On Perturbative F ield Theory and Tw istor String Theoryl

Jam es B edforda; ${ }^{\text {; }}$
${ }^{\text {a }} \mathrm{C}$ entre for Research in String T heory, D epartm ent of P hysics
Q ueen M ary, University of London
M ile End Road, London E1 4NS, UK
${ }^{\mathrm{b}}$ D epartm ent of Physics, C ER N - Theory D ivision 1211 G eneva 23, Sw itzerland

ABSTRACT

It is well-know n that perturbative calculations in eld theory can lead to far sim pler answers than the Feynm an diagram approach m ight suggest. In som e cases scattering am plitudes can be constructed for processes w ith any desired num ber of extemal legs yielding com pact expressions which are inaccessible from the point of view of conventionalperturbation theory. In th is thesis wediscuss som e attem pts to address the nature of this underlying sim plicity and then use the results to calculate som e previously unknow n am plitudes of interest. W itten's tw istor string theory is introduced and the C SW rules at tree-level and one-loop are described. W e use these techniques to calculate the one-loop gluonic M H V am plitudes in $N=1$ super-Yang -M ills as a veri cation of their validity and then proceed to evaluate the general M HV am plitudes in pure Yang -M ills with a scalar running in the loop. This latter amplitude is a new result in QCD. In addition to this, we review som e recent on-shell recursion relations for tree-level am plitudes in gauge theory and apply them to gravity. A s a result we present a new com pact form for the n-graviton M HV am plitudes in general relativity. The techniques and results discussed are relevant to the understanding of the structure of eld theory and gravity and the non-supersym m etric Y ang $-M$ ills am plitudes in-particular are pertinent to background processes at the LH C . T he gravitational recursion relations provide new techniques for perturbative gravity and have som e bearing on the ultraviolet properties of E instein gravity.

[^0]To m y parents and in loving m em ory of $m y$ grandfather Leonard Rogers.

A cknow ledgem ents

First and forem ost I would like to thank my supervisor A ndreas B randhuber for all his guidance and support throughout this work and for doing so much to m ature $m y$ approach to physics. Sim ilarly, I am especially grateful to G abriele Travaglini and B ill Spence who have also acted as advisors and to Lance D ixon for being an inspirational m entor.

I am greatly indebted to D avid M ulryne, C onstantinos P apageorgakis, John W ard and K onstantinos Zoubos for their unquestioning friendship and support and without whom I would not be the person I am today. I would also like to express my gratitude to m y other collaborators N arit Pidokrajt and D iego R odr guez-G om ez for putting up w ith me . It is likew ise a pleasure to thank all these people for greatly helping the developm ent of m y physical understanding.

For interesting discussions and help w ith the sub ject-m atter I am extrem ely grateful to Luis A lvarez-G aum e, C haralam pos A nastasiou, Pascal A nastasopoulos, Lilya A nguelova, M arcos M arino Beiras, D avid Berm an, D avid B irtles, Em il B jerrum -B ohr, V incent B ouchard, Jacob B ourjaily, R uth B ritto, T om B row n, John C harap, Joe C on lon, C edric D elaunay, Sara D obbins, E llie D obson, V ittorio D elD uca, D avid D unbar, D avid D unstan, D ario D uo, John E lis, K azem B itaghsir Fadafan, M alcolm Fairbaim , B o Feng, Joshua Friess, M ichaelG reen , U m ut G ursoy, Stefan H ohenegger, H arald Ita, B ob Jones, Chris Hull, Valya K hoze, Johanna K napp, D avid K osower, Theo K reouzis, D uc N inh Le, W olfgang Lerche, Sim on M cN am ara, A lex M orisse, M ichele Della M orte, A dele N asti, G eorgios P apageorgiou, A lice P errett, R oger Penrose, B rian P ow ell, A re R aklev, San jaye R am goolam , C hristian R om elsberger, R odolfo R ousso, R icardo Schiappa, Shim a Sham s, Jonathan Shock, Laura Tadrow ski, A lireza Tavanfar, Steve Thom as, D avid Tong, N icolaos T oum bas, M assim iliano V incon , D an ielW aldram , M arlene W eiss, A me W iebalck and G iulia Zanderighi.

The hospitality of both Q ueen M ary, University of London \& CERN and their support via a Q ueen M ary studentship and a M arie C urie early stage training grant are gratefully acknow ledged, as are the m any sta including Terry A rter, K athy B oydon, Denise Paige, Nanie Perrin, Jeanne R ostant, K ate Shine, D iana De Toth and Suzy Vascotto whom ake these places truly special.

For help w ith the m anuscript I am especially grateful to A ndi Brandhuber, Johanna K napp, C ostis Papageorgakis, Jon Shock, G abriele Travaglini, M arlene W eiss and C ostas Zoubos.
T he support of m any friends and fam ily m em bers, the num ber of w hom is too great to list is also gratefully acknow ledged. Especially, these include Sam Cham berlain, Jerem y and Sine P ickles, B anbara and Leonard R ogers and Christiane and Varos Shahbazian. Last, but by no m eans least I owe a great debt to $m y$ parents A ndrew and Linda, m y brother Sim on and to C laire.

Table of contents

ACKNOW LEDGEMENTS 3
INTRODUCTION 11
SUMMARY 10
1 PERTURBATIVE GAUGE THEORY 21
1.1 C olour ordering 24
1.2 Spinor helicity form alism 27
1.2.1 Spinors 27
1.2.2 W avefunctions 29
1.2.3 Variable reduction 30
1.3 Supersym m etric decom position 31
1.4 Supersym m etric W ard identities 33
1.4.1 $\mathrm{N}=1 \mathrm{SU}$ SY constraints 33
1.4.2 A m plitude relations 35
1.5 T w istor space 36
1.5.1 A m plitude localisation 41
1.6 Tw istor string theory 44
1.6.1 Topological eld theory 45
1.6.2 Topological string theory 46
1.6.3 The B m odel on super-tw istor space 48
1.6.4 D 1-brane instantons 50
1.6.5 The M HV am plitudes 51
1.7 C SW rules (tree-level) 55
1.7.1 O shell continuation 56
1.7.2 The procedure: A n exam ple 56
1.8 Loop diagram s from M H V vertices 50
1.8.1 BST rules 60
1.8.2 Integration m easure 60
1.9 M HV am plitudes in $\mathrm{N}=4$ super $-Y$ ang M ills 63
1.9.1 G eneral integral basis 63
1.9.2 The $\mathrm{N}=4 \mathrm{M} \mathrm{HV}$ one-loop am plitudes 64
1.9.3 M H V vertices at one-loop 66
2 M HV AMPLITUDES $\mathbb{N} N=1$ SUPER-YANG M ILLS 71
2.1 The $\mathrm{N}=1 \mathrm{M} H V$ am plitudes at one-loop 71
2.2 M HV one-loop am plitudes in $\mathrm{N}=1$ SYM from M HV vertices 77
2.2.1 The procedure 79
2.2.2 D iscontinuities 80
2.2.3 T he full am plitude 81
3 NON-SUPERSYMMETRIC M HV AMPLITUDES 86
3.1 T he scalar am plitude 86
3.2 T he scattering am plitude in the ad jacent case 88
3.2.1 R ational term s 88
3.2.2 D ispersion integrals for the ad jacent case 89
3.3 T he scattering am plitude in the general case 93
3.3.1 $\mathrm{Com} m$ ents on tw istor space interpretation 101
3.4 C hecks of the general result 102
3.4.1 A d jacent case 103
3.4.2 Five-ghon am plitude 103
3.4.3 Infrared-pole structure 104
3.5 T he M HV am plitudes in Q CD 105
4 RECURSION RELATIONS \mathbb{N} GRAVITY 107
4.1 T he recursion relation 108
4.2 A pplication to M HV gravity am plitudes 111
4.2.1 Four-, ve-and six-graviton scattering 112
4.2.2 General form ula for M HV scattering 115
4.3 A pplications to other eld theories 116
4.4 CSW as BCFW 117
5 CONCLUSIONSAND OUTLOOK 119
A SP $\mathbb{I N O R A N D ~ D \mathbb { R A C - T R A C E ~ D E N T I T } \mathbb { E }}$ 124
A. 1 Spinor identities 124
A. 2 T he holom orphic delta function 126
A. 3 D irac traces 128
B FEYNMAN RULES \mathbb{N} THE SP $\mathbb{N} O$ OR HELICITY FORMALISM 130
B. 1 W avefunctions 130
B. 2 Propagators 131
B. 3 Vertices 131
B. 4 E xam ples 132
C D-D \mathbb{M} ENSIONAL LORENTZ-INVARIANT PHASE SPACE 136
C. 1 D-spheres 136
C. $2 \mathrm{dL} \mathbb{P} S$ 136
C 3 O verall am plitude norm alisation 138
D UNITARITY 140
D . 1 T he optical theorem 141
D. 2 Cutting rules 142
D 2.1 BDDK's unitarity cuts 143
D 3 D ispersion relations 145
E \mathbb{N} TEGRALS FOR THEN =1AMPLITUDE 147
E. 1 Passarino-Veltm an reduction 147
E. 2 Box \& triangle discontinuities from phase space integrals 150
F GAUGE-INVARIANT TRIANGLERECONSTRUCTION 153
F. 1 G auge-invariant dispersion integrals 153
G \mathbb{N} TEGRALS FOR THENON-SUPERSYMMETRIC AMPLITUDE 156
G.1 Passarino-V eltm an reduction 156
G. 2 Evaluating the integral of $\mathscr{C}(a ; b)$ 158
G . 3 Phase space integrals 160
H KLT RELATIONS 162

L ist of F igures

1.1 Feynm an rules for $S U\left(N_{C}\right) Y$ ang $-M$ ills theory in Feynm an gauge 22
1.2 The num ber of Feynm an diagram s required for tree-leveln-ghon scattering. 23
1.3 The M HV am plitudes localise on sim ple straight lines in twistor space. H ere the 5 -point M HV am plitude is depicted as an exam ple. 42
1.4 Twistor space localisation of tree amplitudes with $q=3$ and $q=4$ 43
1.5 The two M HV diagram s contributing to the $+\quad$ am plitude. A ll ex- ternalm om enta are taken to be outgoing. 57
1.6 A generic M HV diagram contributing to a one-bop M HV scattering am - plitude. 61
1.7 B oxes, Triangles and Bubbles. Here P_{i}, K_{i} and Q_{i} are generic m om enta representing the contribution of one or m ore external particles. The dif- ferent functions discussed below ($1-\mathrm{m}$ ass, $2-\mathrm{m}$ ass etc.) are all special cases of these 63
1.8 T he $2-\mathrm{m}$ ass easy box function 651.9 A one-loop M HV diagram com puted using M HV am plitudes as interactionvertioes. This diagram has the m om entum structure of the cut referredto at the end of 1.9.2.66
2.1 The box function F of (2.1.7), whose nite part B, Eq. (2.1.9), appears inthe $\mathrm{N}=1 \mathrm{am}$ plitude 2.1.2). The two externalghons w ith negative helic-ity are labelled by i and j. T he legs labelled by s and m correspond to thenull m om enta p and q respectively in the notation of 2.1.9). M oreover,the quantities $t_{m+1}^{[s m]}, t_{m}^{\left[s m^{m}\right]}, t_{m+1}^{\left[s m^{1]}\right.}, t_{s+1}^{[m}{ }^{1]}$ appearing in the box func-tion B in 2.1.19) correspond to the kinem atical invariants $t:(Q+p)^{2}$,$s:=(P+p)^{2}, Q^{2}, P^{2}$ in the notation of 2.1.9), with $p+q+P+Q=0.74$
2.2 A triangle function, corresponding to the rstterm $T\left(p_{m} ; q_{a+1 ; m} \quad ; q_{m+1 ; a}\right)$ in the second line of 2.1.19) P, Q and P correspond to $\mathrm{p}_{\mathrm{m}}, \mathrm{g}_{\mathrm{m}}+1$ a and $q_{a+1, m} 1$ in the notation of Eq. 2.1.19), where $j 2 Q, i 2 P$. In particular, Q^{2} ! $t_{m+1}^{[a \operatorname{m}]}$ and P^{2} ! $t_{n}^{[a(2+1]}$.75
2.3 This triangle function corresponds to the second term in the second line of (2.1.19) \{ where i and j are swapped. As in F igure 2.2, P, Q and P correspond to $p_{m}, q_{n+1 ;}$ and $q_{a+1, m} \quad 1$ in the notation of Eq. 2.1.19), where now i2 Q, j2 P. In particular, $Q^{2}!t_{a+1}^{[m}{ }^{a]}$ and $P^{2}!t_{a+1}^{[m}{ }^{a 1]}$. 76
2.4 A one-loop M HV diagram, com puted in 2.2.4) using M HV am plitudes as interaction vertices, with the CSW 0 -shell prescription. The two extemal gluons with negative helicity are labelled by i and j. 78
2.5 A triangle function w ith m assive legs labelled by P and Q, and m assless leg p . This function is reconstructed by sum m ing two dispersion integrals, corresponding to the P_{z}^{2} - and Q_{z}^{2}-cut. 83
2.6 A degenerate triangle function. H ere the leg labelled by P is still m as- sive, but that labelled by Q becom es massless. This function is also re- constructed by sum m ing over two dispersion integrals, corresponding to the P_{z}^{2} - and Q_{z}^{2}-cut. 84
3.1 A one-loop M H V diagram w ith a com plex scalar running in the loop, com - puted in Eq. 3.1.1). W e have indicated the possible helicity assignm ents for the scalar particle. 87
3.2 A triangle function contributing to the am plitude in the case of adja- cent negative-helicity ghons. H ere we have de ned $P:=q_{j m} 1, Q:=$ $q_{m+1 ; i}=q_{j m}$ (in the text we set $i=1, j=2$ for de niteness). 91
3.3 A box function contributing to the amplitude in the general case. The negative-helicity ghons, i and j, cannot be in adjacent positions, as the gure shows. 97
3.4 O ne type of triangle function contributing to the am plitude in the general case, where i 2 Q , and j 2 P 99
3.5 A nother type of triangle function contributing to the am plitude in the generalcase. By rstshifting $m_{1} 1!m_{1}$, and then $s w a p p i n g m_{1} \$ m_{2}$, we convert this into a triangle function as in F igure 3.4 \{ but with i and j swapped. These are the triangle functions responsible for the i $\$ j$ sw apped term s in 3.3.20) \{ or 3.3.22). 100
4.1 O ne of the terms contributing to the recursion relation for the M HV am plitude M ($\left.1 ; 2 ; 3^{+} ;::: ; \mathrm{n}^{+}\right)$. The gravity scattering am plitude on the right is sym m etric under the exchange of gravitons of the sam e he- licity. In the recursion relation, we sum over all possible values of k, i.e. $k=3 ;::: ; \mathrm{n}$. This am ounts to sum m ing over cyclical perm utations of ($3 ;::: ; \mathrm{n}$). 112
4.2 This class of diagram s also contributes to the recursion relation for the M HV amplitude M (1 ; $\left.2 ; 3^{+} ;::: n^{+}\right)$; how ever, each of these diagram s vanishes if the shifts 4.2.2) are perform ed. 113
4.3 O ne of the two diagrams contributing to the recursion relation for the M HV am plitude M ($\left.1 ; 2 ; 3^{+} ; 4^{+}\right)$. The other is obtained from this by cyclically perm uting the labels $(3 ; 4)$ \{ i.e. swapping 3 with 4 114
B. $1 \quad \mathrm{~T}$ he Vertices of the colour-stripped schem e in term s of spinors. 132
B 2 The diagram s contributing to the $4-g h o n ~ M ~ H V ~ t r e e-a m ~ p l i t u d e . ~ A ~ l l ~ e x-~$ ternalm om enta are taken to be outgoing. 132
B . 3 T he diagram s for $\mathrm{A}^{\sim}\left(1_{q} ; 2_{\mathrm{q}}^{+} ; 3_{\mathrm{g}} ; 4_{\mathrm{g}}^{+}\right)$. 134
B . 4 T he diagram s for $\hat{A^{\wedge}}\left(1_{\mathrm{q}} ; 2_{\mathrm{q}}^{+} ; 3_{\mathrm{q}} ; 4_{\mathrm{q}}^{+}\right)$. 135
D . 1 T he cut of a bubble diagram in m assless ${ }^{3}$ theory. 143
D. 2 The cut of a one-loop M HV am plitude in the $\left.t_{n_{1}}^{\left[m_{2}\right.} \mathrm{m}_{1}+1\right]$ channel. 144

Introduction

In the realm of high energy physics, the standard m odel of particle physics is our crow n ing achievem ent to-date 2^{2} It describes the fundam entalforces of nature-excluding gravity -as a quantum (gauge) eld theory w ith gauge sym m etry group SU (3) SU (2) U (1). In this description, the strong force - described by a gauge theory know n as quantum chrom odynam ics w ith gauge group SU (3) - is ad joined to electrow eak theory which is itself a uni cation of quantum electrodynam ics and the weak interaction. T he standard m odel is well-veri ed experim entally and $w i l l$ soon be put to even greater tests by the large hadron collider at C ERN which w ill start running later in 2007.

H ow ever, there are a num ber of features of the standard model (SM) which are not fully understood. M ost prom inent of these is perhaps that it predicts the existence of a scalar particle called the H iggs boson of m ass $M_{H}>114: 4 \mathrm{GeV}$ [6] which is responsible for the generation of m ass in electrow eak sym m etry breaking and which has not yet been observed, though few doubt that it will not be found. Indeed one of the central goals of the large hadron collider (LH C) is to nd such a particle. There is also evidence that neutrinos should have (tiny) m asses and m ixings and the SM should be extended to accom odate this.

O n the other hand there are also theoretical issues that lead physicists to believe that the standard m odel is not the nal story. For a start, (quantum) gravity is not incorporated into the theory. In addition, the SM su ers from a problem known as the hierarchy problem. T his problem asks why there is such a large hierarchy of scales for the interaction strengths of the di erent forces present. It seem s natural to theorists that just as the electrom agnetic and weak forces are uni ed into the electro-w eak (EW) force at scales $M_{\text {EW }} \quad 100 \mathrm{GeV}$, so should EW theory be uni ed with quantum chrom odynam ics (Q CD) at som e (higher) scale. A s such it is generally believed that SM particles are com ing from a grand uni ed theory (G U T) that spontaneously broke to SU (3) SU (2) U (1) at energies $M_{\text {G U T }} \quad 10^{16} \mathrm{GeV}$. Popular gauge groups that might unify those of the $S M$ include $S U(5)$ and $S O(10)$.

[^1]Several ideas which try to dealw ith the hierarchy problem exist. O ne of these is a theory called technioolour $[8]$ which considers all scalar elds in the SM to be bound states of ferm ions joined by a new set of interactions. A nother idea is that a new sym m etry m ay exist such as supersym m etry - see e.g. [9, 10, 11, 12] for an introduction. Supersym m etry (SU SY) relates bosons and ferm ions and predicts that m any m ore particles exist than are currently observed as each boson/ferm ion is associated with a partner ferm ion/boson. It can, how ever, unify the gauge couplings of the various com ponent theories of the standard m odel and thus solve the hierarchy problem. A s such the SM would be replaced by som e supersym m etric version, the m in im al realisation of which is usually term ed the m inim ally supersym m etric standard model (M SSM) ${ }^{3}$ The LHC is also geared tow ards searching for physics beyond the standard m odel such as technicolour and supersym m etry.
T he case for uni cation w ith gravity is very m uch m ore speculative at present. This is not least because its tiny interaction strength com pared with the other forces of nature m akes experim ental tests of gravity on $s m$ all length-scales di cult to perform with existing technology. As such there is no accepted quantum theory of gravity at present let alone a uni cation of quantum gravity w ith the SM. Currently studied theories that address the issue of the quantisation of gravity include causal set theory [15, 16], loop quantum gravity [17, 18] and string theory [19, 20, 21, 22]. Of these, string theory has also em erged as a possible fram ew ork for providing a com plete uni ed theory of all the forces of nature or a theory of everything (TOE) as it is som etim es called.

For string theory, the starting point is best understood as a generalisation of the w orld-line approach to particle physics as opposed to the spacetim e approach ofquantum eld theory. In this approach one considers particles from the point of view of their w orld-volum e or w orld-line (as their tra jectories are lines in spacetim e) and describes this trajectory using an action of the form

$$
S_{\text {particle }}=\frac{1}{2}^{Z} d \quad e^{1} \quad \text { @ X @ X } \quad \mathrm{m}^{2} \text {; }
$$

where is a param eter along the world-line which can naturally be taken to be the proper tim e. e() is a function introduced to make the action valid for zero particle m ass $(m=0)$ as well as $m \boxminus 0$ and $X \quad(\quad)$ represents the position vector of the particle in the 'target' space in which it lives. For the sake of generality we m ay consider the target space to be d-dim ensional though of course four dim ensions is what we're aim ing for. W hile $S_{p_{\mathrm{R}} \mathrm{rticle}}$ describes a free particle, interactions m ay be included by adding term s such as $d X$ A (X) for a coupling to the electrom agnetic eld.

[^2]To go from point-particles to strings we sim ply replace $S_{\text {particle }}$ by an action appropriate for describing the w orld-sheet of a string em bedded in spacetim e. A n action which naturally incorporates both m assive and m assless strings is the Brink-D iV ecchia- H ow e or Polyakov action

$$
S_{\text {string }}=\frac{T}{2}^{Z} d^{2} \overline{\operatorname{det} j} j \quad(@ X @ X):
$$

H ere the param eters of the w orld-sheet are $=\quad$; , the tension of the string is T and
can be thought of as a m etric on the world-sheet 5 C onsistently quantizing $S_{\text {string }}$ leads (eventually) to the m any interesting consequences that string theory predicts, not least of these being that gravity is quantized and the dem and that the dim ension of the target space be 26 -dim ensional for the bosonic string (the action of which is the one given by $S_{\text {string }}$ above) or 10 -dim ensional for any of its supersym m etric extensions.
T here are 5 of these consistent supersym m etric string theories that are know n as type I, type IIA , type IIB , heterotic $S O$ (32) and heterotic $E_{8} \quad E_{8}$ respectively, each of w hich has its use in describing the physics of th is 10-dim ensional universe in di erent scenarios. They are, how ever, intrinsically perturbative constructions and as such it has been proposed that each of these theories is just a di erent lim it of a unique 11-dim ensional theory which describes the full non-pertunbative range of physics and is known as Mtheory [23].

T he intrinsically higher-dim ensional nature of these theories is clearly in contrast w ith current experim ental results, although such results do not extend down to the P lanck scale $M_{P} \quad 10^{19} \mathrm{G} \mathrm{eV}$ where it is believed that the e ects of quantum gravity w ill be m ost prevalent. N onetheless it is hoped by m any that a com pacti cation dow n to four dim ensions or a realisation of string theory on a 4-dim ensional subm anifold such as a brane [24] m ay provide a uni ed description of the standard m odel plus gravity in $3+1$ dim ensions.

A side from quantizing gravity or being a possible TOE, string theory has many other facets. N ot least am ong these is the capacity to provide altemative or 'dual' descriptions of m any well-known 4-dim ensional quantum eld theories. In particular these quantum eld theories include highly sym m etric gauge theories such as m axim ally supersym m etric ($N=4$) Yang $-M$ ills, but also extend to certain aspects of QCD for exam ple.

