1)) denotes a treelevel gravity (Yang-M ills colour-ordered)
am plitnde, si5 = (Pi+ P )2, and P (2;3;4) stands for perm utations of (2;3;4). The
relation for a generic num ber of particles can be found in Appendix A of 240 1.
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