It has long been thought that gauge theories m ay be described by string theories and the idea goes back at least till 't H ooft's diagram matic proposal [25]. H ow ever, it wasn't until much m ore recently that this proposal was realised in a concrete way by

[^3]M aldacena [26] who discovered a duality betw een type IB string theory with target space $A d S_{5} \quad S^{5}$ - the product of 5-dim ensional anti-de-Sitter space and a 5-sphere and a certain conform al eld theory (C FT), nam ely $N=4$ super-Yang M ills theory in M inkow ski space w ith gauge group $\operatorname{SU}(\mathrm{N})$) 6 The duality is a weak-strong' one in the sense that weakly coupled strings are describing the strong coupling regim e of a gauge theory and as such this provides a fascinating perturbativew indow into non-perturbative 4-dim ensional physics.

In addition to this, the duality provides a concrete realisation of the so-called holographic principle [27, 28] which asserts that physics in d-dim ensional spacetim es that include gravity m ay be describable by degrees of freedom in d dim ensions. O ne of the key ideas in this is that the Bekenstein H aw king entropy of a black hole (a system whose dom inant force is gravity) is given by $S_{B H}=A=4$ in natural' units where A is the area of the event horizon. This is in contrast w ith the fact that entropy is an extensive variable and thus usually scales w ith the volum e of the system concemed. In the case of the M aldacena con jecture (also known as the AdS/CFT correspondence), the 5-sphere essentially scales to a point and we are left w ith gravity (i.e. closed strings) in 5 dim ensions being described by Y ang M ills (i.e. open strings) in 4 dim ensions.

In any case, it is not only the non-pertunbative aspects of four-dim ensional gauge theory that we would like to understand better. A lthough weak-coupling perturbation theory is in-principle well understood for such theories, the com plexity is so great as to m ake m any calculations intractable. The asym ptotic freedom of Q CD [29, 30]m eans additionally that pertunbative results becom em ore im portant as the energy of interaction is increased, and m any of these $w i l l$ be necessary input for the discovery of new physics at colliders such as the LHC.As such it would be very interesting from both a theoretical and a phenom enological perspective if a duality existed that might describe a 4-dim ensional gauge theory at weak coupling.

In fact a key step was taken in this direction by W itten at the end of 2003 [31]. He discovered a rem arkable new duality betw een weakly-coupled $\mathrm{N}=4$ super-Yang-M ills theory in M inkow skispace and a weakly-coupled topological string theory (know n as the B m odel) whose target space is the C alabi-Y au superm anifold CP $P^{3 j 4}$. This manifold has 6 real bosonic dim ensions which are related to the usual 4-dim ensional spacetim e of the quantum eld theory by the tw istor construction of P enrose 32].

In [31], it w as observed that tree-level ghoon-scattering am plitudes in $\mathrm{N}=4$ superYang M illi Φ^{7} localise on holom onphically em bedded algebraic curves in tw istor space and proposed that they could be calculated from a string theory by integrating over the m oduli space of D 1-brane instantons in the B m odel on (super)-tw istor space. The

[^4]localisation properties of these am plitudes helped to explain the unexpectedly sim ple structure that often arises in their calculation from Feynm an diagram s despite the large degree of com plexity at interm ediate stages in the com putation. In the sim plest case the m axim ally helicity violating ($\mathrm{M} H \mathrm{~V}$) am plitudes, which describe the scattering of 2 gluons of negative helicity w ith $n \quad 2$ ghons of positive helicity, are localised on sim ple straight lines in tw istor space. Sim ilarly, am plitudes which are known to van ish such as those involving n ghons of positive helicity or 1 ghon of negative helicity and n 1 gluons of positive helicity are explained in this schem e.

T he beautifully sim ple localisation properties of the M HV am plitudes led C achazo, Svrcek and W itten [33] to propose a new diagram matic way of calculating tree am plitudes in gauge theory using M H V am plitudes as e ective vertices. These are taken - -shell and glued together with sim ple scalar propagators to give am plitudes w ith successively greater num bers of negative helicity particles. These rules tum out to be just the Feynm an rules for light-cone Yang M ills theory w ith a particular non-local change of variables and have m ore recently been put on a m er theoretical footing 34 , 35].
T he situation at loop-level is not as clear. In [36] it was shown that states of conform alsupergravity are present which do not decouple at one-loop and the procedure for calculating loop am plitudes in Y ang $-M$ ills from a tw istor string theory is not clear. D espite this, it is a rem arkable result of B randhuber, Spence and Travaglini [37] that the so-called CSW rules can also be applied at loop-level. In 37] it was shown that the one-loop M H V am plitudes originally found by Bem, D ixon, D unbar and K osow er (BDDK) in 38] could be calculated using M HV am plitudes as e ective vertices in the sam e spirit as [33]. This strongly hints at the existence ofa fullquantum duality betw een m axim ally supersym m etric Y ang M ills and a tw istor string theory, though the situation is unresolved at present 8

A natural question now arises: C an the M HV rules be applied at loop level in any gauge theory? T he answer to this is not a priori clear as the duality in [31] applies to $N=4$ Yang -M ills which is known to be very specialdue to its high degree of sym m etry. W ithout the existence of a form al proof of the M HV rules at loop level, one way to proceed is certainly to try a sim ilar m ethod to that in [37] in other theories. To that end, the present author and the authors of [37] used the M HV rules to calculate the oneloop M H V am plitudes in $N=1$ super-Y ang -M ills 40] (see also C hapter 2 of this thesis). This was independently con m ed by Q uigley and R osali in 41] and both results found com plete agreem ent w ith the am plitudes rst presented by BDDK 42].

[^5]Follow ing this, the authors of [40] tackled the M HV am plitudes in pure Yang-M ills w ith a scalar running in the loop [43]. T here the am plitudes for arbitrary positions of the negative helicity gluons w ere derived for the rst tim e and com plete agreem ent was found w ith the existing special cases [42, 44]. It w as discovered, how ever, that the M HV-vertex form alism calculates only the so-called 'cut-constructible' part-that is, the part contain ing branch cuts - of the am plitudes and thus m isses possible rational term s. T hese rational term s are also present in the cases of the supersym m etric am plitudes, but it tums out that they are intrinsically linked to the cut-constructible parts 38, 42] and thus it is enough to know the cuts to fully determ ine the am plitudes. M ore recently, and building on the results in [43], the rational term s for the M HV am plitudes in pure Yang $-M$ ills have been found [45] and due to a supersym m etric decom position of one-loop
 QCD are now known. The calculation of the cut-constructible part of the am plitudes in pure Y ang -M ills will be the sub ject of C hapter 3 .

In a di erent direction, various results em erging from tw istor string theory 46, 47] inspired B ritto, C achazo and Feng to propose certain on-shellrecursion relations for treelevelam plitudes in gauge theory [48] which w ere later proved m ore rigorously in a paper w ith W itten [49]. T hese represent tree am plitudes as sum s over am plitudes contain ing sm aller num bers of extemal particles connected by scalar propagators. Starting from am plitudes w ith 3 particles one can thus build up all n-point tree-level am plitudes recursively.

Subsequently the present author, together w ith B randhuber, Spence and Travaglini show ed that sim ilar on-shell recursion relations for tree-level am plitudes in gravity could be constructed 50], where a new form for the n -graviton M HV am plitudes was also proposed. Such recursion relations for gravity were independently found by C achazo and Svrcek in [51] which has som e overlap w ith [50]. O ne striking feature of these recursion relations is that they require a certain behaviour of the am plitudes (M) as a function ofm om enta in the ultraviolet ($U V$) such that when thought of as a function of a com plex param eter z, $\lim _{z!}$ i $M \quad(z)=0$. For Yang $-M$ ills am plitudes th is w as proved to be the case in [49], but it is a priori less clear how gravity m ight behave. In 550, 51] the particular am plitudes in question were show n to have this behaviour and m ore recently it was established for all tree-level gravity am plitudes in [52]. This unam biguously establishes the validity of the recursion relation in gravity, the construction of which is the sub ject of C hapter 4 , and also lends support to the recent con jectures that gravity as a eld theory m ay not be as divergent as previously thought 53, 54, 55, 56, 57, 58, 59, 60].
T his thesis w illbe concemed w ith a few $40,43,50$] of the m any developm ents arising from tw istor string theory [31]. These include the use of $M \mathrm{H} V$ vertices to calculate m any tree-level (and som e one-loop) processes $61,62,63,64,65,66,61,68,69,70,71]$ as w ell
as the use of the so-called holom orphic anom aly $\square 2$] (w hidh arose to solve a discrepancy betw een the tw istor space picture of one-loop am plitudes presented in [73] w ith the derivation in [37]) to evaluate one-loop am plitudes $74,75,76 \mathrm{~J} . \mathrm{M} \mathrm{H} \mathrm{V}$ vertices have also been found at tree-level in gravity [77] (after understanding how to dealw ith the nonholom orphicity which stalled initial progress 78]) and the C SW rules in gauge theory at loop level have been m ore rigorously proved in 79] together w ith recent advances at elucidating the loop structure in pure Y ang -M ills $80,81,82,83]$.

R ecent im provem ents [47, 84, 85] to the unitarity m ethod pioneered in $[38,42,86$, 87, 88, 89,90] use com plex m om enta (in sim ilarity w ith the on-shell recursion relations presented in [48, 49, 50, 51]) which allow s, for exam ple, a sim ple and purely algebraic determ ination of integral coe cients [47, 91]. In 92] B ritto, B uchbinder, C achazo and Feng developed e cient techniques for evaluating generic one-loop unitarity cuts which have since been applied in [93] and further developed in 94, 95, 96].

Stem m ing from the on-shell recursion relations written dow n at tree-level by Britto, C achazo and Feng [48] (which have been successfully exploited in [97, 98, 99] and understood in term s of tw istor-diagram theory in [100, 101, 102]) is the application of on-shell recursion to one-loop am plitudes which allow sfor a practical and system atic construction of their rational parts. T hese have been pioneered in $[103,104,105,106$, 107, 108, 109, 110], leading to the full expression for the rational term s of the one-loop M HV am plitudes in QCD in 545]. Som e success has also been had w ith such on-shell recursion in one-loop gravity [111].

Progress on the string theory side has been som ew hat more lim ited after som e prom ising in itial w ork. A ltemative tw istor string theories to that introduced by W itten 131] to describe perturbative $N=4$ Yang M ills have been put forward, though these have generally seem ed to be m ore form al and less practical than the original proposal. M ost notably there is that of B erkovits (and M otl) [112, 113] w hich w as also addressed at loop level in [36], and which has been recently used to calculate loop am plitudes in Yang M ills coupled to conform al supergravity [114]. O ther proposals include those of [115, 116, 117, 118].

Sim ilarly, dual tw istor string theories have been constructed for other eld theories including m arginaldeform ations of $N=4$ (and non-supersym m etric theories) [119, 120], onbifolds of W itten's original proposal to include theories w ith less supersym m etry and product gauge groups [121, 122] as well as tw istor string descriptions of supergravity theories. This latter section of w ork includes tw istor descriptions of $\mathrm{N}=1 ; 2$ conform al supergravity [123, 124], as w ell as a m ore recent construction for E instein supergravity 33, 125] follow ing in itial observations of the special properties of graviton am plitudes [31, 77, 78, 126]. A dditionally, tw istor string dual constructions have been presented for truncations of self-dual $N=4$ super-Y ang $-M$ ills [127], low er dim ensional theories [128, 129, 130, 131, 132] and $N=4$ SYM w ith a chiralm ass term [133].

D irectly follow ing from [31], it w as show n how to construct am plitudes that are m ore com plex than the M HV am plitudes from an integral over a suitable m oduli space of curves in tw istor string theory. Som e sim ple 5-point next-toM HV (NM HV) am plitudes w ere addressed in [134] as well as all n-ghon $\overline{\mathrm{MHV}}$ am plitudeg in [135] and all 6-gluon am plitudes in [136].

A nother avenue that has proved illum inating is the study of gauge and gravity theories in tw istor space. This includes [137] where the partition function of $\mathrm{N}=4$ Yang-M ills was exam ined in tw istor space, [138] w here the C SW rules were treated from a purely gauge theoretic perspective in tw istor space and [139] where loops have been studied and other related w ork including [140, 141]. Furthem ore, self-dual supergravity theories have been investigated from a tw istor space perspective in [142, 143], relations betw een tw istors, hidden sym m etries and integrability elucidated in [144, 145], and the connection with string eld theory developed in [146]. F inally, tw istor string theory has inspired a great deal of work in understanding superm anifolds and their connections w ith string theory and gauge theory such as that of $[147,148,149,150]$ and references therein.

[^6]
Sum m ary

T his thesis is organised as follow s:
In C hapter 1 we discuss pertunbative gauge theory and the unexpectedly sim ple results that it can produce despite the huge num ber of Feynm an diagram s that have to be sum m ed. W e introduce various techniques for explaining this sim plicity including colour ordering, the spinor helicity form alism, supersym m etric decom positions, supersym m etric ward identities and the use of tw istor space. W e go on to review the tw istor string theory introduced in [31] and show how it can be used to calculate tree-level scattering am plitudes of ghons. F inally we describe som e key ideas in perturbative gauge theory that were inspired by the tw istor string theory. In particular we present an overview of the C SW rules and their application at tree-and loop-level in $N=4$ super- Y ang M ills.

C hapter2 is devoted to elucidating the calculation of M H V loop am plitudes in $\mathrm{N}=1$ Yang M ills using a perturbative expansion in term s of M H V am plitudes as vertices as was introduced for $N=4$ Yang M ills in [37]. W e follow [40] w here the calculation w as originally perform ed and use the decom position of the integration m easure advocated in $[37,79]$ to reconstruct the n-ghon $\mathrm{M} H \mathrm{~V}$ am plitudes in $\mathrm{N}=1 \mathrm{Y}$ ang -M ills rst given in [42]. This provides strong evidence that the M HV diagram m ethod is valid in general supersym m etric eld theories at loop level. Som e technical details are relegated to A ppendix E.

In m uch the sam e spirit, C hapter3 describes the calculation of the M HV am plitudes in pure Yang M ills with a scalar running in the loop. W e take the sam e approach as in Chapter 2 and closely follow [43]. This produces the rst results for the (cutconstructible part of the) n-gluon M HV am plitudes with arbitrary positions for the negativehelicity particles in pure Y ang $-M$ ills. The results obtained are in com plete agreem ent w ith the previously known special cases in [42, 44] and as w ith Chapter[2, m any technical details to do w ith the evaluation of integrals are om itted and provided in A ppendix G.

In C hapter 4 we describe som e tree-level on-shell recursion relations in gravity as constructed in [50] and high light som e of their sim ilarities with the on-shell recursion relations proposed for gauge theory in [48, 49]. The form at follow ed is that of [50] and
as such we describe a new com pact form for the n -graviton M HV am plitudes arising from the recursion relation. W e also com m ent on the existence of recursion relations in other eld theories such as ${ }^{4}$ theory and m ention the connection betw een the C SW rules at tree-level and these on-shell recursion relations.

W e conclude and discuss future directions in C hapter 5. A dditionally, there are appendices describing the spinor helicity form alism and Feynm an rules for m assless gauge theory in such a form alism, d-dim ensionall orentz-invariant phase space, unitarity and the K aw ai-Lew ellen-T ye (K LT) relations in gravity which relate tree am plitudes in gravity to (products of) tree am plitudes in Y ang M ills.

CHAPTER1

PERTURBATIVEGAUGETHEORY

In the traditional approach to quantum eld theory, one writes down a classical Lagrangian and can quantise the theory by de ning the Feynm an path integral. Pertunbative physics can then be studied by draw ing Feynm an diagram s and using the Feynm an rules generated by the path integral to calculate scattering am plitudes. For a non-A belian gauge theory the classical theory is well-described by the Yang-M ills Lagrangian [151]:

$$
\begin{align*}
L= & (\text { ie } m) \frac{1}{4}\left(@ A^{a} @ A^{a}\right)^{2}+g A^{a} T^{a} \\
& g f^{a b c}\left(@ A^{a}\right) A^{b} A^{c} \frac{1}{4} g^{2}\left(f^{e a b} A^{a} A^{b}\right)\left(f^{e c d} A^{c} A^{d}\right) ; \tag{1.0.1}
\end{align*}
$$

where is a ferm ion eld, A the gauge boson eld and g is the coupling. G reek indices are associated with spacetim e, while Rom an indices describe the structure in gauge group space. This can then be used to construct the Feynm an rules in the usual way.

A lthough this construction is som ew hat technical it is easy so see what these interactions w ill be from a heuristic standpoint. The rst two term s in (1.0.1) will give the ferm ion and gauge boson propagators respectively. The third term involves two s and an A and thus represents a vertex where tw oferm ions interact w ith a gauge boson. T he fourth term involves 3 As and represents a 3-boson vertex while the fth term gives a 4-boson vertex.

Ifwew ork everything out properly then we nd that, in Feynm an gauge for exam ple where we have set $=1$ in a m ore general gauge boson propagator of the form

$$
\begin{equation*}
\frac{i}{p^{2}+i^{\prime \prime}} g \quad\left(1 \quad \frac{p p}{p^{2}} \quad a b ;\right. \tag{1.0.2}
\end{equation*}
$$

the Feynm an rules for an $\operatorname{SU}\left(\mathrm{N}_{\mathrm{C}}\right)$ gauge theory are:

G auge B oson Propagator:
a
 b $\quad=\frac{i g}{p^{2}+i^{\prime \prime}} \mathrm{ab}$

Ferm ion Propagator:
i

$=\frac{i(p+m)}{p^{2} m^{2}+i^{\prime \prime}} i^{\prime}$

$$
\begin{aligned}
& =2 i g^{2}\left[f^{\text {abe }} f^{\text {ecd }} g^{[} g^{]}\right. \\
& +f^{\text {dae }_{f}} \mathrm{ebc}_{\mathrm{ebc}}{ }^{[} \mathrm{g}^{]} \\
& \left.+f^{\text {cae }_{f}}{ }^{\text {ebd }} g^{[} g^{]}\right]
\end{aligned}
$$

Figure 1.1: Feynm an rules for $S U\left(N_{C}\right)$ Yang-M ills theory in Feynm an gauge.

In the above rules we have taken all particles to be outgoing and we use the convention that $C^{[1]}=(C \quad C \quad)=2$ for som e 2-index ob ject C. W e have also ignored the contributions due to ghost elds and will stick to these choices in what follow s unless otherw ise speci ed. Am plitudes for physical processes are obtained by draw ing all the w ays that the process can occur using the above rules and associating each of these w ith a speci cmathem atical expression. They are then evaluated and added up to produce the desired result. C lassical results are obtained from diagram sw ithout any closed loops while quantum corrections involve an increasing num ber of loops. For m ore details see e.g. [2].

Even though gauge theories present m any technical challenges, the w ay to proceed (at least pertunbatively) is in-principle w ell understood. In practice, how ever, the calculational com plexity grow s rapidly w ith the num ber of extemal particles (legs) and the num ber of loops. For exam ple, even at tree-level w here there are no loops to consider, the num ber of Feynm an diagram s describing n-particle scattering of extemal ghons in Q CD grows faster than factorially w ith n [152, 153] ${ }^{[1]}$

n	4	5	6	7	8	9	10
\# diagram s	4	25	220	$2 ; 485$	$34 ; 300$	$559 ; 405$	$10 ; 525 ; 900$

Figure 1.2: The num ber of Feynm an diagram s required for tree-leveln-ghon scattering.

D espite this, the nal result is often sim ple and elegant. A prim e exam ple is the socalled M axim ally H elicity V iolating (M HV) am plitude describing the scattering of 2 ghons (i and j) of negative helicity w ith $n \quad 2$ ghons of positive helicity. At tree-level the am plitude is given by:

$$
\begin{equation*}
A_{n}^{\text {tree }}=\frac{\text { hi }^{j i^{4}}}{\text { h1 2ih2 3i:::hn 1nihn 1i }} \text {; } \tag{1.0.3}
\end{equation*}
$$

for any n. W ew ill leave the explanation of the m eaning of this expression to later in the chapter, but the reader is nonetheless able to appreciate its sim plicity com pared w ith the ever increasing num ber of Feynm an diagram s needed to produce it.

T he question then arises of: W hy is there this sim plicity underlying the apparently m ore com plex pertunbative expansion and how does it arise. The rest of this chapter is devoted to setting up a fram ew ork in which these questions m ay be addressed.

[^7]
1.1 C olour ordering

O ne prom inent com plication experienced by gauge theories is the extra structure inherent in their gauge invariance. This m eans that elds of the theory do not just carry spacetim e indices but also indices relating to their transform ation under the gauge group. In the standard m odel it has been found that $S U\left(N_{C}\right)$ groups are the m ost appropriate ones for describing the gauge sym m etry and so unless otherw ise speci ed we w ill consider gauge groups of this type.

A s is well-know n, ghons carry an adjoint colour index $a=1 ; 2 ;::: ; N_{c}^{2} \quad 1$, while quarks and antiquarks carry fundam ental (N_{c}) or anti-fundam ental (N_{c}) indices i; $\mid=$ $1 ; 2 ;::: ; N_{C}$. The $S U\left(N_{C}\right)$ generators in the fundam ental representation are traceless Hem itian $N_{c} \quad N_{c} m$ atrices, $\left(T^{a}\right)_{i}^{l}$ which we nom alise to $\operatorname{tr}\left(T^{a} T^{b}\right)=a b T$ he Liealgebra is de ned by $\left[T^{a} ; T^{b}\right]=i f^{a b c} T^{c}$, where the structure constants $f^{a b c}$ satisfy the Jacobi Identity:

$$
\begin{equation*}
f^{\text {ade }} f^{\text {bod }}+f^{\text {bde }} f^{\text {cad }}+f^{\text {ode }} f^{\text {abd }}=0: \tag{1.1.1}
\end{equation*}
$$

Let us begin by considering a generic tree-level scattering am plitude. It is apparent from the Feynm an rules given in Figure 1 that each quark-ghon vertex contributes a group theory factor of $\left(T^{a}\right)_{i}{ }^{\prime}$ and each triłboson vertex a factor of $f^{\text {abc }}$, while four-boson vertices contribute m ore com plicated contractions involving pairs of structure constants such as $f^{\text {abe }} f^{\text {cde }}$. The quark and ghon propagators $w i l l$ then contract m any of the indices together using their group theory factors of ab and i^{\prime}. We can now start to ilhum inate the general colour structure of the am plitudes if we rst use the de nition of the Lie-algebra to re-w rite the structure constants as

$$
\begin{equation*}
\mathrm{f}^{\mathrm{abc}}=\quad \operatorname{itr}\left(\mathrm{T}^{\mathrm{a}}\left[\mathrm{~T}^{\mathrm{b}} ; \mathrm{T}^{\mathrm{c}}\right]\right): \tag{1.1.2}
\end{equation*}
$$

D oing this m eans that all colour factors in the Feynm an rules can be replaced by linear
 we only have extemal ghons, or :: : $\left(\mathrm{T}^{\mathrm{a}}::: \mathrm{T}^{\mathrm{b}}\right)_{i}{ }^{1} \operatorname{tr}\left(\mathrm{~T}^{\mathrm{b}}::: \mathrm{T}^{\mathrm{c}}\right)\left(\mathrm{T}^{\mathrm{c}} \mathrm{T}^{\mathrm{d}}:::\right)_{k}{ }^{1}:::-$ where the strings are term inated by (anti)-fundam ental indices - if extemal quarks are present.

In order to reduce the num ber of traces we m ake use of the identity

$$
{ }_{a=1}^{N_{X}^{2}}\left(T^{a}\right)_{i}^{\prime}\left(T^{a}\right)_{k}^{1}=i^{1} k^{\prime} \quad \frac{1}{N_{c}} i^{\prime} k^{1} ;
$$

[^8]which is just an algebraic statem ent of the fact that the generators T^{a} form a com plete set of traceless H em itian m atrices. This in tum gives rise to sim pli cations such as

X

$$
\operatorname{tr}\left(T^{a_{1}}::: T^{a_{k}} T^{a}\right) \operatorname{tr}\left(T^{a^{2}} T^{a_{k+1}}::: T^{a_{n}}\right)=\operatorname{tr}\left(T^{a_{1}}::: T^{a_{k}} T^{a_{k+1}}::: T^{a_{n}}\right)
$$

a

$$
\frac{1}{N_{c}} \operatorname{tr}\left(T^{a_{1}}::: T^{a_{k}}\right) \operatorname{tr}\left(T^{a_{k+1}}::: T^{a_{n}}\right)(1.1 .4)
$$

and

$$
\begin{aligned}
& X \operatorname{tr}\left(T^{a_{1}}::: T^{a_{k}} T^{a}\right)\left(T^{a^{a}} T^{a_{k+1}}::: T^{a_{n}}\right)_{i}^{\prime}= \\
&\left(T^{a_{1}}::: T^{a_{k}} T^{a_{k+1}}::: T^{a_{n}}\right)_{i}^{\prime} \\
& \frac{1}{N_{c}} \operatorname{tr}\left(T^{a_{1}}::: T^{a_{k}}\right)\left(T^{a_{k+1}}::: T^{a_{n}}\right)_{i}^{\prime}:(1.1 .5)
\end{aligned}
$$

In Eq. 1.1.3) the $1=\mathrm{N}_{\mathrm{c}}$ term corresponds to the subtraction of the trace of the $U\left(N_{C}\right)$ group in which $S U\left(N_{C}\right)$ is em bedded and thus ensures tracelessness of the T^{a}. This trace couples directly only to quarks and com m utes w ith $S U\left(N_{c}\right)$. A s such the term s involving it disappear after one sum s over all the perm utations present - a fact which is easy to check directly. W e can thus see that we are ultim ately left w ith either sum s of single traces of generators if we only have extemal ghons as in Eq. 1.1.4) or sum s of strings of generators term inated by fundam ental indices as in Eq. (1.1.5) if we also have extemalquarks [153, 154] In m ost of what we do we w ill only be concemed w ith gluon scattering and can therefore w rite the colour decom position of am plitudes as

$$
A_{n}^{\operatorname{tree}}\left(a_{i}\right)=g^{n} 2^{2 S_{n}=Z_{n}} \operatorname{tr}\left(T^{a(1)} T^{a}(2)::: T^{a(n)}\right) A_{n}^{\operatorname{tree}}((1) ;(2) ;::: ; \quad(n)) ;(1.1 .6)
$$

where S_{n} is the set of perm utations of n ob jects and Z_{n} is the subset of cyclic perm utations. g is the coupling constant of the theory. The $A_{n}^{\text {tree }}$ sub-am plitudes are colour-stripped and depend only on one ordering of the extemal particles. It is there-
 and sum over all (n 1)! non-cyclic perm utations at the end.

It is interesting to note that the sam e conclusion can be arrived at from string theory in a som ew hat m ore natural w ay [155, 156]. T his arises because of the observation that in an open string theory the full on-shell am plitude for the scattering of n vector m esons can be written as a sum over non-cyclic perm utations of extemal legs carrying C han Paton factors [157] m ultiplied by K oba-N ielsen partial am plitudes [158]. For

[^9]the scattering of extemal gluons that we are interested in we need not worry about fundam entalm atter because at tree-level the Feynm an rules forbid it from appearing as intemal lines. In the in nite-tension \lim it (T ! $\left.1 ;{ }^{0}!0\right)$ the $U\left(N_{C}\right)$ string theory reduces to a $U\left(N_{C}\right)$ gauge theory and the trace part of this decouples as w e have seen. W e can thus im m ediately conclude that the gauge theory scattering am plitudes decom pose as Eq. (1.1.6).

For one-loop am plitudes a sim ilar colour decom position exists [156]. In this case, how ever, there are up to two traces over $S U\left(N_{C}\right)$ generators and one m ust sum over the spins of the di erent particles that can circulate in the loop. In an expansion in N_{c}, the leading (as N_{C} ! 1) contributions to the am plitudes are planar and the colour structure is sim ply a single trace - in fact it is N_{c} tim es the tree-level colour factor when there are no particles in the fundam entalrepresentation propagating in the loop. In this case an alm ost identical form ula to 1.1 .6) can be written down for a decom position of one-loop am plitudes of extemal ghons [156]]:

$$
\begin{aligned}
& A_{n}^{1-100 p}\left(a_{i}\right)=g^{n} \quad X \quad N_{C} \operatorname{tr}\left(T^{a(1)}::: T^{\left.a^{(n)}\right)} A_{n ; 1}^{1-100 p}(\quad(1) ;::: ;(n))\right. \\
& 2 S_{n}=Z_{n} \\
& { }^{b n} \bar{X}^{2 c+1} \quad X \\
& +\quad \operatorname{tr}\left(T^{a(1)}::: T^{a}(c 1)\right) \operatorname{tr}\left(T^{a}(c)::: T^{a(n)}\right) \\
& \mathrm{c}=2 \quad 2 \mathrm{~S}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n} ; \mathrm{c}} \\
& \text { i } \\
& \mathrm{A}_{\mathrm{n} ; \mathrm{c}}^{1 \text {-loop }}(\mathrm{(1);:::;(n))} \text {; (1.1.7) }
\end{aligned}
$$

and we have left the sum over spins as being im plicit in the de nitons of the colourordered partial am plitudes $A_{n ; 1}^{1-\text { loop }}$ and $A_{n ; i}^{1-\text { loop }}$. brc is the largest integer less than or equal to r and $S_{n ; c}$ is the subset of perm utations of n ob jects leaving the double trace structure invariant.

It is a rem arkable result of Bem, D ixon, D unbar and K osow er that at one-loop, non-planar (m ulti-trace) am plitudes are sim ply obtained as a sum over perm utations of the planar (single-trace) ones. This is discussed in Section 7 of [38] where it was also noted that this applies to a generic $S U\left(N_{C}\right)$ theory (both supersymmetric and non-supersym m etric) w ith extemal particles and those running in the loop both in the adjoint representation. A s far as loop am plitudes go we will only be concemed w ith particles that are in the adjoint, so it will be enough for us to consider only one cyclic ordering (i.e. only $A_{n ; 1}^{1-l o o p}$, which we w ill generally abibreviate to $A_{n}^{1-l o o p}$) and then sum over all the relevant perm utations at the very end. Wewill not actually perform this sum m ation in what follow s but leave it as som ething which can easily be im plem ented to obtain the full am plitude.

T he colour-ordered sub-am plitudes obey a num ber of identities such as gauge invariance, cyclicity, order-reversal up to a sign, factorization properties and more. This m eans that there isn't a huge proliferation in the num ber of partialam plitudes that have
to be com puted. For 5-point gluon scattering for exam ple, there are only 4 independent tree-level sub-am plitudes and it tums out that 2 of these vanish identically because of a hidden' supersym m etry (see ;1.4). For a m ore com plete list of identities see [153].

1.2 Spinor helicity form alism

So far we have seen that we can reduce som e of the com plexity of our task by rem oving the colour structure and considering only colour-ordered am plitudes. W e'll also only consider m assless particles and this restricts us further, though there are still a large num ber of things that A_{n} can depend on. For spin less particles (scalars), the situation is clear and $A_{n}=A_{n}\left(p_{i}\right) \quad{ }^{(4)}\left(\underset{i=1}{\mathrm{P}} \mathrm{p}_{\mathrm{i}}\right)$, where the p_{i} are the m om enta of the extemal particles obeying $p^{2}=p p=0$ and we have written the delta function of m om entum conservation explicitly [31, 159]. In fact the m om entum dependence only appears in term s of L orentz-invariant quantities such as $p_{i} p$.

For m assless particles w ith spin the situation is m ore com plicated and we have to consider their wavefunctions i, giving $A_{n}=A_{n}\left(p_{i}\right.$; i) ${ }^{(4)}\left(\underset{i=1}{\mathrm{P}} \mathrm{p}_{\mathrm{i}}\right)$. Textbook de nitions have the i being di erent depending on the spin being considered. For exam ple in the case of spin $1=2$ electrons and positrons in QED the wavefunctions are usually taken to be the fam iliar $u(p)$ and $v(p)$ and their con jugates (see e.g. Section (3.3) of [2]]), while in the case of spin 1 gauge bosons the polarisation vectors in a suitably chosen basis are com m on. A m ore unifying description would be highly desirable and in fact one can be found using the so-called spinor helicity form alism [160].

1.2.1 Spinors

W e start w ith the fact that, when com plexi ed, the Lorentz group is locally isom orph ic to

$$
\begin{equation*}
\text { SO }(1 ; 3 ; C)=S L(2 ; C) \quad S L(2 ; C) ; \tag{1.2.1}
\end{equation*}
$$

and thus the nitedim ensional representations are classi ed as ($p ; q$), where p and q are integers or half-integers $4 \sqrt[4]{ } \mathrm{N}$ egative- and positive-chirality spinors transform in the ($1=2 ; 0$) and ($0 ; 1=2$) representations respectively. For a generic negative-chirality spinor we write w ith $=1 ; 2$ and for a generic positive-chirality spinor we write ${ }^{\sim} \quad$ w ith _= $1 ; 2$.
T he spinor indices introduced here are raised and low ered w ith the antisym m etric tensors and as and $=$ with ${ }^{12}=1$ and $=$

[^10](and likew ise for dotted indices). G iven two spinors and of negative chirality we can then form a Lorentz-invariant scalar product as
h ; i= ;
from which it follow s that h; $i=h$; i. Sim ilar form ul apply for positive-chirality spinors except that we use square brackets to distinguish the two: [~; ~] = ~ $\sim{ }^{\sim}{ }^{-}$. It is worth noting in-particular that h ; $\mathrm{i}=0$ implies $=\mathrm{c}$ where c is a com plex num ber and sim ilarly for ${ }^{\sim}$ and \sim. W e will often use even m ore com pact notation for these scalar products and write h; $i=h \quad i=h$ ietc.
T he vector representation of SO $(1 ; 3 ; C)$ is the $(1=2 ; 1=2)$ and as such w e can represent a m om entum vector p as a bi-spinor p_{\ldots}. W e can go to such a representation by using the chiral representation of the D irac m atrices - a process that is well-know n in supersym m etric eld theories, see e.g. ©, 10]. In signature $+\quad$ the D irac m atrices can then be represented as
\[

=0 $$
\begin{array}{ll}
& 0 \tag{1.2.3}\\
& 0
\end{array}
$$
\]

where () _ $=(1 ; \sim)$ and ($\left.)_{-}^{-}=(\quad)_{-}=\right)_{-} \quad(1 ; \sim)$ and $\sim=$ $\left({ }^{1} ;{ }^{2} ;{ }^{3}\right)$ are the Paulim atrices as given in Equation A.12). For a given vector p we then have

$$
\begin{array}{rl}
p_{-} & =p- \\
& =p_{0} \mathbb{I}+p \quad \sim \\
& =\quad p_{0}+p_{3} \tag{1.2.5}\\
p_{1} & i p_{2} \\
p_{1}+i p_{2} & p_{0} \\
p_{3}
\end{array} ;
$$

from which it follow s that $p=\operatorname{det}\left(p_{-}\right)$. H encep is light-like $\left(p^{2}=0\right)$ ifdet $\left(p_{-}\right)=0$, w hich in tum m eans that m assless vectors are those for w hich

$$
\begin{equation*}
\mathrm{p}_{-}=\sim_{-} ; \tag{1.2.6}
\end{equation*}
$$

for some spinors and ${ }^{\sim}$ _. These spinors are unique up to the scaling ($;^{\sim}$) ! (c ; $\mathrm{c}^{1 \sim}$) for a com plex num ber c .

If we w ish p to be real in Lorentz signature (in which case p _ is hem itian) then we must take ${ }^{\sim}=\quad$ where is the com plex conjugate of. The sign determ ines whether p has positive or negative energy. It is also possible (and som etim es useful) to consider other signatures. In signature $++\quad$ and ${ }^{\sim}$ are real and independent while in Euclidean signature (++++) the spinor representations are pseudoreal. Light-like vectors cannot be realw ith Euclidean signature.
T he form ula for $p \quad p=\operatorname{det}\left(p_{-}\right)$generalises for any tw $o m$ om enta p and q and using
the fact that () _($)^{-}=2$ we can write the scalar product for tw o light-like vectors $p_{-}=\sim_{-}$and $q_{-}=\sim_{-}$as

$$
2\left(\begin{array}{ll}
\mathrm{p} & \mathrm{q} \tag{1.2.7}
\end{array}\right)=\mathrm{h} \quad \mathrm{i}[\sim]:
$$

This is the standard convention in the pertunbative eld theory literature and di ers from the conventions in [31, 161] by a sign that is related to the choice of how to contract indices using .

1.2.2 W avefunctions

O nce p is given, the additional inform ation involved in specifying (and hence ${ }^{\sim}$ in com plexi ed M inkow ski space w ith real p _) is equivalent to a choice of wavefunction for a spin $1=2$ particle of m om entum p. To see this, we can w rite the m assless D irac equation for a negative-chirality spinor as

$$
\begin{equation*}
\text { i() _@ }=0 \text { : } \tag{1.2.8}
\end{equation*}
$$

A plane wave $=e^{i p} \mathrm{x}_{\mathrm{w}}$ ith constant obeys this equation i $\mathrm{p}_{-}=0 \mathrm{which}$ im plies that $=c$. Sim ilar considerations apply for positive-chirality spinors and thus we can w rite ferm ion wavefunctions of helicity $\quad 1=2$ as

$$
\begin{equation*}
-=\sim-e^{i x}-\sim^{\sim-} ; \quad=e^{i x}-\sim^{-} \tag{1.2.9}
\end{equation*}
$$

respectively.
Form assless particles of spin 1 the usualm ethod is to specify a polarization vector
(which we should be careful not to confuse with) in addition to their m om entum and together with the constraint $\mathrm{p}=0$. This constraint is equivalent to the Lorentz gauge condition and deals w ith $x i n g$ the gauge invariance inherent in gauge eld theories. It is clear that if we add any multiple of p to then this condition is still satis ed and we have the gauge invariance

$$
\begin{equation*}
\wedge=+!p: \tag{1.2.10}
\end{equation*}
$$

If one now has a decom position of a light-like vector particle w ith m om entum $\mathrm{p}_{-}=$ ~ _ then one can take the polarisation vectors to be 131] (see also [153, 163] and references therein):

$$
\begin{equation*}
+=\frac{\sim_{-}}{\mathrm{h} \mathrm{i}} ; \quad=\frac{\sim_{-}}{\left[\sim^{\sim}\right]} \text {; } \tag{1.2.11}
\end{equation*}
$$

[^11]for positive-and negative-helicity particles respectively. and ~ are anbitrary negativeand positive-chirality spinors (not proportional to or ${ }^{\sim}$) respectively and it is worth noting that the positive-helicity polarization vector is proportional to the positivehelicity spinor (${ }^{\sim}$ _) associated w ith them om entum vector p while the negative-helicity polarization vector is proportional to the negative-helicity one (). These polarization vectors clearly obey the constraint $0=p=p-$ since $h \quad i=\left[{ }^{\sim}\right]=0$ and are independent of and ~ up to a gauge transform ation [31,161]. The wavefiunctions for positive and negative helicity m assless vector bosons can thus be w ritten as [161]
\[

$$
\begin{equation*}
\mathrm{A}_{-}^{+}={ }_{-}^{+} \mathrm{e}^{\mathrm{ix}}-\sim_{-} ; \mathrm{A}_{-}=\mathrm{e}^{\mathrm{ix}}-\sim_{--}: \tag{1.2.12}
\end{equation*}
$$

\]

Spinless particles have wavefunction $=e^{\mathrm{ix}}{ }_{-}{ }^{\sim}$ - as usual.

1.2.3 Variable reduction

O ne of the centralm otivations for all this song and dance is that we can use the results to hom ogen ise our description of scattering am plitudes. T he plethora of variables that we had before can sim ply be traded for the bi-spinors and \sim to yield the com pact form of a general scattering am plitude as

$$
\begin{equation*}
A_{n}=A_{n}\left(i ; \sim_{i} ; h_{i}\right)(4) \quad X_{i=1}^{n} i_{i}^{\sim_{i}} \quad ; \tag{1.2.13}
\end{equation*}
$$

$w h e r e h_{i}$ is the helicity of the ith particle. In this schem e we can therefore calculate am plitudes for the scattering of speci c helicity con gurations of speci c colour orderings of m assless particles. The full am plitude is obtained by sum m ing over all helicity con gurations and all appropriate colour orderings.

A s a nal rem ark in this section it is useful to note (and easy to show - see 31, 161]) that under the scaling-invariance inherent in the decom position of Eq. (1.2.6), the wavefunction of a m assless particle of helicity h scales as $c^{2 h}$ and thus obeys the condition

$$
\begin{equation*}
\frac{@}{@} \sim-\frac{@}{@^{\sim}-} \quad\left(;^{\sim}\right)=2 h\left(i^{\sim}\right): \tag{1.2.14}
\end{equation*}
$$

Sim ilarly, the am plitude in Eq. (1.2.13) obeys

$$
\begin{equation*}
\frac{@}{@_{i}} \sim_{i-} \frac{@}{@_{\sim_{i}}} A_{n}\left(i ; \sim_{i} ; h_{i}\right)=2 h_{i} A_{n}\left(i_{i} ; \sim_{i} ; h_{i}\right) \tag{1.2.15}
\end{equation*}
$$

for each i separately. 6

[^12]The interested reader can nd the Feynm an rules for m assless $S U\left(N_{c}\right) Y$ ang M ills gauge theory in the spinor helicity form alism in A ppendix B.

1.3 Supersym m etric decom position

Supersymm etric eld theories are in many ways very sim ilar to the usual Yang M ills theories w hose Feynm an rules we w rote dow n at the start of the chapter. The presence of this extra sym m etry - supersym m etry - m eans that the particles of the theories arrange them selves into supersym m etric m ultiplets containing equal num bers of bosonic and ferm ionic degrees of freedom and this can often give rise to great sim pli cations.
M axim ally supersym m etric ($N=4$) Yang M ills for exam ple, which has the m axim um am ount of supersym m etry consistent w ith a gauge theory (i.e. particles w ith spin less than or equal to 1) in four dim ensions, contains only 1 m ultiplet consisting of 1 vector boson A (2 real degrees of freedom (d.o.f.)), 6 real scalars I (6 reald.o.f.) and 4 W eyl (i.e. chiral) ferm ions (8 reald.o.f.) which lives in the adjoint of the gauge group. This m ultiplet is often written in a helicity-basis (the helicities of the particles here are $h=(1 ; 1=2 ; 0 ; 1=2 ; 1)$) as (A ; ; $\left.{ }^{+} ; A^{+}\right)=(1 ; 4 ; 6 ; 4 ; 1)$ and is often referred to as the adjoint m ultiplet of $N=4$. The meaning of this notation is that one of the degrees of freedom of the vector boson is associated w ith a negative helicity (1) state and the other w ith a positive helicity (+1) state. Sim ilarly, the chiral ferm ions are split into two, with 4 degrees of freedom being associated w ith helicity $1=2$ and 4 w ith helicity $+1=2$. T he scalars are of course spinless and thus associated w ith helicity 0 . O ther com m on m ultiplets in four dim ensions include the vector m ultiplet of $\mathrm{N}=2$ ($1 ; 2 ; 2 ; 2 ; 1$) - which consists of 1 vector, 2 ferm ions and 2 scalars - the hyper multiplet of $N=2(0 ; 2 ; 4 ; 2 ; 0)$ and the vector $(1 ; 1 ; 0 ; 1 ; 1)$ and chiral $(0 ; 1 ; 2 ; 1 ; 0)$ multiplets of $\mathrm{N}=1$ supersym m etry.
T he existence of these supersym m etric m ultiplets generally leads to a better control of the eld theory in question, and m ost-im portantly for us a greater control of its perturbative expansion. Heuristically, ferm ions propagating in loops give term s which have the opposite sign to bosons and the exact m atching of the bosonic and ferm ion ic degrees of freedom leads to cancellations in the ultraviolet divergences that plague nonsupersymmetric eld theories. In particular, $N=4$ super-Yang M ills is believed to be com pletely nite in four dim ensions as well as having quantum m echanical conform alinvariance. M assless Q CD on the other hand is classically conform ally-invariant, although this is broken by quantum e ects as is well-known from the existence of its one-loop (and higher) -function. QCD is also UV divergent at loop-level and thus m ust be renorm alised order-by-order in pertunbation theory.
$N=4$ super $-Y$ ang $-M$ ills has the m ost striking features of these four-dim ensional supersym m etric gauge theories and we w ill concem ourselves with this theory as well
as $\mathrm{N}=1$ super -Y ang -M ills. In fact, the results for $\mathrm{N}=1$ am plitudes in C hapter 2 also apply to certain $N=2$ am plitudes by virtue of the fact that the $N=2$ hyper multiplet is tw ice the $\mathrm{N}=1$ chiralm ultiplet and the $\mathrm{N}=2$ vector m ultiplet is equal to an $\mathrm{N}=1$ vector m ultiplet plus an $N=1$ chiralm ultiplet.

A s we have already mentioned, we w ill m ostly be concemed with ghon scattering in $S U\left(N_{C}\right)$ Yang M ills theories (including Q CD) and thus will only consider this case here. At tree-level it is easy to see that gluon scattering am plitudes are the sam e in QCD as they are in $N=4$ super-Y ang $-M$ ills theory. T his is because vertices connecting ghons to ferm ions or scalars in these theories couple ghons to pairs of these particles. T hus one cannot create ferm ions or scalars intemally w ithout also creating a loop [164]. These QCD scattering am plitudes therefore have a hidden' $N=4$ supersym m etry:

$$
\begin{equation*}
A_{Q C D}^{\text {tree }}=A_{N=4}^{\text {tree }}: \tag{1.3.1}
\end{equation*}
$$

T he sam e can of course be said about any supersym m etric eld theory w ith adjoint elds when one is concemed with the scattering of extemal ghons at tree-level. W e thus have the m ore general result that

$$
\begin{equation*}
A_{Q C D}^{\text {tree }}=A_{N=4}^{\text {tree }}=A_{N=2}^{\text {tree }}=A_{N=1}^{\text {tree }}: \tag{1.3.2}
\end{equation*}
$$

A t one-loop we can of course have other particles propagating in the loop, but w here ghon-scattering only is concemed we can still nd a supersym m etric decom position. It is:

$$
\begin{equation*}
A_{Q C D}^{\text {one-loop }}=A_{N=4}^{\text {one-loop }} \quad 4 A_{N=1 \text {;chiral }}^{\text {one-lop }}+2 A_{\text {scalar }}^{\text {one-loop }}: \tag{1.3.3}
\end{equation*}
$$

In words this says that an all-ghon scattering am plitude in QCD at one loop can be decom posed into 3 term s: Firstly a term where an $\mathrm{N}=4 \mathrm{~m}$ ultiplet propagates in the loop. Secondly a term where an N = 1 chiralm ultiplet propagates in the loop and lastly a term in pure Yang-M ills where we only have 2 real scalars (or one com plex scalar) in the loop. This is easily seen due to the m ultiplicities of the various m ultiplets in question: $(1 ; 0 ; 0 ; 0 ; 1)=(1 ; 4 ; 6 ; 4 ; 1) 4(0 ; 1 ; 2 ; 1 ; 0)+2(0 ; 0 ; 1 ; 0 ; 0)$.

As we have already discussed m any tim es, the LHS of (1.3.3) is extrem ely com plicated to evaluate. H ow ever, the 3 pieces on the RHS are relatively m uch easier to deal w ith. The nst two pieces are contributions com ing from supersymm etric eld theories and these extra (super)-sym m etries greatly help to reduce the com plexity of the calculations there. M uch of the di culty is thus pushed into the last term which is the m ost com plex of the three, but is still far easier to evaluate than the LH S .

It is therefore clear that supersym m etric eld theories are not only sim pler toy m odels w ith which to try to understand the gauge theories of the standard m odel, but relevant theories in them selves which contribute parts (and som etim es the entireity in
the case of certain tree-level am plitudes (1.3.2)) of the answ er to calculations in theories such as Q CD. These supersym m etric decom positions will be of great assistance to us in our quest to understand the hidden sim plicity of scattering am plitudes and in order to perform actual calculations.

For m ore inform ation on supersym m etric eld theories see any one of a m ultitude of books, papers and review s including [9, 10, 11, 12].

1.4 Supersym m etric W ard identities

A s w e can now see, for a large num ber of scattering am plitudes in gauge theories we can reduce the com plexity of our problem by considering an appropriate colour-ordered subam plitude that only depends on the positive- and negative helicity spinors associated w ith the extemalm om enta (w e usually drop the h_{i} dependence of (1.2.13) and leave it as being im plicit in the de nition of the am plitude being considered). U sing our 'hidden' (or not, depending on the theory in question) supersym m etry we are now in a position to leam som ething about the scattering am plitudes in question. The follow ing is also nicely review ed in a num ber of places including [153, 154] and was rst considered in [164, 165, 166, 167]. See also e.g. [168] for a recent application of supersym m etric W ard identities to loop am plitudes.

1.4.1 $\mathrm{N}=1 \mathrm{SU}$ SY constraints

Let us consider what is in som e ways the sim plest possible setup, an ad joint (vector) m ultiplet in an $N=1$ supersym m etric eld theory where the SU SY is unbroken. This $\mathrm{N}=1$ theory has only one supercharge $Q(\quad)$ that generates the supersym m etry w ith being the ferm ionic param eter of the transform ation [0]. B ecause supersym m etry is unbroken we know that $Q \mathrm{~m}$ ust annihilate the vacuum : $\mathrm{Q}(\mathrm{HDi}=0 . \mathrm{Th}$ is in tum gives rise to the follow ing supersym m etric W ard identity (SW I)
for some elds i. In addition, if we use a suitable helicity basis in which we have a m assless vector A and a m assless spin $1 / 2$ ferm ion , then $Q()$ acts on the doublet (A ;) (i.e. (A ; $\mathrm{A}^{+}{ }^{+} ; \mathrm{A}^{+}$) in the notation of the previous subsection) as [166, 167]:

$$
\begin{align*}
& Q(1) ; A(p)=(p ;) \quad ; \\
& Q(\quad) ; \quad(p)=(p ;) A \quad ; \tag{1.4.2}
\end{align*}
$$

for som em om entum p associated w ith these states. ($; \mathrm{p}$) is linear in and can be constructed by using the Jacobi identity

$$
\begin{equation*}
[[Q() ; Q()] ;(p)]+[[Q() ;(p)] ; Q()]+[[(p) ; Q()] ; Q(\quad)]=0 \tag{1.4.3}
\end{equation*}
$$

and the SUSY algebra relation $[Q() ; Q()]=2 i P$, where $P=P$ as usual. By considering 1.4.4) for any of the chiral elds (A^{+}(p) for exam ple), we can readily deduce that

$$
\begin{equation*}
+(\mathrm{p} ;) \quad(\mathrm{p} ;) \quad+(\mathrm{p} ;) \quad(\mathrm{p} ;)=2 i p \quad ; \tag{1.4.4}
\end{equation*}
$$

which can be solved to give (in the notation of r1.2) [153, $154,166,167]$:

$$
\begin{equation*}
\text { + }(p ; q ; \#)=\#[p q] ; \quad(p ; q ; \#)=\text { \#hpqi }: \tag{1.4.5}
\end{equation*}
$$

In this expression we have written $p=p_{p}$ and our param eter in term s of a G rassm ann param eter \# and an arbitrary reference m om entum $q=q^{\sim} q \cdot W$ e have also used
 henceforth.
N ow consider 1.4.1) w ith $\quad=\quad+\quad$ and $i=A_{i}^{+}$for $i \notin 1$:

$$
\begin{align*}
& =\quad\left(\mathrm{p}_{1} ; \mathrm{q}^{\prime} ; \#\right) \mathrm{h} 0-\mathrm{A}_{1}^{+}\left(\mathrm{p}_{1}\right) \mathrm{A}_{2}^{+}\left(\mathrm{p}_{2}\right)::: \mathrm{A}_{\mathrm{n}}^{+}\left(\mathrm{p}_{\mathrm{n}}\right) \text { j0i } \\
& +\quad\left(p_{2} ; q ; \#\right) h 0 j_{1}^{+}\left(p_{1}\right){ }_{2}^{+}\left(p_{2}\right)::: A_{n}^{+}\left(p_{n}\right)-J D i \\
& \vdots \\
& +\quad\left(\mathrm{p}_{\mathrm{n}} ; \mathrm{q} ; \#\right) \mathrm{hO} j_{1}^{+}\left(\mathrm{p}_{1}\right) \mathrm{A}_{2}^{+}\left(\mathrm{p}_{2}\right):::_{\mathrm{n}}^{+}\left(\mathrm{p}_{\mathrm{n}}\right) j \mathrm{Ji} \\
& =\quad\left(\mathrm{p}_{1} ; q ; \#\right) \mathrm{A}_{\mathrm{n}}\left(\mathrm{~A}_{1}^{+} ; \mathrm{A}_{2}^{+} ;::: ; \mathrm{A}_{\mathrm{n}}^{+}\right) \\
& +{ }^{+}\left(\mathrm{p}_{2} ; \mathrm{q} ; \#\right) \mathrm{A}_{\mathrm{n}}\left({ }_{1}^{+} ;{ }_{2}^{+} ;::: ; \mathrm{A}_{\mathrm{n}}^{+}\right) \\
& \vdots \\
& +{ }^{+}\left(\mathrm{p}_{\mathrm{n}} ; q ; \#\right) \mathrm{A}_{\mathrm{n}}\left({ }_{1}^{+} ; \mathrm{A}_{2}^{+} ;::: ;{ }_{\mathrm{n}}^{+}\right) \text {: } \tag{1.4.6}
\end{align*}
$$

As all of the couplings of ferm ions to vectors conserve helicity (you alw ays get one ferm ion of each helicity coupling to a vector), the n 1 term s involving two ferm ions and $n 2$ gluons m ust vanish and thus the rst term involving only gluons of positive helicity m ust vanish too $A_{n}\left(A_{1}^{+} ; A_{2}^{+} ;::: ; A_{n}^{+}\right)=0$. Since supersymm etry com m utes w ith colour we can w rite our am plitudes as colour-ordered ones straight aw ay and then the relations apply to each colour-ordered am plitude separately.

If we consider the case where we have one negative helicity in our SW I so that $1={ }_{1}^{+}, 2=A_{2}$ and $i=A_{i}^{+}$for $i \notin 1 ; 2$ for exam ple, then we can also show that all am plitudes w ith one negative helicity particle and $n \quad 1$ positive-helicity particles
vanish. This is so both for the case of all ghon scattering and the case of $n \quad 2 \mathrm{ghons}$ and tw oferm ions of opposite helicities. W ith m ore than one negative-helicity (such as $1={ }_{1}^{+}, 2=A_{2}, 3=A_{3}$ and $i=A_{i}^{+}$for $\left.i \in 1 ; 2 ; 3\right)$ we can start to relate non-zero am plitudes to each other. In all of these cases it is useful to rem em ber that the reference m om entum q is anbitrary and can thus be taken to be one of the extemal m om enta $\left(q=p_{i}\right)$ for exam ple at any given stage in order to sim plify the calculations and deduce useful results.

1.4.2 Am plitude relations

Som e of the useful relations that we can obtain are:

$$
\begin{align*}
& \mathrm{A}_{\mathrm{n}}^{\operatorname{SUSY}}(1 ; 2 ;::: ; \mathrm{n})=0 ; \tag{1.4.7}\\
& \mathrm{A}_{\mathrm{n}}^{\operatorname{SUSY}}(1 ; 2 ;::: ; \mathrm{n})=0 ; \tag{1.4.8}
\end{align*}
$$

for any spins of the particles involved and [38]

$$
\begin{align*}
& A_{n}^{S U S Y}\left(A_{i} ;::: ;_{r} ;::: ;_{s}^{+} ;:::\right)=\frac{h i s i^{2}}{h i r i^{2}} A_{n}^{S U S Y}\left(A_{i} ;:: ; A_{r} ;::: ; A_{s}^{+} ;:::\right) \text {; } \tag{1.4.9}
\end{align*}
$$

where we have also played the sam e gam e w ith an $N=2$ Vector m ultiplet in order to include scalars. These relations hold order-by-order in the loop expansion of supersym m etric eld theories as no perturbative approxim ations w ere m ade in deriving them, and by virtue of (1.3.2) they apply directly to tree-levelQ CD am plitudes involving gluons. It tums out that tree-levelQ CD am plitudes involving fundam entalquarks can also be obtained from (1.4.9) because of relations betw een sub-am plitudes involving gluinos (i.e. ferm ionic superpartners of gluons in an ad joint m ultiplet such as the above) and those involving fundam entalquarks [153, 169].

Equations 1.4.7) and (1.4.8) am ount to the statem ent that for any supersym m etric theory w ith only adjoint elds, the 'all-plus' and 'all-m inus' helicity am plitudes m ust vanish and the am plitudes w ith one m inus and $n 1$ plusses (or vice-versa) m ust also vanish. T he sam e statem ent holds for the tree-levelgluon scattering am plitudes of C C D . A s a result of this, the rst non-vanishing set of am plitudes in a supersym m etric theory are the ones with two negative helicities and n 2 positive helicities. These are thus term ed the M axim ally H elicity V iolating ($M H V$) am plitudes. Their parity con jugates, the am plitudes w ith tw o positive helicities and n 2 negative helicities are sim ilarly nonvanishing and are som etim es term ed googly M HV (or $\overline{M H V}$) am plitudes [31]. Sim ilarly, am plitudes w ith three negative helicities and n 3 positive helicities are term ed next-to-M HV (NM HV) am plitudes. The next ones are thus called next-to-next-to-M H V
($\mathrm{N} N \mathrm{MHV}$) and so on.
T he tree-level M HV am plitudes for ghon scattering, proposed at n-point in [170] and then proved in [171], are given by (1.0.3) or by

$$
\begin{equation*}
A_{n}\left(1^{+} ;::: ; i \quad ;:: ; j \quad ;::: ; n^{+}\right)=\underset{k=1}{\sum_{k=1}^{n} h k+1 i} \text {; } \tag{1.4.11}
\end{equation*}
$$

up to a factor. i and j are the ghons of negative helicity and the am plitude obeys 1.2.15). The am plitude is cyclic in the ordering of the ghons and so the $n+1^{\text {th }}$ spinor appearing in the denom inator of (1.4.11) just denotes the spinor of the $1^{\text {st }}$ gluon. N ote in particular that this function is entirely holom onphic' in the negative-helicity spinors
-i.e. it does not depend on any of the ${ }^{\sim} s$-and this w illbe im portant to us presently. W e will not discuss NM HV and other am plitudes yet except to mention that they do depend on the ${ }^{\sim} s$.

1.5 T w istor space

There is a way in which we can understand som e of the properties of am plitudes that we have discussed above such as the vanishing of certain helicity con gurations and the sim ple structure of the M HV am plitudes and that is by going to tw istor space [31]. T his has two prim ary m otivations. O ne is that the conform al sym m etry group has a rather exotic representation in term s of the and ${ }^{\sim}$ variables and the other is that the scaling-invariance m entioned under equation (1.2.6) has an opposite action on the holom onphic spinors com pared w ith the anti-holom onphic spinors ~ . It would be nice to put the conform al groun ${ }^{7}$ into a m ore standard representation and it m ay also be nice to have the sam e scaling for the negative and positive-helicity spinors.

In term s of the spinors we have already introduced in 1.2 , the conform algenerators

[^13]are 31]
\[

$$
\begin{align*}
& \mathrm{P}_{-}=\sim_{-} \text {; } \tag{1.5.1}\\
& J=\frac{i}{2} \frac{@}{@}+\frac{@}{@} \text {; } \tag{1.5.2}\\
& J_{--}=\frac{i}{2} \sim-\frac{@}{@^{\sim}-}+\sim \frac{@}{-@^{\sim} \sim_{-}} \quad ; \tag{1.5.3}\\
& D=\frac{i}{2} \quad \frac{@}{@}+\sim-\frac{@}{@^{\sim}-}+2 \quad ; \tag{1.5.4}\\
& K_{-}=\frac{@^{2}}{@ @^{\sim} \text { - }} \tag{1.5.5}
\end{align*}
$$
\]

where $P_{~}$ _ is the m om entum operator, J and J_{\sim} the Lorentz generators, D the dilatation operator and K _ the generator of special conform al transform ations. These give rise to the algebra of the conform al group as

$$
\begin{aligned}
& \text { J ; } P_{-}=\frac{i}{2}\left(P_{-}+P_{-}\right) ; \\
& J_{-} ; P_{-}=\frac{i}{2}=_{-}{ }^{+}{ }^{P}{ }^{-} \text {; } \\
& \mathrm{J} ; \mathrm{J}=\frac{1}{4}(\mathrm{~J}+\mathrm{J}+\mathrm{J}+\mathrm{J}) \text {; }
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{D} ; \mathrm{P}_{-}=\frac{i}{2} \mathrm{P}_{-} \text {; } \\
& \mathrm{K}_{-} \text {; } \mathrm{D}=2 \mathrm{~K}_{\text {_ }} \text {; } \\
& J \quad ; K_{-}=\frac{i}{2}\left(K_{-} K_{-}\right) ; \\
& \text {J__ }^{K} K_{-}=\frac{i}{2} _^{K}{ }^{+}{ }_{--} K_{-} \text {; } \\
& K_{\text {_ }} \mathrm{P}_{-}=\mathrm{i} \mathrm{~J}_{-}+\mathrm{J}_{-}+\mathrm{D}^{\mathrm{D}} \text {; } \tag{1.5.6}
\end{align*}
$$

w ith all other com m utators being zero. H ow ever, as can be seen from (1.5.1)-1.5.5), the m om entum operator is a m ultiplication operator, the Lorentz generators are rst order hom ogeneous di erentialoperators, the dilatation operator an inhom ogeneous rst order di erential operator and the special conform al generator a degree tw o di erential operator. W e have quite a m ix.

W e can in fact reduce these to a m ore standard representation by perform ing a the transform ation [31,32]

$$
\begin{align*}
& \sim_{-}! \\
& \frac{@}{@} ; \tag{1.5.7}\\
& \frac{@}{@_{-}} \quad! \\
& i_{-}:
\end{align*}
$$

T his breaks the sym m etry betw een and ~ as we have chosen to transform one rather than the other, but giving the advantage that all the generators becom e rst order di erential operators:

$$
\begin{align*}
& \mathrm{P}_{-}=\mathrm{i} \frac{@}{@-} \text {; } \tag{1.5.8}\\
& K_{-}=i_{-} \text {@ ; } \tag{1.5.9}\\
& J=\frac{i}{2} \frac{@}{@}+\frac{@}{@} \text {; } \tag{1.5.10}\\
& \tau_{--}=\frac{i}{2}-\frac{@}{-@-}+\frac{@}{-@-} \text {; } \tag{1.5.11}\\
& D=\frac{i}{2} \quad \frac{@}{@} \quad-\frac{@}{@-}: \tag{1.5.12}
\end{align*}
$$

The scaling properties of and are also changed such that there is an invariance under
(;) ! (с ; с) ;
for a com plex num ber c, and the am plitude scalings (1.2.15) becom e

$$
\begin{equation*}
\frac{@}{@_{i}}+\frac{@}{@_{\bar{i}}} \AA_{n}^{\sim}\left(i ; i ; h_{i}\right)=\left(2 h_{i}+2\right) A_{n}^{\sim}\left(i ; i ; h_{i}\right) ; \tag{1.5.14}
\end{equation*}
$$

where A_{n}^{\sim} is the appropriately transform ed am plitude.
T his transform ation is perhaps easiest to understand in signature ++ . In th is case one can consider and - to be real and independent and thus they param etrise a copy of R^{4}. The scaling 1.5 .13) is then a real scaling and reduces the space to realpro jective three-space R P^{3} and the transform 1.5 .7) is im plem ented by a $1 / 2$ Fourier' transform analagous to that encountered in quantum m echanics [31]:

$$
\begin{equation*}
f()=\frac{d^{2 \sim}}{(2)^{2}} e^{i-\sim}-f(\sim): \tag{1.5.15}
\end{equation*}
$$

In other signatures (such asM inkow skispace) it may bem ore natural to regard and as being com plex and independent. They thus param etrise a copy of C^{4} which reduces to $C P^{3}$ under the scaling (1.5.13). These spaces $-R P^{3}$ and $C P^{3}$ - were called tw istor spaces by Penrose [32] and we will often use coordinates Z^{I} with $I=1::: 4$ on them thus com bining and - together. O ne should really refer to 'real/com plex projective tw istor space' respectively, but we w ill denote them all as being tw istor space (T) and let the context dictate what wem ean by that.

In the com plex cases, the choice of a contour for the transform ation as given by 1.5.15) is not necessarily clear and it seem s necessary to take the m ore sophisticated approach of Penrose and use D olbeault- or sheaf-cohom ology [32]. N a vely, this inter-
prets the integrand and m easure of 1.5 .15) as a $(0 ; 2)$-form on tw istor space, while equation 1.5 .14) suggests that the am plitudes are best thought of not as functions, but sections of a line bundle L_{h} of degree $2 h \quad 2, L_{h}=O\left(\begin{array}{cc}2 h & 2\end{array}\right)$ for each h. T he am plitudes are thus elem ents of $\mathrm{H}^{(0 ; 2)}\left(\mathrm{CP}^{3^{0}} ; \mathrm{O}\left(\begin{array}{ll}2 \mathrm{~h} & 2\end{array}\right)\right)[31][8$
T he transform ation of wavefunctions to tw istor space is in som e ways m ore com plex. O ne cannot perform such a na ve '1/2Fourier' transform in essence because the wavefunctions are de ned by being solutions to the m assless free w ave equations and so one m ust see how one can solve these in tw istor space. It tums out that these solutions can be written as integrals of functions of degree $2 \mathrm{~h} \quad 2$ and the wavefunctions are then described by elem ents of the @-cohom ology group $\mathrm{H}^{(0 ; 1)}\left(\mathrm{CP}^{3^{0}} ; \mathrm{O}\left(\begin{array}{ll}2 \mathrm{~h} & 2\end{array}\right)\right.$)-see e.g. [31, $172,173,174]$ for details.

In particular these descriptions m ean that scattering am plitudes w ith speci c external states m ake sense in tw istor space. In a usual eld theory construction one would $\mathrm{m} u l t i p l y ~ a ~ m o m ~ e n t u m ~-s p a c e ~ s c a t t e r i n g ~ a m ~ p l i t u d e ~ w i t h ~ i t s ~ m o m ~ e n t u m ~-s p a c e ~ w a v e f u n c-~$ tions and integrate over allm om enta to create a scattering am plitude w ith speci cextemalstates in the position-space representation. If the wavefunctions in position-space satisfy ing the appropriate free w ave equation s are given by ${ }^{\prime}(x)={ }^{R} d^{4} p_{i}\left(p_{1}^{2}\right) e^{i p_{i}} x_{i}\left(p_{i}\right)$, then we have schem atically $A\left({ }^{\prime}{ }_{i}\right)={ }^{R}\left(^{Q} d^{4} p_{i}\left(p_{1}^{2}\right) e^{i p_{i}} x_{i}\left(p_{i}\right)\right) A^{\sim}\left(p_{i}\right)$.

In tw istor space, m ultiplying an am plitude in $\mathrm{H}^{(0 ; 2)}\left(\mathrm{CP}^{3^{0}} ; \mathrm{O}\left(\begin{array}{cc}2 \mathrm{~h} & 2\end{array}\right)\right)$ w ith a wavefunction which is in $\mathrm{H}^{(0 ; 1)}\left(\mathrm{CP}^{3^{0}} ; \mathrm{O}\left(\begin{array}{ll}2 \mathrm{~h} & 2\end{array}\right)\right.$) gives an elem ent of $\mathrm{H}^{(0 ; 3)}\left(\mathrm{CP}^{3^{0}} ; \mathrm{O}(4)\right)$. The naturalm easure on $C P^{3}$ is a ($3 ; 0$)-form of degree 4 (it is in fact the ${ }^{0}$ of (1.6.12)), and so the nal integral will be of a (3;3)-form of degree 0 which makes sense (i.e. the integrand is a top-form on tw istor space invariant under (1.5.13)) as an integral over $C P^{3^{0}}$. D oing this for each extemal particle gives the required scattering am plitude in position-space.

Follow ing the original suggestions of N air [175]], there is a sim ilar construction w hich is particularly apt for am plitudes in $N=4$ Yang M ills. In this case, particles are described by , ~ and an additional spinless ferm ionic variable A with $A=1 ;::: ; 4$ in the 4 representation of the R symmetry group $S U(4)_{R}$ of $N=4$ Yang M ills. The spacetim e sym m etry group in this case is no-longer the usual conform al group, but the superconform al group P SU $(2 ; 2 j 4)$ and one can write down generators in term sof , ~ and which are again in a som ew hat exotic form. A fter a Penrose transform to

[^14]super-tw istor space, which just consists of (1.5.7) plus
\[

$$
\begin{gather*}
A \\
\frac{@}{@_{A}^{A}} \quad! \tag{1.5.16}\\
i^{A} ;
\end{gather*}
$$
\]

all superconform algenerators sim ilarly becom e rst order di erential operators and the space spanned by , - and A is $R P^{3 j 4}$ or $C P^{3 j 4}$. The scaling invariance of supertw istor space is:

$$
\begin{equation*}
\left(Z^{I} ;{ }^{A}\right)!\left(Z^{I} ; C^{A}\right): \tag{1.5.17}
\end{equation*}
$$

In this case, the helicity operator

$$
\begin{equation*}
\mathrm{h}=1 \quad \frac{1}{2} \mathrm{~A} \frac{@}{@_{\mathrm{A}}} \tag{1.5.18}
\end{equation*}
$$

m odi es the scaling relation (1.5.14) so that it becom es

$$
\begin{equation*}
Z_{i}^{I} \frac{@}{@ Z_{i}^{I}}+\underset{i}{A} \frac{@}{@}{ }_{i}^{A} A_{n}^{\sim}\left(i ; i ; A ; h_{i}\right)=0 ; \tag{1.5.19}
\end{equation*}
$$

and so the scattering am plitudes are elem ents of $\mathrm{H}^{(0 ; 2)}\left(\mathrm{CP}^{3 j 4^{0}} ; \mathrm{O}(0)\right)$.
O n super-tw istor space, the wavefunctions are now elem ents of $H^{(0 ; 1)}\left(C P^{3 j 4^{0}} ; \mathrm{O}(0)\right)$ and can be given explicitly for a particle of helicity h by $31,36,120,161]$

$$
\begin{align*}
& \text { 2h } 1 \tag{1.5.20}
\end{align*}
$$

where $g_{h}(\quad)$ is sim ply a factor of $2 \quad 2 \mathrm{~h} \quad s^{9}$ For exam ple, for a positivehelicity ghon g_{h} is 1 while for a negative helicity ghon it is $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$. (In fact it is just the factor of that the associated state m ultiplies in the expansion of the super eld A in (1.6.10).)
is a holom onphic' delta function which is a $(0 ; 1)$-form given by (f) $={ }^{(2)}$ (f)df for any holom orphic function f - see A ppendix A for a m ore detailed discussion.

In this case, the m ultiplication of scattering am plitude and wavefunction leads to an elem ent of $H^{(0 ; 3)}\left(\mathrm{CP}^{3 j 4^{0}} ; \mathrm{O}(0)\right)$ and the volum e form is a (3;0)-form ofdegree 0 (explicitly given by 1.6.11)), so the result m akes sense (again as a scaling invariant top-form) to be integrated over $C P^{3 j 4^{0}}$ and gives the scattering am plitude in position-space.

For our treatm ent of am plitudes, we will generally use the de nition (1.5.15) and signature ++ and interpret our results in other signatures when necessary. It is

[^15]also worth m entioning that we have glossed over m any subtleties in the considerations above such as the real nature of m om enta already alluded to in 1.2 , and the exclusion of the point at in nity' in tw istor space (i.e. the use of T^{0} rather than T). For m ore details on all these and more detailed discussions of tw istor T heory we refer the reader to $[31,32,172,173,174,176,177,178]$ and related references.

1.5.1 A m plitude localisation

Interpreting (1.5.15) as the way to transform am plitudes into tw istor space, we are now ready to see w hat the tree-levelM H V am plitudes look like there. If we recall that these am plitudes depend only on the negative-helicity spinors i, the transform ed am plitudes are [31]:

$$
\begin{align*}
& =d^{Z} x_{j=1}^{Y^{n}}(2) \quad j_{-}+x_{-} j_{n}^{M H V}(i): \tag{1.5.21}
\end{align*}
$$

In the second line we have used a standard position-space representation for the delta function ofm om entum conservation and then in the third we have sim ilarly interpreted the ~ integrals as delta functions. The M HV am plitudes are thus supported only when
 curve of degree one and genus zero in R P^{3} or $C P^{3}$ (depending on whether the variables are real or com plex) which is in fact an $R P^{1}$ or a $C P^{1}$ [31]. $x_{\text {_ }}$ is the param eter or m odulus describing any one of these curves and (1.5.21) is thus an integral over the m odulispace of degree one genus zero curves in T. A s there is a delta function for every extemal particle, the integral is only non-zero when all n-points (i; i_) lie on one of these curves in tw istor space 10 Thus the M HV am plitudes are localised on sim ple algebraic curves in tw istor space, which are (pro jective) straight lines in the real case and sphere ${ }^{11}$ in the com plex case.

In them axim ally supersym m etric case $w e$ have an additionallocalisation from transform ing the ferm ion ic variables to tw istor space. A s w ell as the delta function ofm om en-

[^16]

Figure 1.3: T he M H V am plitudes localise on sim ple straight lines in tw istor space. H ere the 5 -point M H V am plitude is depicted as an exam ple.
tum conservation com ing w ith the am plitudes, we also have a ferm ionic delta function

$$
{ }^{(8)}()=\text { (8) }_{i=1}^{X^{n}} \text { i i }=d^{8} \quad \exp i^{A} X_{i=1}^{X^{n}} \quad \text { iA } \quad \text {; }
$$

and the $\mathrm{M} H \mathrm{~V}$ am plitudes for $\mathrm{N}=4 \mathrm{Y}$ ang M ills are given by [31, 175]

$$
\begin{equation*}
A_{n}^{M H V}\left(i ;_{i}^{\sim} ; i\right)={ }^{(4)}(P)^{(8)}() \underset{i=1}{\sum_{i}^{n} \text { hi i+ 1i}}: \tag{1.5.23}
\end{equation*}
$$

The transform to super-tw istor space is a straightforw ard generalisation of (1.5.21) and the result is [31]

The equations $j_{-}+X_{-} j^{=} 0$ and $\underset{j}{A}+A_{j}=0$ then de ne (for each j) a CP ${ }^{1-00}$ or an $R P^{1-0}$ in $C P^{3 j 4}$ or $R P^{3 j 4}$ respectively on which the am plitudes lie.
T he equation _ $+x_{~}=0$ is in fact of centralim portance in tw istor theory and is traditionally taken to be the de nition of a tw istor. For a given x (as in our case above), it can be regarded as an equation for and which aswe have seen de nes a degree one genus zero curve that is topologically an S^{2}. A point in com plexi ed M inkow skispace is thus represented by a sphere in tw istor space and hence com plexi ed M inkow ski space is the m oduli space of such curves. A ltematively, if and (i.e. a point in tw istor space) are given, it can be regarded as an equation for x. The set of solutions is a two com plex-dim ensional subspace of com plexi ed M inkow ski space that is null and selfdual called an -plane. T he null condition m eans that any tangent vector to the plane is null, and the self-duality m eans that the tangent bi-vector is self-dual in a certain sense. These -planes can essentially be regarded as being light-rays and tw istor space is the m oduli space of -planes.

O ther am plitudes involving m ore and m ore negative helicities can also be treated, though in these cases perform ing the Penrose transform 1.5.15) explicitly becom es harder. In these cases it has been found that certain di erential operators can be constructed which help to elucidate their localisation properties in tw istor space [31, 73]. In particular, given three points $P_{i} ; P_{j} ; P_{k} 2 C P^{3}$ w ith coordinates $Z_{i}^{I} ; Z_{j}^{I}$ and Z_{k}^{I}, the condition that they lie on a 'line' (i.e. a linearly-em bedded copy of CP^{1} as discussed above) is that $F_{i j k L}=0$ where

$$
\begin{equation*}
F_{i j k L}=I J K L Z_{i}^{I} Z_{j}^{J} Z_{k}^{K}: \tag{1.5.25}
\end{equation*}
$$

Sim ilarly, the condition that four points in tw istor space are 'coplanar' (i.e. lie on a linearly em bedded CP $P^{2} \quad C P^{3}$ is given by $K_{i j k l}=0$ where

$$
\begin{equation*}
K_{i j k l}=I J K L Z_{i}^{I} Z_{j}^{J} Z_{k}^{K} Z_{l}^{L}: \tag{1.5.26}
\end{equation*}
$$

W hen these are explicitly used, is substituted for $@=@ \sim$ - and then they act on am plitudes as di erential operators.

The localisation properties of m any am plitudes have been checked [31, 43, 47, 53, $72,73,76,91,179,180,181,182,183,184]$, and it has been found that am plitudes w ith m ore and m ore negative helicities localise on curves of higher and higher degree. For tree-level am plitudes in particular th is m eans that an am plitude w ith q negative-helicity ghons localises on a curve of degree q 1. In general, the tw istor version of an n-particle scattering am plitude is supported on an algebraic curve in tw istor space whose degree is given by [31]

$$
\begin{equation*}
d=q \quad 1+1 ; \tag{1.5.27}
\end{equation*}
$$

where q is the num ber of negative helicity gluons and 1 the num ber of loops. T he curve is not necessarily connected and its genus g is bounded by $g \quad l$.

Figure 1.4: T w istor space localisation of tree am plitudes with $q=3$ and $q=4$

Tree-level next-to-M H V am plitudes for exam ple are supported on curves of degree 2, while NNM HV am plitudes are supported on curves of degree 3 as shown in Figure 1.4 above. W e can also get a geom etrical understanding of the vanishing of the all-plus
am plitude and the am plitude w ith onem inus and $n 1$ plusses at tree-level. By 1.5.27) these would be supported on curves of degree $d=1$ and $d=0$ in tw istor space. In the rst case, there are no algebraic curves of degree 1 , so these am plitudes m ust trivially vanish. In the second, a curve of degree 0 is sim ply a point and so am plitudes of this type are supported by con gurations where all the ghons are attached to the sam e point (i; i) = (;) 8 i in tw istor space. Recalling from equation (12.7) that $p_{i} \quad$ P/ h $i_{i} i\left[\sim_{j} \sim_{i}\right]$, all these invariants m ust be zero for these am plitudes. This on the other hand is im possible for non-trivial scattering am plitudes with n 4 particles and thus these m ust vanish at tree-level.

For $n=3$ things are a bit m ore subtle because on-shellness, $p_{i}^{2}=0$ and m om entum conservation, $\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}=0$, guarantee that for real m om enta in Lorentz signature $p_{i} P=0$. H ow ever, for com plex m om enta and/or other signatures the 3-point am plitude m akes m ore sense. As $0=2 p_{i} \quad P=h_{i} j_{i}\left[{ }_{j}{ }_{j} \tilde{i}_{i}\right]$, the independence of i and ${ }_{i}$ implies that either $h_{i} j_{i}=0$ or $\left[\sim_{j} \sim_{i}\right]=0$. Thus all i are proportional or all \sim_{i} are proportional. A s can be read-o from the Yang M ills Lagrangian (or seen as a special case of the googly M H V am plitudes), the + + am plitude is given by

$$
\begin{equation*}
A=\frac{\left[\sim_{1} ; \sim_{2}\right]^{A}}{\left[\sim_{1} ; \sim_{2}\right]\left[\sim_{2} \sim_{3}\right]\left[\sim_{3} \sim_{1}\right]}: \tag{1.5.28}
\end{equation*}
$$

This would vanish identically if all the ${ }^{{ }_{i}}$ are proportional, so we should pick all the i to be proportional to ensure m om entum conservation. H ow ever, SL (4;R) invariance in tw istor space ${ }^{12}$ then implies that the (i; i) all coincide and thus the gluons are supported at a single point in tw istor space as predicted by [1.5.27) [31].

1.6 T w istor string theory

In this section wew illgive a very briefoverview of a string theory that provides a natural fram ew ork for understanding the properties of scattering am plitudes discussed in the previous sections. W e will only describe the original approach (which has also been the onem ost com putationally useful to date) taken by W itten [31] though other approaches, notably by Berkovits [112, 113, 114], have been considered. Further proposals include [115, 116, 117, 118], though these have not so far been used to calculate any am plitudes. A good introduction to them aterialpresented in this section can again be found in [161].

It is well known that the usual type I, type II and heterotic string theories live in the critical dim ension of $d=10$, which is where they really m ake sense quantum m echanically. H ow ever, there are other string theories known as topological string theories which are typically sim pler than ordinary string theories and can m ake sense

[^17]in other dim ensions. They are called topological because they can be obtained from certain topological eld theories which are eld theories whose correlation functions only depend on the topological inform ation of their target space and in-particular do not depend on the local inform ation such as the m etric of the space. W itten introduced topological string theory in [185, 186] as a sim pli ed m odel of string theory, and it has been extensively studied since then. W e will only give a Jightning' review here and refer the reader to the original papers and such excellent introductions as [187] form ore details.

1.6.1 Topological eld theory

O ne starts w ith a eld theory in 2 -dim ensions with $N=2$ supersym m etry. The supersym m etry generators usually transform as spin $1=2$ ferm ions under the Lorentz group, but in $2-d$ th is is $S O(2)=U(1)$ locally and the spin $1=2$ representation is reducible into tw o representations which have opposite charge under the $U(1)$. Things living in these representations are often term ed left-m overs and right-m overs, and the supersym m etry is usually w ritten as being $N=(2 ; 2)$ w ith 2 left-m oving supercharges and 2 right-m oving supercharges.

The sym m etries of the theory consist of both the usual Poincare algebra as well as the $\mathrm{N}=2$ supersymm etry algebra and the R -symmetry of the theory associated w ith the supersym m etry. W e w ill not write all of these dow n here, but in-particular the supersym m etry generators and their com plex conjugates obey the non-zero anticom m utation relations (in the language of [187]):
$\mathrm{fQ} ; \mathrm{Q} \quad \mathrm{g}=\mathrm{P} \quad \mathrm{H}$
$\mathrm{fD} ; \mathrm{D} \mathrm{g}=$
f
where $H \quad d=d^{0}$ and $P \quad d=d^{1}$ are the H am iltonian and m om entum operators of the $2-d$ space w ith coordinates .

O ne thing that we can now do is to de ne new operators Q_{A} and Q_{B} which are linear com binations of supercharges as

$$
\begin{align*}
& Q_{A}=Q_{+}+Q \\
& Q_{B}=Q_{+}+Q_{i} \tag{1.6.2}
\end{align*}
$$

and then it follow s from (1.6.1) that

$$
\begin{equation*}
Q_{A}^{2}=Q_{B}^{2}=0 \tag{1.6.3}
\end{equation*}
$$

and Q_{A} and Q_{B} look like BRST operators. H ow ever, $Q_{A=B}$ are not scalars, so we w ould
violate Lorentz invariance by interpreting them as BRST operators straight away. In fact what we can do is to m ake an additionalm odi cation to the Lorentz generator of the $2-d$ space by m aking linear combinations of it and the R-sym m etry generators in such a way that the $Q_{A=B}$ are scalars under the new generators. This procedure is called tw isting and produces two di erent topological eld theories labelled by A and B.

N ow that we have a BRST operator, we can use the usualde nitions for the physical states of our theory in term s of BRST cohom ology (see for exam ple Chapter 16 of [2] or C hapter 15 of [4] for an introduction). Physical states $j i$ are given by the condition $Q_{A=B} j i=0 w i t h$ states being equivalent if they di er by som ething which is BRST exact such as $Q_{A=B} j$ i for som e ji. Sim ilarly, physical operators are taken to be those which com m utew ith the BRST operatorm odulo those which can be w ritten as an anticom m utator of $Q_{A=B}$ w ith som e other operator. In particular one can show that that the stress-tensors of the tw isted theories are BRST exact as they can be w ritten in the form $T_{A=B}=f Q_{A=B} ; \quad g$ for som $e \quad . T h$ is is a general property of topological eld theories.

1.6.2 Topological string theory

W hat we have so far constructed are tw o 2-dim ensional topological eld theories. H ow ever, we can prom ote these to string theories by considering the theories to be living on the worldsheet of a string and ensuring that we integrate over all metrics of the 2-dim ensional space in the path integral as well as the other elds appearing in the action (see e.g. C hapter 3 of [19] for how this w orks in the usual string theory settings). The Euclidean path integral

$$
Z_{E}={ }^{Z} \operatorname{Dh}() D() e^{S_{2 d}[h ;]} ;
$$

w here h is the world-sheet m etric, are the elds of our 2-d eld theory and are the coordinates of the $2-d$ space then de nes our topological string theory. If we have re-de ned our Lorentz generators to m ake Q_{A} a scalar then the string theory is know n as the A m odel, while if we choose to m ake Q_{B} a scalar we arrive at the B m odel [185, 186].

W e can also say som ething about the target spaces of these topological string theories. In norm al' string theory settings these target spaces - the spaces in which the strings live - are know n to be 10-dim ensional (or 26-dim ensional for the purely bosonic string) in order for them to be quantum m echanically anom aly-fiee. The $N=(2 ; 2)$ eld theories discussed above, how ever, naturally give rise to target spaces which are special types of com plex m anifflds know n as K ahler m an ifolds - even before we perform the topological tw isting. These spaces are com plex m anifolds that are endow ed w ith a H erm itian m etric (i.e. a realm etric - real in the sense that $g_{\{\mid}=\left(g_{i j}\right)$ and $g_{\{j}=\left(g_{i \mid}\right)$
$-w$ ith $\left.g_{i j}=g_{\{\mid}=0\right)$ and which we can write locally as the second derivative of som e function term ed the K ahler potential $K(z ; z)$:

$$
\begin{equation*}
g_{i \mid}=\frac{@^{2} K(z ; z)}{@ z^{i} @ z^{l}}: \tag{1.6.5}
\end{equation*}
$$

H ere z^{i} and z^{\prime} are appropriate com plex coordinates on the target space. W hen we do the tw isting described by (1.6.2) it tums out that the A m odel tw ist can be perform ed for any K ahler target space, while the B m odel tw ist requires the space to be of a yet m ore specialised form known as a C alabi-Y au m anifold.

There are m any di erent ways to de ne a C alabi-Y au m anifold, but one way that is good for our punposes is that it is a K ahler m anifold that is also R icci- at, $\mathrm{R}_{\mathrm{il}}=0$. T he m oduli (essentially the param eters) describing the variety of such spaces are of two types which are term ed the K ahlerm oduliand the com plex-structure m oduli. It can be show n that the space of K ahlerm oduli is locally $H^{(1 ; 1)}$ (M Cy) - that is to say it is locally given by the D olbeault cohom ology class of ($1 ; 1$)-form s-while the com plex-structure m oduli space is locally the cohom ology class of $(2 ; 1)$-form $\mathrm{s}^{(2 ; 1)}(\mathrm{M}$ cy $)$. Because C alabi-Y au m anifolds are autom atically K ahler m anifolds to begin w ith and because of their high degree of sym m etry, the A m odel is often also considered on a C alabi-Y au . F inally, it can be shown that the central charge of the V irasoro algebra of the A - and B m odels vanishes identically in any num ber of dim ensions [187], so topological strings are well-de ned in target spaces of any dim ension. For m ore com prehensive discussions of com plex, K ahler and C alabi-Y au m anifolds see e.g. [187, 188, 189, 190, 191].

As for the physical operators in these m odels, we brie y state w ithout proof that in the A m odel, Q_{A} can be view ed as being $Q_{A} \quad d$ - the de R ham exterior derivative - and the localphysicaloperators are in one-to-one correspondence w ith de R ham cohom ology elem ents on the target space:

$$
\begin{equation*}
O_{A} \quad A_{i_{1}::: i_{p} l_{1}:::\left.\right|_{q}}() d^{i_{1}} \quad \text { íbld }\left.^{I_{1}} \quad\right|_{\mathcal{A}}: \tag{1.6.6}
\end{equation*}
$$

For the B m odel on the other hand one can show that $Q_{B} \quad @$ - the D olbeault exterior derivative - and the local physical operators are now just (0 ; p)-form s w ith values in the antisym m etrized product of q holom onphic tangent spaces - which we denote by $\mathrm{V}_{\mathrm{T}}{ }^{(1 ; 0)}\left(\mathrm{M}_{\mathrm{CY}}\right):$

These theories also have the intruiging property ofm irror sym m etry [192, 193] - see e.g. [194] and references therein for a com prehensive review - that the A m odel on one C alabi-Y au is equivalent to the B m odel on a di erent C alabi-Y au which is known as its M irror. In the m irror $m a p$, the hodge num bers $h^{1 ; 1}$ and $h^{2 ; 1}$ are swapped which
pertains to the exchange of K ahler and com plex-structure m oduli. T his is especially usefulas the B m odel is generally easier to com putew ith than the A m odel, while the A m odel is m ore physically interesting in m any scenarios. H ard com putations in the A m odel can often be m apped to easier ones in the B m odel.

1.6.3 T he B -m odel on super-tw istor space

In his original construction 31], W itten considered the $B-m$ odel and $w e w i l l$ do the sam e here. The target space on which we will want it to live w ill be C $P^{3 j 4}$, which is a C alabi-Y au super-m anifold (w ith bosonic and ferm ionic degrees of freedom) rather than a bosonic m anifold as ism ore com m on. This is fortunate because $C P^{3}$ is not C alabi-Y au, while C $P^{3 j 4}$ is 13 In addition, if we recall that the closed-string sector is where gravity states arise, we w ould like to consider the open-string B m odelon tw istor space in order that we m ay end up w ith degrees of freedom w ith spin 1 or less. In the sim plest case this consists of adding N bosonic-space- 1 ling D 5 -branes (thus spanning all 6 bosonic directions of CP ${ }^{3 j 4}$ in analogy w ith the purely bosonic case of [195]. In addition (as W itten did), we take the D 5s to wrap the ferm ionic directions ${ }^{I}$ and J in such a way that we can set ${ }^{J}$ to zero. It is not entirely clear how this should be interpreted, but one m ight say that the branes wrap the directions while being localised in the
directions. The presence of N branes gives rise to a $U(N)$ gauge sym m etry as usual due to the C han Paton factors of the open strings ending on them.

So far we have been considering things from a worldsheet perspective. H ow ever, for open strings we also have the spacetim e perspective of open-string eld theory 196]. T his has a multiplication law ?, an operator Q obeying $Q^{2}=0$ and Lagrangian

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2}^{\mathrm{Z}} \quad \mathscr{A} ? Q \mathscr{A}+\frac{2}{3} \mathscr{A} ? \mathscr{A} ? \mathscr{A} \quad ; \tag{1.6.8}
\end{equation*}
$$

where \mathscr{A} is the string eld. In the presence of D 5-branes on a 6-dim ensional (bosonic) m anifold this has been show n to reduce to holom onphic Chem-Sim ons theory [195], where the D 5-D 5 m odes of the string eld \mathscr{A} give a $(0 ; 1)$-form gauge eld $\mathrm{A}=$ $A_{\{ }(z ; z) d z^{i}$ on the branes. On the other hand, when the target space is the superm anifold $C P^{3 j 4}, \mathscr{A}$ reduces to the $(0 ; 1)$-form gauge super eld $A=A_{I}(Z ; Z ; ~ ; ~ d Z ~ I, ~$ while Q becom es the @ operator and ? the usualw edge product operation ${ }^{\wedge}$. The action descends to

$$
\begin{equation*}
S=\frac{1}{2}{ }_{C P^{3 j 4}}^{Z} \wedge \operatorname{tr} A \wedge @ A+\frac{2}{3} A \wedge A \wedge A \quad ; \tag{1.6.9}
\end{equation*}
$$

[^18]and with $=0$ the super eld A can be expanded as
\[

$$
\begin{equation*}
A(Z ; Z ;)=A+I^{I}+\frac{1}{2} I_{I J}+\frac{1}{3!} I J K L \quad I \quad \text { J } \quad \sim L+\frac{1}{4!} \text { IJK L } \quad \text { I J K }{ }^{L} G ; \tag{1.6.10}
\end{equation*}
$$

\]

whereA; I; IJ ${ }^{\sim I}$; G areallfunctionsofZ and Z and we have suppressed the (0 ; 1) -form structure. in (1.6.9) is a (3;0)-form and is the holom onphic volum e-form on C $P^{3 j 4}$

$$
\begin{equation*}
=\frac{1}{4!} \text { IJKLMNPQ Z }{ }^{I} d Z^{J} d Z^{K} d Z^{L} d^{M} d^{N} d^{P} d^{Q}: \tag{1.6.11}
\end{equation*}
$$

B ecause dZ ${ }^{I}$ and d^{I} scale oppositely $\{$ as follow s from 1.5.17) and the ferm ionic nature of ${ }^{I}\left(d^{I}\right.$! $c^{1} d^{I}$ under 1.5.17)) \{ it is clear that 1.6.11) is invariant under this scaling and thus the action 1.6 .9) is only invariant if A is of degree zero, A $2 \mathrm{H}^{(0 ; 1)}\left(\mathrm{CP}^{3 j 4^{0}} ; \mathrm{O}(0)\right)$. This m eans that each component eld in the expansion 1.6.10) m ust be of degree $2 \mathrm{~h} \quad 2$ and thus describes a eld of helicity h in spacetim e - c.f. the tw istor description of wavefunctions for particles of helicity h of Eq. 1.5.20) and surrounding paragraphs. In addition, the ferm ionic nature of the I restricts the num ber of degrees of freedom of the com ponent elds and it can quickly be seen that 1.6.10) describes the $N=4 \mathrm{~m}$ ultiplet 14 which in the notation of 1.3 can be written as (A ; ; ; $\left.{ }^{+} \mathrm{A}^{+}\right)\left(\mathrm{G} \boldsymbol{j}^{\sim I}\right.$; IJ ; I; A) , while the action in com ponent form can be w ritten as

$$
\begin{align*}
& \text { Z } \\
& S=C^{3}{ }^{0 \wedge} \operatorname{tr} G \wedge(@ A+A \wedge A) \quad \sim I \wedge(@ I+[A ; I]) \tag{1.6.12}
\end{align*}
$$

where ${ }^{0}=$ IJK L $^{\mathrm{I}} \mathrm{dZ}^{\mathrm{J}} \mathrm{dZ}^{\mathrm{K}} \mathrm{dZ}^{\mathrm{L}}=4$! is the bosonic reduction of obtained after integrating out the $I 15$ and $[A ; ~ I]=A \wedge I+I^{\wedge} A . T$ he equations of m otion follow ing from 1.6.9) are $@ A+A{ }^{\wedge} A=0$ and the gauge invariance is $A=@!+[A ;!]$.

W hat we have arrived at is 'half' of $N=4$ super-Yang -M ills. W e have all the elds as is apparent from 1.6 .10), but it tums out that not all the interactions are present. O ne of the easiest ways to see this is to note that the sym m etries of the B m odel generally leave invariant [31]. H ow ever there are also interesting transform ations of the target space that leave the com plex structure invariant but transform non-trivially. O ne such transform ation is a $U(1)_{R}$ part of the R-sym metry group $U(4)_{R}=S U(4)_{R} \quad U(1)_{R}$ that acts a ${ }^{1}$

$$
\begin{equation*}
S: Z^{I}!Z^{I} ; \quad{ }^{I}!e^{i} \tag{1.6.13}
\end{equation*}
$$

[^19]w ith $d^{I}!e^{i} d^{I}$ because of their ferm ionic nature. ! $e^{4 i}$ thushas $S=4$ and hence so does the action 1.6 .9) as the transform ation of the I inside A are com pensated by equal and opposite transform ations of the com ponent elds: A has $S=0$, I has $S=1$, IJ has $S=2, \sim^{I}$ has $S=3$ and G has $S=4$. In fact the com ponent action 1.6.12) is m ade up entirely of term $S w$ ith $S=4$. H ow ever, the usual $N=4 Y$ ang M ills action in com ponent form consists of term $s w h i d h$ have $S=4$ and $S=8$. For exam ple the scalar kinetic term $S(@ \quad)^{2}$ have $S=4 \mathrm{while}$ the scalar potential ${ }^{4}$ has $S=8$. The holom onphic C hem-Sim ons action 1.6 .9) thus captures all the elds of m axim ally supersym m etric Y ang $-M$ ills, but not all the interactions. A lthough we will not discuss it here, the theory described by 1.6 .9) is in fact selfdual $N=4$ super $-Y$ ang $-M$ ills [198] - that is, (super) $-Y$ ang $-M$ ills theory for a gauge eld A^{0} whose eld strength appearing in the action is self-dual. A^{0} is the spacetime eld corresponding to the hom ogeneity 0 eld (A) in (1.6.10) and the spacetim e action of this theory is $S={ }^{R} G^{0 \wedge} \quad F^{0} \quad{ }^{R} G^{0 \wedge} F_{S D}^{0}$. Here G^{0} is a self-dual2-form whose tw istor transform is the hom ogeneity 4 eld (G) in (1.6.10), $F_{S D}^{0}$ is the self-dual part ${ }^{17}$ of $F^{0}=d A^{0}+A^{0 \wedge} A^{0}$ and is the H odge duality operation.

1.6.4 D 1-brane instantons

W itten's solution to the aforem entioned problem of the absence of the entire set of interactions was to enrich the B m odel on $C P^{374}$ w ith instantons. The ones in question are Euclidean D 1-branes which w rap holom onphic curves in super-tw istor space and on which the open strings can end. These holom onphic curves are precisely the ones that we m et earlier on which the scattering am plitudes were found to localise. W e won't go into m uch detail here (m ore can be found in [31]), but the basic idea is that these instantons have S-charge $4(d+1 \quad g)$ for the connected degree d and genus g case. Thus for the 'classical' tree-level M HV case18 these instantons provide the term S w ith $S=8$ aswe had hoped.

W e can now consider other types of strings apart from $D 5-D 5 s . W$ ealso have D $1-D 1$ s, D $1-$ D 5 s and D 5-D 1s. The D $1-$ D 1 strings give rise to a $U(1)$ gauge eld on the worldvolum e of an instanton which describes the motion of the instanton in T. We will thus ignore the D 1-D 1 strings from now on. Of course we do want to involve the D 1-instantons, so we $l l$ focus on the $D 1-D 5$ and D 5-D 1 strings. W itten argued that these strings give rise to ferm ionic (0;0)-form elds living on the world-volum e of the instanton. The D 1-D 5 m odes give rise to a ferm ion ${ }^{i}$ and the D 5-D 1 m odes give a

[^20]ferm ion $\{, W$ ith $\{$ and i (anti)-fundam ental $U(N)$ indices respectively. The e ective action for the low -energy m odes is then
$$
S_{e}={ }_{D 1}^{Z} d z \quad\left(@_{z}+A_{z} d z\right) ;
$$
where z and z are local com plex coordinates on the D 1 and A_{z} (which is a background eld on the D 1) is the com ponent of the super eld generated by the D 5-D 5 strings lying along the D 1. The rst term is the kinetic term of thesem odes (w ith $@_{z}$ the @ operator restricted to the D 1), while the second describes their interaction with the gauge eld A and can be w ritten as Z
\[

$$
\begin{equation*}
S_{\text {int }}=J_{D 1}{ }^{\wedge}\left(A_{z} d z\right) ; \tag{1.6.15}
\end{equation*}
$$

\]

where we de ne J to be the current $J_{i}{ }^{j}=\left\{^{j} d z\right.$.
A ny particular extemal state will contribute just one com ponent of this super eld A and therefore its coupling w ill be

$$
V_{S}={ }_{D 1}^{Z} J_{S} \wedge \mathrm{~s} ;
$$

where s is the wavefunction of the state in tw istor space and thus a (0 ; 1)-form there 19 Then if the curve which the D 1 w raps w ere to have no m oduli (i.e. there were only one possibility for it), one would be able to com pute scattering am plitudes by evaluating the correlator $h V_{\mathrm{s}_{1}}::: \mathrm{V}_{\mathrm{S}_{\mathrm{n}}}$ i. H ow ever, we know from the discussion in $\times 1.5 .1$ that these curves do have m oduli and thus we should integrate this correlator over their m oduli space. O ur prescription for com puting n-point scattering am plitudes whose extemal particles have wave functions $s_{i} w i l l$ then be

$$
A_{n}={ }^{Z} d M_{d} h V_{S_{1}}::: V_{S_{n}} i ;
$$

where $d M d$ is an appropriate m easure on the m oduli space of holom onphic curves of degree d (and genus zero for our current purposes).

1.6.5 The M HV am plitudes

As an exam ple of how 1.6.17) is im plem ented let us calculate the M HV am plitudes using this prescription. From 1.5 .1 we saw that the M HV am plitudes lie on holom onph ic

[^21]Curves that are em bedded in C $P^{3 j 4}$ via the equations

$$
\begin{align*}
s_{k}+x_{-} s_{k} & =0 \\
A_{s_{k}}+A_{s_{k}} & =0: \tag{1.6.18}
\end{align*}
$$

s_{k} are the hom ogeneous coordinates on the curves (w ith $s_{k}=1::: n$ denoting the $k^{\text {th }}$ particle) and their m oduli are x _ and ${ }^{A}$. These are thus the curves that we w ill take the D 1-instantons to be w rapping. x _ has 4 (bosonic) degrees of freedom while ${ }^{A}$ has 8 (ferm ionic) ones and a naturalm easure on the m oduli space is then $d M \quad{ }_{1}=d^{4} x d^{8}$.

For clarity let us specialise to the case of 4-particle (ghon) scattering w here particles 1 and 3 have negative-helicity and particles 2 and 4 positive-helicity. Then-particle case is an easy generalisation of this. Form ally we have

$$
\begin{align*}
& \text { Z } \\
& \mathrm{A}_{4}=\underset{\mathrm{Z}}{\mathrm{dM}}{ }_{1}{ }_{1} \mathrm{hV}_{\mathrm{S}_{1}} \mathrm{~V}_{\mathrm{S}_{2}} \mathrm{~V}_{\mathrm{S}_{3}} \mathrm{~V}_{\mathrm{S}_{4}} \mathrm{i} \\
& =\quad d^{4} x d^{8} \quad C P^{1 j 0} J_{S_{1}} \wedge S_{1}:: \underbrace{}_{C P^{1 j 0}} J_{S_{4}} \wedge S_{S_{4}} \text {; } \tag{1.6.19}
\end{align*}
$$

where we assum e that the wavefunctions s_{k} take values in the Liealgebra of $U(N)$ and thus contain a generator $T^{a_{k}}$ in addition to 1.5 .20). $\left(J_{S_{k}}\right)_{i}^{j}={ }_{\{ }\left(z_{k}\right)^{j}\left(z_{k}\right) d z_{k}$ then gives

$$
A_{4}={ }^{Z} d^{4} x d^{8} \quad d z_{1}::: d z_{4} \quad f_{1}\left(z_{1}\right)^{j_{1}}\left(z_{1}\right) s_{1}:::\left\{_{4}\left(z_{4}\right)^{j_{4}}\left(z_{4}\right) s_{4}\right.
$$

up to a factor. Separating-out the L ie-algebra generators from the rest of the w avefunctions ($s_{k}=\int_{s_{k}}^{0} T^{a_{k}}$) we can rew rite the correlator as

This correlator has many di erent contributions (105 in total) com ing from the possible ways of W ick contracting the ferm ions and. Let usconsider the cyclic one where we contract $\left(z_{1}\right)$ with $\left(z_{2}\right)$, ($\left.z_{2}\right)$ with $\left(z_{3}\right)$ and so on (w ith $\left(z_{4}\right)$ contracted w ith $\left(z_{1}\right)$). Because and are ferm ions living on (in this case) C P^{1}, their propagator is the usual one for free ferm ions on the com plex plane

$$
\begin{equation*}
h^{j}\left(z_{k}\right)_{\{ }\left(z_{l}\right) i=\frac{\}_{i}^{j}}{z_{k} \quad z_{l}} \tag{1.6.22}
\end{equation*}
$$

and the relevant W ick contraction is

$$
\begin{align*}
W_{\text {cyclic }} & =\left(T^{a_{1}}\right)^{i_{1}}{ }_{\left.\right|_{1}}:::\left.\left(T^{a_{4}}\right)^{i_{4}}\right|_{\left.\right|_{4}} h^{j_{1}}\left(z_{1}\right){ }_{k_{2}\left(z_{2}\right) i::: h^{j_{4}}\left(z_{4}\right)\left\{_{11}\left(z_{1}\right) i\right.}^{j_{4}} \\
& =\left(T^{a_{1}}\right)^{i_{1}}{ }_{\left.\right|_{1}}:::\left.\left(T^{a_{4}}\right)^{i_{4}}\right|_{\left.\right|_{4}} ^{j_{1}} \frac{k_{2}}{z_{2}}::: \frac{z_{1}}{z_{4} \quad z_{1}} \\
& =\frac{\operatorname{tr}\left(T^{a_{1}}::: T^{a_{4}}\right)}{\left(z_{1} \quad z_{2}\right)\left(z_{2} \quad z_{3}\right)\left(z_{3} \quad z_{4}\right)\left(z_{4} \quad z_{1}\right)}: \tag{1.6.23}
\end{align*}
$$

D ropping the single-trace colour factor for now, 1.6.21) is

$$
\begin{align*}
& =d^{4} x d^{8} h_{s_{1}} d_{s_{1}} i::: h_{s_{4}} d_{s_{4}} i \frac{0}{h_{s_{1}}:: s_{2} i:: h_{s_{4}}}{ }_{s_{4} s_{1} i} \text {; } \tag{1.6.24}
\end{align*}
$$

where we have changed to hom ogeneous coordinates s_{k} on the C P^{1} s by setting $z_{k}=$ ${ }_{\mathrm{s}_{\mathrm{k}}}^{2}={ }_{\mathrm{s}_{\mathrm{k}}}^{1}$ w ith 1 and 2 indicating spinor ' $'$ indices here.

N ow we m ust introduce the explicit form for the wavefunctions and integrate over the k. For this it is useful to note that w ith $z={ }^{2}={ }^{1}$ and m aking the m ore speci c choices of $=(1 ; z)$ and $=(1 ; b)$, A.2.9) becom es A 2.10):

Z

$$
\begin{equation*}
h \mathrm{~d} i(\mathrm{~h} \quad \text { i) } \mathrm{F}(\mathrm{r})=\mathrm{iF}(\mathrm{l}): \tag{1.6.25}
\end{equation*}
$$

O m itting the integral over m oduli, (1.6.24) thus gives

$$
\begin{aligned}
& \begin{array}{l}
\vdots \\
\text { Z }
\end{array} \\
& \dot{\mathrm{Z}} \quad 2 \mathrm{~h}_{4} 1
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.=\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
s_{1} & s_{1} & s_{1} & s_{1} & s_{3} & s_{3} & s_{3} & s_{3}
\end{array}\right]\left(\begin{array}{c}
s_{i}
\end{array}\right) e^{i \sum_{s_{k}}^{4}=1} \begin{array}{lll}
{\left[\sim_{s_{k}}\right.} & s_{k}
\end{array}\right] ; \tag{1.6.26}
\end{align*}
$$

w here H is the denom inator in (1.6.24).
W e m ust now perform the integral over the m oduli. For this punpose we can recall the equations describing the em bedding (1.6.18) and substitute $s_{k}=x_{-} s_{k}$ and ${ }_{S_{k}}^{A}=A_{S_{k}}^{A} \quad 20$ whereupon the integral over x gives

[^22]which is just the delta function of m om entum conservation. For the ferm ionic m oduli we have (for exam ple):
\[

$$
\begin{align*}
& \begin{array}{ll}
1 & 1 \\
s_{1} & s_{3}
\end{array}=\left(\begin{array}{ll}
1 & 1 \\
1 & s_{1}
\end{array}+\begin{array}{ll}
1 & 2 \\
2 & s_{1}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & s_{3}
\end{array}+\begin{array}{ll}
1 & 2 \\
2 & s_{3}
\end{array}\right) \\
& =\quad \begin{array}{llll}
1 & 1 & 2 & 1 \\
2 & 1 & s_{1} & s_{3}
\end{array}+\begin{array}{cccc}
1 & 1 & 1 & 2 \\
1 & 2 & s_{1} & s_{3}
\end{array} \\
& =\quad \begin{array}{llll}
1 & 1 \\
1 & 2
\end{array}\left(\begin{array}{ccc}
1 & 2 & 2 \\
s_{1} & s_{3} & \mathrm{~s}_{1} \\
\mathrm{~s}_{3}
\end{array}\right) \\
& =\quad 1 \frac{1}{1}{ }_{2} h_{s_{1}} s_{3} i: \tag{1.6.28}
\end{align*}
$$
\]

A fter dealing with all the s in a sim ilar way and then integrating over the eight variables gives $h s_{1} s_{3} i^{4}$. Putting all the pieces together we get

$$
\begin{align*}
& =\operatorname{tr}\left(T^{a_{1}}::: T^{a_{4}}\right) \frac{h 13 i^{4}}{h 12 i::: h 41 i} \quad \text { (4) } X^{4} \quad i^{\sim_{i}} \quad \text {; } \tag{1.6.29}
\end{align*}
$$

which is precisely the form ula for the M HV am plitudes that we w rote down before, though we have kept the colour structure explicit here.

W e should be careful to note that we have sim ply picked the particular W ick contraction that we needed in order to get a cyclic colour ordering. All the term s w ith non-cyclic colour orderings but a single trace are also present as well as m ulti-trace term s w hich in [31, 36] w ere suggested to be a sign of the presence of closed-string (and thus gravitational) states.

W e have explicitly described the construction of the M HV am plitudes from the Bm odel in $t w$ istor space. O ther am plitudes can be calculated in this w ay too, though the com plexity is greater so wewill not go into any detail on this. The NM HV am plitudes for exam ple require one to integrate over the m oduli space of degree 2 curves in T and som e sim ple cases w ere calculated this way in [134]. O ther cases such as the n-point googly M HV am plitudes (w ith 2 positive helicity gluons and n 2 of negative helicity) were w orked out in [135] and all 6-point am plitudes in [136]. For these integrals over curves of degree $d>1$, one encounters the possibility of describing these as connected curves of degree d, or disconnected curves of degree $d_{i} w$ ith $^{P} \quad d_{i}=d$. In [134, 135, 136] it w as found that the connected prescription alone reproduces the entire am plitudes in the cases considered (at least up to a factor). H ow ever, there is also strong evidence that the sam e am plitudes can be com puted using the purely disconnected prescription [33]. Indeed, th is disconnected prescription led directly to the proposal of new rules for doing pertunbative gauge theory which we w illdescribe in the next section. T he authors of [199] argued that the integrals involved in the connected prescription localised on the subspace where a connected curve of degree d degenerates to the intersection of curves
of degree $d_{i} w$ ith ${ }^{P} \quad d_{i}=d$ and thus provided strong evidence that there are ultim ately d di erent prescriptions which are all equivalent. T he extrem e possibilities are that we have just one degree d curve to consider, or altematively d degree one curves. This latter case w as the inspiration for [33].

W e have also not said anything about loop diagram s here except for the form alstatem ent that they localise on curves of degreed $=q 1+1 w$ ith $g \quad 1$. The structure ofm any loop diagram s of $N=4$ super-Y angM ills w as elucidated in [31, 72, 73, 180, 181, 183], though the situation w ith their calculation from the B m odel is far less clear than that for trees unfortunately. In [36] it w as show n that closed string m odes give rise to states of $N=4$ conform al supergravity describing deform ations of the target tw istor space as wellas the expected $N=4 Y$ ang M ills states. C onform alsupergravith $\frac{12}{21}$ in 4 dim ensions has a Lagrangian which is the W eyltensor of gravity squared, $S={ }^{R} d^{4} x^{P} \overline{\operatorname{det} \dot{j}}{ }_{j} W^{2}$, and is usually considered to be a som ew hat unsavoury theory as it gives rise to fourth order di erential equations which are generally held to lead to a lack of unitarity (see e.g. [201]). O ne m ight still hope to decouple these states, but because the coupling constant is the sam e in both sectors the am plitudes m ix and one ends up w ith a theory of $N=4$ conform al supergravity coupled to $N=4$ super $-Y$ ang $-M$ ills, som e am plitudes of which were com puted in [36] at tree-level and m ore recently in [114] at loop-level (see also [202]). D espite all this, it was shown by B randhuber, Spence and Travaglini that the proposals of [33] can be extended to loop-level and provide a new pertunbative expansion for eld theory which is valid in the quantum regim e as well as the classical one. This discovery will be a central them e in the follow ing chapters of this thesis.

A s a nal rem ark in this section we point out that tw istor string theories have also been constructed to describe other theories w ith less supersym m etry and/or product gauge groups [119, 120, 121, 122, 124] as well as m ore recently to describe E instein supergravity [39]. Indeed the proposals in [39] include a tw istor description of $\mathrm{N}=4$ SYM coupled to E instein supergravity which may lead to a resolution of the problem of loops if they can be consistently decoupled.

1.7 C SW rules (tree-level)

M otivated by the ndings we have so far discussed, C achazo, Svrcek and W itten proposed a set of altemative graphs for tree-level am plitudes in Yang M ills theory based on the MHV vertices [33]. The essential idea is the observation that one can seem ingly com pute tree-level am plitudes from the totally disconnected prescription alluded to above by gluing d disconnected lines together (on each ofwhich there is an M HV am plitude localised) for an am plitude involving $d+1$ negative-helicity ghons. T he gluing

[^23]procedure is m ade concrete by connecting the lines w ith tw istor space propagators. In eld theory term s this corresponds to the use of M HV am plitudes as the fundam ental building blocks - because their localisation properties in tw istor space translates to a point-like interaction in M inkow skispace - and gluing these together with sim ple scalar propagators $1=\mathrm{P}^{2}$. The two ends of any propagator m ust have opposite helicity labels because an incom ing gluon of one helicity is equivalent to an outgoing gluon of the opposite helicity.

1.7.1 O -shell continuation

In order to glueM HV vertices together wem ust continue them 0 -shell since one orm ore of the legsm ust be connected to the o shellpropagator $1=P^{2}$. For th is purpose, consider a generic o shell m om entum vector, L. On general grounds, it can be decom posed as [65,179]

$$
\begin{equation*}
L=l+z ; \tag{1.7.1}
\end{equation*}
$$

where $l^{2}=0$, and is a xed and arbitrary null vector, ${ }^{2}=0$; z is a real num ber. Equation 1.7.1) determ ines z as a function of L :

$$
\begin{equation*}
z=\frac{\mathrm{L}^{2}}{2(\mathrm{~L}} ; \tag{1.7.2}
\end{equation*}
$$

U sing spinor notation, we can write land as $l_{-}=1 I_{-}, \quad=\quad \sim_{\sim}$. It then follow s that

$$
\begin{align*}
& I=\frac{L_{-} \sim_{-}}{[I \sim]} ; \tag{1.7.3}\\
& I_{-}=\frac{L}{h l i}: \tag{1.7.4}
\end{align*}
$$

W e notice that (1.7.3) and (1.7.4) coincide w ith the C SW prescription proposed in 133] to determ ine the spinor variables 1 and I associated w ith the non-null, o shell fourvector L de ned in (1.7.1). The denom inators on the right hand sides of 1.7 .3) and 1.7.4) tum out to be irrelevant for our applications since the expressions we w ill be dealing w ith are hom ogeneous in the spinor variables l; hence we will usually discard them. This de nes our o -shell continuation.

1.7.2 T he procedure: A n exam ple

TheC SW rules for joining these M H V am plitudes together are probably best illustrated w ith an exam ple. It is clear that a tree diagram w ith v M HV vertices has 2 v negativehelicity legs, $v \quad 1$ of which are connected together with propagators. A s m entioned above, each propagator m ust subsum e precisely one negative-helicity leg and thus we
are left with $v+1$ extemal negative helicities. To put it another way, if we wish to com pute a scattering am plitude with q negative helicity gluons we will need v=q 1 M HV vertices. A s such let us consider the sim plest case of the 4-point NM HV am plitude $\mathrm{A}_{4}\left(1^{+} ; 2 ; 3 ; 4\right) . W$ e know from our discussions in 1.4 .2 that this m ust vanish and we would thus like our calculations here to support that. Even though we end up com puting som ething trivial, it is a good ilhustration of the procedure to follow .

Figure 1.5: The two M HV diagram s contributing to the +
am plitude. A llexternal m om enta are taken to be outgoing.

As shown in Figure 1.5, there are two diagram s to consider. For each diagram we should write down the M HV am plitudes corresponding to each vertex and join them together w ith the relevant scalar propagator, rem em bering to use the o shell continuation of (1.7.3) and (1.7.4) to dealw ith the spinors associated w ith the intemal particles. T he rst (upperm ost) diagram gives

$$
\begin{equation*}
C_{1}=\frac{h_{2}{P_{12}}^{i^{3}}}{h_{P_{12}} i_{1} h_{2} i P_{12}^{2}} \frac{1}{h_{4} \mathrm{P}_{12} \mathrm{ih}_{\mathrm{P}_{12}} \mathrm{i}^{\mathrm{i}}} ; \tag{1.7.5}
\end{equation*}
$$

where them om entum of the propagator is $P_{12}=\left(p_{1}+p_{2}\right)=\left(p_{3}+p_{4}\right)$. A s the extemal m om enta are m assless, $P_{12}^{2}=2\left(p_{1} \quad \mathbb{D}\right)=h 12 i[21]$ and the 0 -shell continuation tells us that

$$
\begin{aligned}
& \mathrm{P}_{12}=\frac{\mathrm{P}_{12}{ }^{-\sim^{\sim}}}{\left[{ }^{\left.\sim_{P_{12}} \sim\right]}\right.}
\end{aligned}
$$

$$
\begin{align*}
& =1 \frac{\mathrm{a}_{1}}{\mathrm{~b}} \quad 2 \frac{\mathrm{a}_{2}}{\mathrm{~b}} \text {; } \tag{1.7.6}
\end{align*}
$$

where we have written $\sim_{i} \mathcal{I}_{-}=a_{i}$ and $\left[{ }_{P_{12}} \sim\right]=$ b for clarity and have kept the denom inators of the o -shell continuation explicit in order to dem onstrate that they will drop out of the expressions. Sim ilarly, an appropriate form for elim inating P_{12} from the M HV vertex on the right is

$$
\begin{equation*}
\mathrm{P}_{12}=3 \frac{\mathrm{a}_{3}}{\mathrm{~b}}+4 \frac{\mathrm{a}_{4}}{\mathrm{~b}}: \tag{1.7.7}
\end{equation*}
$$

O n substituting for P_{12} and P_{12}^{2} 1.7.5) then becom es

$$
\begin{align*}
C_{1} & =\frac{\mathrm{ba}_{1}^{3}}{a_{2} b^{3}} \frac{h 21 i^{3}}{h 21 i n 1} \frac{1}{h 12 i[21]} \frac{h 34 i^{3}}{h 43 i h 43 i} \frac{b^{2}}{a_{3} a_{4}} \\
& =\frac{a_{1}^{3}}{a_{2} a_{3} a_{4}} \frac{h 34 i}{[12]}: \tag{1.7.8}
\end{align*}
$$

G oing through the sam e procedure for the second contribution in Figure 1.5 gives

$$
\begin{equation*}
\mathrm{C}_{2}=\frac{\mathrm{a}_{1}^{3}}{\mathrm{a}_{2} \mathrm{a}_{3} \mathrm{a}_{4}} \frac{\mathrm{~h} 23 i}{[41]} \tag{1.7.9}
\end{equation*}
$$

and the nal answer is $A_{4}=C_{1}+C_{2}$. M om entum conservation is $P_{P}^{P_{i=1} \quad \sim_{i}{ }_{i}=0 \text {, }}$ which can be applied to an expression of the form h3ii[i1] to give ${ }_{\mathrm{i}=1}^{4} \mathrm{~h} 3 \mathrm{ii}[\mathrm{i} 1]=$ $h 32 i[21]+h 34 i[41]=0$ and m eans that $h 34 i=[12]=h 23 i=[41] . T h u s C_{1}=C_{2}$ and we get $\mathrm{A}_{4}=0$ as expected.

There are two essential points to note here. The rst is that when we perform ed the o shell continuation all the denom inators of (1.7.3) cancelled out. This is in fact generally true for the am plitudes we willbe interested in and thus we w illdiscard them from now on. The second point is that in C_{1} and C_{2}, the arbitrary nullm om entum of the o -shell continuation was still present, lurking as an $\sim_{\mathcal{L}}$ in the i. The contributions cancelled in the end so we didn't care too m uch about this, but we m ight w orry about the presence of this arbitrary m om entum in the calculation of am plitudes that don't vanish. In fact it tends to crop up frequently and the expressions that one arrives at seem to depend on at rst sight. How ever, it can be show n that the am plitudes are -independent and it can therefore som etim es be of use to set to be one of the extemal m om enta in the problem .
T his procedure has been im plem ented both for am plitudes w ith m ore extemal ghuons and am plitudes w ith m ore negative helicities. In both cases the com plexity grow s, but the num ber of diagram s grow s for large n at m ost $a s n^{2}$ [33] which is a marked im provem ent on the factorial grow th of the num ber of Feynm an diagram s needed to com pute the sam e processes. Further evidence for the procedure and a heuristic proof from tw istor string theory can be found in [33], while a proof based on recursive techniques w as given by R isager in [34] which w as then used to give an M H V -vertex approach
to gravity am plitudes [77]. Evidence for the validity of the procedure for tree and loop am plitudes was given in [79] 22

O n the other hand M ans eld found a transform ation which takes the usual YangM ills Lagrangian and m aps it to one where the vertices are explicitly M HV vertices [35] (see also [203]). This involves form ulating pure Y ang $-M$ ills theory in light-cone coordinates and perform ing a non-local change of variables which maps the usual 3and 4 -point vertices that arise in Feynm an diagram pertunbation theory into an in nite sequence of MHV vertices starting with the 3-point + vertex. The procedure also clari es the origin of the null vector that we have used to de ne the o shell continuation. It is just the sam enullvector as is used to de ne the light-cone form ulation of the theory $[35,81]$. For further w ork related to understanding the C SW rules from a Lagrangian approach see $80,81,82,137,138,139,204]$.

1.8 Loop diagram s from M H V vertices

The CSW rules at tree-level provide a new and e ective way of re-organising perturbation theory and thus lead to m ore e cient m ethods for calculating tree-levelam plitudes which often yield sim pler results than m ore traditional approaches. N aturally wew ould like to be able to extend this m ethod beyond tree-level and consider quantum corrections which are often a substantial contribution to the overall result. H ow ever as already m entioned the picture from tw istor string theory is not as clear at loop-level and onem ight expect the C SW procedure to fail there due to the presence of conform al supergravity.
N onetheless B randhuber, Spence and Travaglinishow ed that the C SW rules are still valid at one-loop and provided a concrete procedure to follow from which they re-derived the one-loop n-point M H V ghon scattering am plitudes in $N=4$ super- Y ang $-M$ ills [37]]. T he answ ers they obtained are in com plete agreem ent w ith the original results derived at 4-point by G reen, Schw arz and B rink from the low energy lim it of a string theory [205] and then at n-point by BDDK [38]. W e will brie y review the m ethod proposed in [37] and outline how it can be used to derive the $N=4$ am plitudes. C hapters 2 and 3 w ill then be devoted to applying the sam em ethod to the $\mathrm{N}=1 \mathrm{am}$ plitudes and those in pure Yang M ills w ith a scalar running in the loop respectively, thus calculating all cut-constructible 23 contributions to the n-point M HV ghon scattering am plitudes in QCD (1.3.3).

[^24]
1.8.1 BST rules

T he procedure proposed in [37] can be sum m arised as follow s [40]:

1. C onsider only the colour-stripped or partial am plitudes introduced in 1.1. A s already m entioned there, the rem arkable results discussed in Section 7 of 38] m ean that this is su cient to re-construct the entire colour-dependent am plitude.
2. L ift the M HV tree-level scattering am plitudes to vertices, by continuing the intemal lines o -shell using the prescription described in x1.7.1. Intemal lines are then connected by scalar propagators which join particles of the sam e spin but opposite helicity.
3. Build M HV diagram swith the required extemal particles at loop level using the M H V tree-level vertices and sum over all independent diagram s obtained in this fashion for a xed ordering of extemal helicity states.
4. R e-express the loop integration m easure in term s of the o-shell param etrisation em ployed for the loop m om enta.
5. A nalytically continue to 42 dim ensions in order to dealw ith infrared divergences and perform all loop integrations.

1.8.2 Integration m easure

The loop legs that we m ust integrate over are o -shell and in order to proceed we m ust w ork out the integration m easure used in [37]. T he details of the m easure were m ore concretely w orked-out in 79] using the Feynm an tree theorem [206, 207, 208] and we use certain results from there as well as from the original construction of [37] while follow ing the review of Section 3 of [40].
W e need to reexpress the usual integration m easure $d^{4} L$ over the loop m om entum L in term s of the new variables land z introduced previously. A fter a short calculation we nd that 24 [37, 79]

$$
\begin{equation*}
\frac{d^{4} L}{L^{2}+i^{\prime \prime}}=d N \text { (l) } \frac{d z}{z+i^{\prime \prime}} \text {; } \tag{1.8.1}
\end{equation*}
$$

where we de ne $d^{4} L:=\sum_{i=0}^{3} d L_{i}$ and have introduced the N air m easure [175]

$$
\begin{equation*}
d N(l):=\frac{1}{4 i} \quad h l d \operatorname{lid} d^{2} \simeq \quad[I d I] d^{2} 1=\frac{d^{3} 1}{2 l_{0}}: \tag{1.8.2}
\end{equation*}
$$

[^25]Eq. 1.8.1) is key to the procedure. It is im portant to notice that the product of the m easure factor w ith a scalar propagator $d^{4} L=\left(L^{2}+i \prime\right)$ in (1.8.1) is independent of the reference vector. In $\mathbb{1 7 5}$], it was noticed that the Lorentz-invariant phase space m easure for a m assless particle can be expressed precisely in term s of the N air m easure:

$$
\begin{equation*}
d^{4} l^{(+)}\left(1^{2}\right)=d N(1) ; \tag{1.8.3}
\end{equation*}
$$

where, as before, we write the null vector 1 as $l_{_}=1 I_{_}$, and in M inkow ski space we identify $I=\quad$ ldepending on $w h e t h e r l_{0}$ is positive or negative.

N ext, we observe that in com puting one-loop M H V scattering am plitudes from M H V diagram s (show n in F igure 1.625 , the four-dim ensional integration m easure which appears is [37,79]

$$
\begin{equation*}
d M=\frac{d^{4} L_{1}}{L_{1}^{2}+i^{\prime \prime}}{\frac{d^{4}}{2} L_{2}^{2}+i^{\prime \prime}}^{(4)}\left(L_{2} \quad L_{1}+P_{L}\right) ; \tag{1.8.4}
\end{equation*}
$$

where L_{1} and L_{2} are loop m om enta, and P_{L} is the extemalm om entum ow ing outside the loon ${ }^{26}$ so that $L_{2} \quad L_{1}+P_{L}=0$.

Figure 1.6: A generic M HV diagram contributing to a one-loop M HV scattering am plitude.

N ow we express L_{1} and L_{2} as in 1.7.1),

$$
\begin{equation*}
L_{i_{;}}=l_{i} \tau_{i_{-}}+z_{i} \quad \sim_{-} ; \quad i=1 ; 2: \tag{1.8.5}
\end{equation*}
$$

U sing (1.8.5), we rew rite the argum ent of the delta function as

$$
\begin{equation*}
\mathrm{L}_{2} \quad \mathrm{~L}_{1}+\mathrm{P}_{\mathrm{L}}=\mathrm{l}_{2} \quad \mathrm{I}_{1}+\mathrm{P}_{\mathrm{L} ; z} ; \tag{1.8.6}
\end{equation*}
$$

where we have de ned

$$
\begin{equation*}
P_{\mathrm{L}, \mathrm{z}}:=\mathrm{P}_{\mathrm{L}} \quad \mathrm{z} \quad ; \tag{1.8.7}
\end{equation*}
$$

[^26]and
\[

$$
\begin{equation*}
\mathrm{z}:=\mathrm{z}_{1} \quad \mathrm{z}_{2}: \tag{1.8.8}
\end{equation*}
$$

\]

N otice that we use the sam e for both the m om enta L_{1} and $L_{2} \cdot U$ sing $\quad 1.8 .5$), we can then recast [1.8.4) as [37,79]

$$
\begin{equation*}
d M=\frac{d z_{1}}{z_{1}+i_{1}} \frac{d z_{2}}{z_{2}+i_{2}^{\prime \prime}} \frac{d^{3} l_{1}}{2 l_{10}} \frac{d^{3} l_{2}}{2 l_{20}}{ }^{(4)}\left(l_{2} \quad l_{1}+P_{L ; z}\right) ; \tag{1.8.9}
\end{equation*}
$$

where ${ }_{i}:=\operatorname{sgn}\left(0 l_{i 0}\right) "=\operatorname{sgn}\left(l_{i 0}\right) ", i=1 ; 2$ (the last equality holds since w e are assum ing

$$
0>0)
$$

W e now convert the integration over z_{1} and z_{2} into an integration over z and $z^{0}:=z_{1}+z_{2}$ and w ith a careful treatm ent of the integrals [79] we can integrate out z^{0}. W e also m ake the replacem ent

$$
\begin{equation*}
\frac{d^{3} l_{1}}{2 l_{10}} \frac{d^{3} l_{2}}{2 l_{20}}{ }^{(4)}\left(l_{2} \quad l_{1}+P_{L ; z}\right)!\quad d L \mathbb{P} S\left(l_{2} ; \quad I_{1}^{+} ; P_{L ; z}\right) ; \tag{1.8.10}
\end{equation*}
$$

where
is the two-particle Lorentz-invariant phase space (LIPS) measure and we recall that
$\left(l^{2}\right):=(b)(\underline{Z})$. Trading the nal integral over z for an integration over $P_{L ; z}^{2}$, the integration m easure nally becom es 37, 79]

$$
\begin{equation*}
d M=2 i \quad\left(P_{L ; z}^{2}\right) \frac{\mathrm{dP}_{\mathrm{L} ; z}^{2}}{\mathrm{P}_{\mathrm{L} ; z}^{2} \mathrm{P}_{\mathrm{L}}^{2}} \mathrm{i}^{\prime \prime} \mathrm{dL} \mathbb{P} S\left(l_{2} ; l_{1} ; \mathrm{P}_{\mathrm{L} ; z}\right): \tag{1.8.12}
\end{equation*}
$$

This can now be im mediately dim ensionally regularised, which is accom plished by sim ply replacing the four-dim ensionalLIPS m easure by its continuation to $D=42$ dim ensions:

$$
\begin{equation*}
\left.d^{D} \operatorname{LPS}\left(l_{2} ; I_{1}^{+} ; P_{L ; z}\right):=d^{D} l^{(+)}\left(I_{1}^{2}\right) d^{D} l_{2}{ }^{(}\right)\left(l_{2}^{2}\right) \quad{ }^{(D)}\left(l_{2} l_{1}+P_{L} ; z\right): \tag{1.8.13}
\end{equation*}
$$

Eq. (1.8.12) was one of the key results of [37]. It gives a decom position of the original integration m easure into a D-dim ensionalphase space m easure and a dispersive m easure. A ccording to C utkosky's cutting rules [210], the LIP S m easure com putes the discontinuity of a Feynm an diagram across its branch cuts. W hich discontinuity is evaluated is determ ined by the argum ent of the delta function appearing in the LIPS m easure; in (1.8.12) this is $P_{L ; z}$ (de ned in (1.8.7)). N otice that $P_{L ; z}$ always contains a term proportional to the reference vector, as prescribed by (1.8.7). Finally, discontinuities are integrated using the dispersive m easure in (1.8.12), thereby reconstructing the full am plitude.

A s a last rem ark, notice that in contradistinction w ith the cut-constructibility approach of BDDK, here we sum over all the cuts \{ each of which is integrated w ith the appropriate dispersive m easure.

$1.9 \mathrm{M} \mathrm{H} \mathrm{V} \mathrm{amplitudes} \mathrm{in} \mathrm{N}=4$ super -Y ang -M ills

In this section we will brie y review the one-loop M HV N $=4$ super-Yang -M ills am plitudes and their derivation using M H V vertices. M any more details can be found in [37, 38].

1.9.1 G eneral integral basis

It is know n that, at one-loop, allam plitudes in m assless gauge eld theories can be w ritten in term s of a certain basis of integral functions term ed boxes, triangles and bubbles as well as possible rational contributions (i.e. contributions which do not contain any branch cuts) [38, 42]. T hese functions m ay involve som e num ber of loop m om enta in the num erator of their integrand, in which case they are term ed tensor boxes, triangles or bubbles, though the basic scalar integrals rem ain the sam e and at 4-, 3-and 2-point respectively are the basic integrals arising at one-loop in scalar ${ }^{3}$ theory.

Figure 1.7: B oxes, Triangles and Bubbles. H ere P_{i}, K_{i} and Q_{i} are generic m om enta representing the contribution of one or m ore external particles. The di erent functions discussed below ($1-\mathrm{m}$ ass, $2-\mathrm{m}$ ass etc.) are all special cases of these.

A box integral is characterised by having 4 vertices, a triangle integral by having 3 vertices while a bubble has 2. The speci c functions that occur are then characterised not-only by possible powers of loop m om enta arising in the num erator, but by the num ber of vertices w ith m ore than one extemal leg. If a vertex has only one extemal leg it is called a m assless vertex (as the extemalm om entum is m assless in the theories we are considering), whilst if it has more than one extemal leg it is term ed a massive vertex as the extemalm om entum em anating from it does not square to zero.
T here are thus 4 generic types of box integrals: $4-\mathrm{m}$ ass boxes w here all 4 vertices are m assive; 3-m ass boxes; 2-m ass 'easy' boxes where the m assive vertices are opposite each other; 2-m ass hard' boxes where the m assive vertices are ad jacent and 1-m ass boxes. At 4-point the only possible box integral is a massless box. Sim ilarly one can have 3 m ass triangles, 2 m ass triangles, 1 m ass triangles, 2 m ass bubbles and 1 m ass bubbles (as well as m assless triangles and m assless bubbles at 3-and 2-point respectively) ${ }^{27}$ Explicit form s for all these functions can be found in A ppendix I of [42].

1.9.2 The $\mathrm{N}=4 \mathrm{M} \mathrm{HV}$ one-loop am plitudes

C onceming the above decom position, m axim ally supersym m etric Y ang M ills theory is special in that its high degree of sym m etry prescribes that its one-loop am plitudes only contain scalar box integral functions (up to nite order in the dim ensionalregularisation param eter) B8, 42]. In particular, the M HV am plitudes only depend on the 2 m ass easy (2 me e) box functions. The full one-loop n-point M HV am plitudes are proportional to the tree-levelM HV am plitudes and are given by 138]

$$
\begin{equation*}
\mathrm{A}_{\mathrm{n} ; 1}^{\mathrm{N}=4 \mathrm{M} H \mathrm{~V}}=\mathrm{A}_{\mathrm{n}}^{\text {tree }} \mathrm{V}_{\mathrm{n}}^{\mathrm{g}} ; \tag{1.9.1}
\end{equation*}
$$

where [38, 73]

$$
\begin{equation*}
V_{n}^{g}=X_{i=1}^{n=\left[\frac{n}{X}\right] 1} 1 \quad \frac{1}{2}{ }_{r=1}^{\frac{n}{2} \quad 1 ; r} \quad F_{n: r i}^{2 m e}: \tag{1.9.2}
\end{equation*}
$$

The basic scalar box integral I_{4} is de ned by

$$
\begin{equation*}
I_{4}=i(4)^{2} \quad \frac{d^{4}{ }^{2} p}{(2)^{4} 2} \frac{1}{p^{2}\left(p P_{1}\right)^{2}\left(p \quad P_{1} P_{2}\right)^{2}\left(p+P_{4}\right)^{2}} ; \tag{1.9.3}
\end{equation*}
$$

where dim ensional regularisation is used to take care of infrared divergences. The relevant integrals arising in (1.9.2) are related to I_{4} for di erent choices of the extemal m om enta at each vertex $P_{i}(i=1::: 4)$. These are denoted by $I_{4 x ; i}^{2 m}$ - see Figure 1.8 and are given in term s of the $F_{n: r i}^{2 m}$ e by

$$
\begin{equation*}
I_{4: r ; i}^{2 m} e=\frac{2 F_{n \times ; i}^{2 m e}}{t_{i}^{[r]} t_{i+r+1}^{[n]} t_{i}^{[r+1]} t_{i}^{[r+1]}} ; \tag{1.9.4}
\end{equation*}
$$

[^27]w ith
\[

$$
\begin{align*}
& t_{i}^{[r]}=\left(k_{i}+k_{i+1}+\quad \text { 直 } k_{1}\right)^{2} ; r>0 \\
& t_{i}^{[r]}=t_{i}^{[n r]} ; r<0 ; \tag{1.9.5}
\end{align*}
$$
\]

w here the k_{i} are the extemalm om enta. T he explicit form of $F_{n r i i}^{2 m}$ e is given by [38]

$$
\begin{aligned}
& \left.F_{n: r ; i}^{2 m e}=\frac{1}{2}{ }^{h}\left(t_{i}^{[r+1]}\right)+\left(t_{i}^{[r+1]}\right) \quad\left(t_{i}^{[r]}\right) \quad\left(t_{i+r+1}^{[n ~ r}\right)^{2]}\right)^{i} \\
& +L i_{2} 1 \frac{t_{i}^{[r]}}{t_{i}^{[r+1]}}+L i_{2} 1 \frac{t_{i}^{[r]}}{t_{i}^{[r+1]}}+L i_{2} 11 \frac{\left.t_{i+r+1}^{[n} \quad 2\right]}{t_{i}^{r+1}} \\
& +L i_{2} 1 \frac{t_{i+r+1}^{n} r^{2}}{t_{i}^{[r+1]}} \quad L i_{2} 1 \frac{\left.t_{i}^{[r]} t_{i+r+1}^{[n]} 2\right]}{t_{i}^{[r+1]} t_{i}^{[r+1]}}+\frac{1}{2} \log ^{2} \frac{t_{i}^{[r+1]} 1}{t_{i}^{[r+1]}} ;(1.9 .6)
\end{aligned}
$$

where Li_{2} is Euler's dilogarithm

$$
\begin{equation*}
\mathrm{Li}_{2}(z):=\mathrm{Z}_{0}^{\mathrm{z}} \mathrm{dt} \frac{\log (1 \quad \mathrm{t})}{\mathrm{t}}: \tag{1.9.7}
\end{equation*}
$$

Figure 1.8: T he 2-m ass easy box function.
The one-loop M HV am plitudes were constructed in 38] from tree diagram s using cuts. A given cut results in singularities in the relevant m om entum channels and by considering all possible cuts one can construct the full set of possible singularities. From this and unitarity one can deduce the am plitude as given in 1.9.1). M ore explicitly, consider a cut one-loop M HV diagram where the cut separates the extemalm om enta $k_{m_{1}} \& k_{m_{1}} 1$, and $k_{m_{2}} \& k_{m_{2}+1}$ (i.e. the set of extemal m om enta $k_{m_{1}} ; k_{m_{1}+1} ;::: ; k_{m_{2}}$ lie to the left of the cut, and the set $k_{m_{2}+1} ; k_{m_{2}+2} ;::: ; k_{m_{1}} 1$ lie to the right, w ith m om enta labelled clockw ise and outgoing). This separates the diagram into tw o M HV tree diagram s connected only by tw m om enta l_{1} and l_{2} ow ing across the cut, w ith

$$
\begin{equation*}
l_{1}=l_{2}+P_{L} ; \tag{1.9.8}
\end{equation*}
$$

where $P_{L}=P_{\substack{m_{2} \\ i=m_{1}}} k_{i}$ is the sum of the extemal m om enta on the left of the cut. T he m om enta $l_{1} ; l_{2}$ are taken to be null. It is im portant to note that the resulting integrals are not equal to the corresponding Feynm an integrals where l_{1} and l_{2} would be left o shell; how ever, the discontinuities in the channel under consideration are identical and this gives enough inform ation to determ ine the full am plitude uniquely.

H ow ever, we will now sketch how to derive the M HV am plitudes using the m ethod of M HV diagram s. This is quite sim ilar, but not identical to the approach of BDDK using cut-constructibiliy, a brief review of which can be found in A ppendix D.

1.9.3 M H V vertices at one-loop

Figure 1.9: A one-loop M H V diagram com puted using M HV am plitudes as interaction vertioes. T his diagram has the m om entum structure of the cut referred to at the end of +1.9.2.

1. To each M HV vertex we associate the appropriate form of the $M H V$ am plitude for that vertex, recalling that intemal lines m ust be taken o -shell using the prescription described in 1.7.1. To each intemal line we associate a scalar propagator and integrate over the appropriate loop m om entum. T he generic expression for the diagram of F igure 1.9 then reads:

$$
\begin{aligned}
A & =\frac{Z}{(2)^{4}} \frac{d_{1}}{(2)^{4}} \frac{L_{2}^{4}}{L_{1}^{2}+i^{\prime \prime}} \frac{1}{L_{2}^{2}+i^{\prime \prime}} A_{L} A_{R} \\
& =\frac{d^{4} L_{1}}{L_{1}^{2}+i^{\prime \prime}} \frac{d^{4} L_{2}^{2}+i^{\prime \prime}}{i^{\prime \prime}} \frac{i N_{L}{ }^{(4)}\left(L_{2} L_{1}+P_{L}\right)}{D_{L}} \frac{i N_{R}{ }^{(4)}\left(L_{1} L_{2}+P_{R}\right)}{D_{R}} \\
& ={ }^{(4)}\left(P_{L}+P_{R}\right) \frac{d^{4} L_{1}}{L_{1}^{2}+i^{\prime \prime}} \frac{d^{4} L_{2}^{2}+i^{\prime \prime}}{}{ }^{(4)}\left(L_{2} L_{1}+P_{L}\right) \frac{i N_{L}}{D_{L}} \frac{i N_{R}}{D_{R}}:(1.9 \text {.9) }
\end{aligned}
$$

H ere L and R denote the left and right vertices respectively and we have $P_{L}:=k_{m_{1}}+k_{m_{1}+1}+:::+k_{m_{2}}$ and $P_{R}:=k_{m_{2}+1}+k_{m_{2}+2}+:::+k_{m_{1}} 1 . N$ and D denote the functions of spinor variables describing the num erator and denom -
inator of each M HV vertex respectively and we have included a factor of i(2 $)^{4}$ w ith each vertex in keeping w ith N air's supersym m etric description [31, 37, 175].
2. In 37] an approach using N air super-vertices was used. H ere we w ill just consider the usual M HV vertices for ease of transition to the later chapters where we w ill discuss M HV am plitudes in theories w ith less supersym m etry. In this case there are two possibilities to consider. T he rst is where both extemal negativehelicity ghuons lie on one M HV vertex and the second is where they lie on di erent vertices (see e.g. Figure 2.4). A fter som em anipulation (em ploying the Schouten identity stated in A ppendix A), they can be shown to give the sam e contribution. Extracting an overall factor of

$$
\begin{equation*}
A_{n}^{\text {tree }}=i(2)^{4}{ }^{(4)}\left(P_{L}+P_{R}\right) \sum_{\substack{n \\ k=1}}^{h i j k i^{4}} \tag{1.9.10}
\end{equation*}
$$

where iand jare the extemalnegative helicity ghons and regulating by prom oting the integrals to 42 dim ensions, (1.9.9) becom es

$$
\begin{equation*}
A=\frac{i}{(2)^{4}} A_{n}^{\text {tree }} d M \hat{R} \tag{1.9.11}
\end{equation*}
$$

w here $d M$ is the m easure (1.8.12) derived previously and

$$
\begin{equation*}
\hat{R^{\prime}}:=\frac{1 m_{1} 1 m_{1} i h_{2} l_{1} i}{m_{1} 1 l_{1} i h l_{1} m_{1} i} \frac{m_{2} m_{2}+1 i h_{1} l_{2} i}{m_{2} l_{2} i h l_{2} m_{2}+1 i}: \tag{1.9.12}
\end{equation*}
$$

3. Follow ing equations (2.11)-(2.16) of [37] we m ay nally write \hat{R} as a signed sum (i.e. tw o term s com e w ith plus signs and two w ith m inus signs - see Eq. (2.13) of [37]) of term s of the form 28

$$
\begin{equation*}
R(i ; j):=\frac{h i l_{2} i h j l_{1} i}{h i l_{1} i} \frac{h j l_{2} i}{}: \tag{1.9.13}
\end{equation*}
$$

O nce expressed in term s ofm om enta by multiplying top and bottom by appropriate anti-holom onphic spinor invariants, cancellations arise betw een di erent term S of the signed sum and we can schem atically write $\hat{R}=\hat{P} \quad \mathrm{R} \quad \mathrm{P} \quad \mathrm{Re}_{\mathrm{e}}$ with [37, 79]

$$
\begin{equation*}
R_{e}=\frac{1}{4} \frac{P_{L ; z}^{2}(i j) 2\left(i P_{L ; z}\right)\left(j P_{L ; z}\right)}{\left(i l_{1}\right)\left(j l_{2}\right)}: \tag{1.9.14}
\end{equation*}
$$

[^28]The notation (ab) here is shorthand for (a b).11.9.11) then becom es

$$
\begin{equation*}
A=\frac{i}{(2)^{4}} A_{n}^{\text {tree }} X^{Z} d M R_{e}: \tag{1.9.15}
\end{equation*}
$$

It is worth m entioning that the procedure of expressing ${ }^{P} R \quad{ }^{P} \quad R_{e}$ is a clever way of cancelling the triangle and bubble contributions in R to leave only box functions 37, 79] and is equivalent to the usual m ethod of Passarino-Veltm an reduction of [212]. 1.9.15) is then the basic integral that we have to work with and we will consider the speci c term $R_{e}\left(m_{1} ; m_{2}\right)$ for de niteness.
4. Recall that the m easure $d M$ involves a dispersive part and an integral over Lorentz-invariant phase space ($d L \mathbb{P} S$). W e wish to begin by perform ing the integral over this phase space. For this $w e g o$ to the centre of m ass fram e for $P_{L ; z}$ $-\mathrm{P}_{\mathrm{L} ; Z}=\mathrm{P}_{0}(1 ; \mathbb{O})$ - and param etrize $\mathrm{l}_{1}=\frac{1}{2} \mathrm{P}_{0}(1 ; \mathbb{*})$ and $l_{2}=\frac{1}{2} \mathrm{P}_{0}(1 ; \mathbb{*}) \mathrm{w}$ ith $\psi:(\sin 1 \cos 2 ; \sin 1 \sin 2 ; \cos 1)$. In 42 dim ensions, the LPS m easure 1.8.13) can be written in term s of the angles 1 and 2 a. ${ }^{29}$

$$
\begin{equation*}
d^{4} 2 \operatorname{LPP}=\frac{\frac{1}{2}}{4 \frac{1}{2}} \frac{P_{0}^{2}}{4} \quad d_{1} d_{2}\left(\sin _{1}\right)^{1} 2\left(\sin _{2}\right)^{2} ; \tag{1.9.16}
\end{equation*}
$$

and the denom inator of (1.9.14) as

$$
\left(m_{1} l_{1}\right)\left(m_{2} l_{2}\right)=\frac{P_{0}^{2}}{4} m_{10}\left(\begin{array}{l}
1 \tag{1.9.17}\\
\cos \\
1
\end{array}\right)\left(A+B \sin 1 \cos 2+C \cos 1_{1}\right)
$$

$\mathrm{where} \mathrm{m}_{1}:=\mathrm{m}_{10}(1 ; 0 ; 0 ; 1)$ and $\mathrm{m}_{2}:=(\mathrm{A} ; \mathrm{B} ; \mathbf{0} ; \mathrm{C}) \mathrm{w}$ ith $\mathrm{A}^{2}=\mathrm{B}^{2}+\mathrm{C}^{2}$. The num erator of 1.9.14) does not involve l_{1} or l_{2} and we leave it as $N\left(P_{L ; z}\right)$ for now. w e thus have

$$
\begin{equation*}
{ }^{Z} d W{ }_{2}^{Z} \frac{d_{1} d_{2}(\sin 1)^{1}{ }^{2}\left(\sin _{2}\right)^{2}}{\left(1 \cos _{1}\right)(A+B \sin 1 \cos 2+C \cos 1)} ; \tag{1.9.18}
\end{equation*}
$$

where

$$
\begin{align*}
1 & \left.:=\frac{i}{(2)^{4}} \frac{1=2}{4^{1}(1=2}\right)^{A_{n}^{t r e e}} ; \tag{1.9.19}\\
2 & : \frac{N\left(P_{L ; z}\right)}{m_{10} P_{0}^{2}}\left(P_{0}^{2}\right) ; \tag{1.9.20}\\
d W & :\left(2 \text { i) }\left(P_{L ; z}^{2}\right) \frac{d P_{L ; z}^{2}}{P_{L ; z}^{2} P_{L}^{2} \quad i^{\prime \prime}}:\right. \tag{1.9.21}
\end{align*}
$$

The integral over, and 2 has been perform ed in [213] and we borrow the result in a form from [214]. C onverting $A ; B ; C ; m 10$ and P_{0} back into Lorentz-invariants

[^29]we obtain:
\[

$$
\begin{equation*}
41^{1}{ }^{\mathrm{Z}} \mathrm{dW}\left(\mathrm{P}_{\mathrm{L} ; \mathrm{z}}^{2}\right) \quad{ }_{2} \mathrm{~F}_{1} \quad 1 ; \quad ; 1 \quad ; \mathrm{a}_{\mathrm{L} ; \mathrm{z}}^{2} \quad: \tag{1.9.22}
\end{equation*}
$$

\]

In Equations (1.9.16), (1.9.19) and (1.9.22) above, is the gam m a function and ${ }_{2} \mathrm{~F}_{1}$ the G auss hypergeom etric function. T hey can be de ned by

$$
\begin{align*}
& Z_{1} \\
& (z):=\quad d t t^{z} e^{t} ;<[z]>0 \text {; } \tag{1.9.23}\\
& \left.\left.{ }_{2} \mathrm{~F}_{1}(\mathrm{a} ; \mathrm{b} ; \mathrm{c} ; \mathrm{z})=\frac{0}{(\mathrm{~b})(\mathrm{c})} \mathrm{C}^{\mathrm{Z}} \int_{0}^{1} d t t^{\mathrm{b} 1^{1}(1} \quad \mathrm{t}\right)^{\mathrm{b}+\mathrm{c}^{1}(1} \quad \text { tz }\right)^{\mathrm{a}}(1.9 .24)
\end{align*}
$$

where the second de nition holds when $\langle[\mathrm{c}]\rangle\langle[\mathrm{b}]\rangle 0$ and jarg (1 z$) \mathrm{j}$ <. a_{z} is de ned to be $a_{z}:=(i j)=N\left(P_{L ; z}\right)$ and so is equal to $\left(m_{1} m_{2}\right)=N\left(P_{L ; z}\right)$ in this case.
5. F inally, we w ould like to evaluate this dispersive integral [1.9.22). In [37], th is was done by combining di erent term scom ing from di erent $R e$ to give a convergent integral. In fact the di erent $R e$ that onemust com bine com e not from di erent i and j in $R_{e}(i j)$ as obtained from $\hat{R}={ }^{P} R!{ }^{P} R_{e}$, but from R_{e} with the same i and j com ing from di erent term s in the overall sum m ation over all the cuts of the one-loop integral mentioned at the end of 41.8 .2 and not so far alluded to in this section. This sum m ation is just a sum m ation over all cyclic partitions of the extemal particles betw een the tw o M H V vertices, but at the level of the integrals we have arrived at in (1.9.22) the sum m ation over R_{e} (ij) with the sam e values of i and j from di erent orderings of the extemal particles serves to re-construct the 2 m e box functions from their di erent cuts.
T he integrals are explicitly done by expanding the hypergeom etric functions above in an expansion in in term s of polylogarithm s (generalisations of Lí) and then com bining di erent cuts of the sam e box function to give a convergent answer. A key ingredient in all this is the know ledge that the nalresult w ill be independent of . has already been elim inated from the dispersive integration m easure by converting the integral over z and z^{0} into an integral over $P_{L ;}$, so one m ay expect that even before we evaluate this dispersive integral we should be able to pick a particular value for to sim plify the calculation. H ow ever, in B7] a stronger gauge invariance was proposed; nam ely that one may choose separately for each box function. This was checked num erically in [37] and independently (also num erically) in [209] and further evidence was provided in 79].30 It m eans that one can write $N\left(P_{L ; z}\right)=N\left(P_{L}\right)$ if one chooses $=m_{1}$ or $=m_{2}$ in all four $R_{e}\left(m_{1} m_{2}\right)$ which contribute to that particular box function.

[^30]The nalresult (up to nite order in) given in Equation (5.16) of [37] is that the contribution of a particular box function (say a generic box function such as that in F igure 1.8, which would come from combining the four term $s w i t h m_{1}=k_{i+r}$ and $m_{2}=k_{i} 1$) is

$$
\begin{align*}
& \left.F_{n r ; i}^{2 m e}=\frac{1}{2}\left(t_{i 1}^{[r+1]}\right)+\left(t_{i}^{[r+1]}\right) \quad\left(t_{i}^{[r]}\right)\left(t_{i+r+1}^{[n r}\right)^{r}\right)^{i} \\
& \left.+L i_{2} 1 a t_{i}^{[r]}+L i_{2} 1 a t_{i+r+1}^{[n \quad r} 2\right] \\
& \begin{array}{llllll}
\mathrm{L}_{2} & 1 & a t_{1}^{[r+1]} & \mathrm{L} \mathrm{i}_{2} & 1 & a t_{i}^{[r+1]}
\end{array} \text {; } \tag{1.9.25}\\
& \text { i }
\end{align*}
$$

where

Equation 1.9.25) is in fact equal to (1.9.6) but is an altemative form which was discovered in [215] and independently derived in [37] and involves one less dilogarithm and one less logarithm than (1.9.6). A fter sum m ing over all partitions of the extemal particles betw een the tw o M HV vertices we recover 1.9.1).

The calculation outlined above is essentially what we will follow in C hapters 2 and 3 for the $\mathrm{N}=1$ and $\mathrm{N}=0 \mathrm{MHV}$ am plitudes. For full details of the am plitudes in $\mathrm{N}=4$ see [37] and for a short discussion on the overall norm alisation of the result obtained there com pared w ith the one obtained originally in 38] see A ppendix C.

CHAPTER 2

M H V A M PLITUDES $\mathbb{N} N=1$
SUPER-YANG M ILLS

In C hapter 1 we described som e of the hidden sim plicity of pertunbative gauge theory in particular in the context of m axim ally supersym m etric Y ang M ills - and saw how it m ay be applied to sim plifying the calculation of perturbative quantities such as scattering am plitudes. T hem any techniques available to illum inate the perturbative structure included colour stripping, the use of a helicity schem e and supersym m etric decom positions. A perturbative duality w ith a tw istor string theory highlighted the unexpected com pactness of the M HV am plitudes at tree-level and provided motivation for a new perturbative expansion of gauge theory - the CSW rules.

T he C SW rules have been show n to be valid even at loop level-despite the failure of the duality w ith tw istor string theory - and the M HV am plitudes in $N=4$ super-YangM ills were derived using these rules in [37] and show n to be identical to the original derivation of [38] using 2-particle cuts. As a bonus, the C SW rules also gave rise to a representation of the 2 m ass easy box functions that is sim pler to that originally used in [38]. H ow ever, at the tim e it was far from certain that these rem arkable techniques w ould be applicable to other gauge theories. O nem ight not have been surprised if such results only held for a theory w ith an extrem ely high am ount of sym m etry such as $\mathrm{N}=4$ SYM .

In [40, 41] a rst step tow ards establishing the general valid ity of the M $\mathrm{H} V$-vertex form alism was taken and it was show n independently by Bedford, B randhuber, Spence \& Travaglini and Q uigley \& R osali that the CSW rules correctly calculate the M HV am plitudes in theories with less supersym m etry such as $\mathrm{N}=1$ and $\mathrm{N}=2$ super-YangM ills. In particular the M HV am plitudes for scattering ofextemalghonswith an $N=1$ chiralm ultiplet running in the loop was calculated and it was found that the results exactly agree w ith those originally obtained by BD DK in [42]. This chapter follow s 40] and show show the $N=1 \mathrm{MHV}$ am plitudes m ay be obtained from M HV vertices.

2.1 The N = 1 M H V am plitudes at one-loop

The expression for the M H V am plitudes at one-loop in $N=1$ SYM was obtained for the rst tim eby BDDK in 42] using the cut-constructibility m ethod. W ew ill shortly
give their explicit result and then rew rite it by introducing appropriate functions. This tums out to be usefulw hen we com pare the BD D K result to that which we will derive by using $\mathrm{M} H \mathrm{~V}$ diagram s .

In order to obtain the one-loop M HV am plitudes in $\mathrm{N}=1$ and $\mathrm{N}=2 \mathrm{SYM}$ it is su cient to compute the contribution $A{ }_{n}^{N}=1$;chiral to the one-loop M HV am plitudes com ing from a single $N=1$ chiralm ultiplet. T his w as calculated in [42], and the result tums out to be proportional to the Parke-Taylor M H V tree am plitude [170]

$$
\begin{equation*}
A_{n}^{\text {tree }}:=\frac{Q_{k=1}^{n} h k i^{4}}{n k+1 i} ; \tag{2.1.1}
\end{equation*}
$$

as is also the case w ith the one-loop M HV amplitudes in $N=4$ SYM. H owever, in contradistinction w ith that case, the rem ain ing part of the $N=1 \mathrm{am}$ plitudes depends non-trivially on the position of the negative-helicity gluons i and j. T he result obtained in [42] is:

$$
\begin{aligned}
& m=i+1 s=j+1
\end{aligned}
$$

$$
\begin{align*}
& \text { X }^{1} \quad X \quad C_{m}^{i ; j}{ }_{a} \frac{\log \left(t_{a+1}^{[m}{ }^{a]}=t_{a+1}^{[m} a^{1]}\right)}{t_{a+1}^{[m} a^{a]} t_{a+1}^{[m} a^{1]}} \\
& +\frac{C_{i+1 ; i}^{i ; j}}{t_{i}^{[2]}} K_{0}\left(t_{i}^{[2]}\right)+\frac{C_{i}^{i ; j} 1 ; i}{t_{i}^{[2]}} K_{0}\left(t_{i}^{[2]}{ }_{1}\right) \\
& +\frac{C_{j+1 ; j 1}^{i ; j}{ }_{i}}{t_{j}^{[2]}}\left(t_{j}^{[2]}\right)+\frac{C_{j}^{i ; j} 1 ; j}{t_{j}^{[2]}} K_{0}\left(t_{j}^{[2]}{ }_{1}\right) ; \tag{2.1.2}
\end{align*}
$$

where $t_{i}^{[k]}:=\left(p_{i}+p_{i+1}+\quad \text { it } \mathrm{p}_{1}\right)^{2}$ for $k \quad 0$, and $t_{i}^{[k]}=t_{i}^{[n]}$ for $k<0$. The sum s in the second and third line of 2.1.2) cover the ranges C_{m} and D_{m} de ned by

$$
\begin{align*}
& 8 \text { fi;i+1;:::;j 2g; } \quad m=j+1 \text {; } \\
& C_{m}=\text { fi;i+1;:::;j 1g; } j+2 m \text { i 2; } \tag{2.1.3}\\
& \text { fi+1;i+2;:::;j 1g; m=i } 1 \text {; }
\end{align*}
$$

and

$$
\begin{align*}
& { }_{8}^{8} \mathrm{fj} ; j+1 ;::: ; \text { i } 2 \mathrm{~g} ; \quad \mathrm{m}=\text { i+ } 1 \text {; } \\
& D_{m}=f j ; j+1 ;::: ; i \quad 1 g ; \quad \text { i+ } 2 \mathrm{~m} \text { j 2; } \tag{2.1.4}\\
& \text { fij+1;j+2;:::;i } 1 g ; \quad m=j \quad 1:
\end{align*}
$$

The coe cients $\mathrm{b}_{\mathrm{m}}^{\mathrm{i}_{i} j}{ }_{; \mathrm{s}}$ and $\mathrm{C}_{\mathrm{m}}^{\mathrm{i}^{j}{ }_{a}}$ are
where $q_{r ; s}:=P_{l=r}^{s} k_{l}$. N otice that both coe cients $b_{m}^{i ; j}$ and $c_{m}^{i ; j}$ a are sym m etric under the exchange of i and j. In the case of b this is evident; for c it is also m anifest as c is expressed as the product of two antisym m etric quantities. The function B in the
rst line of (2.12) is the \backslash nite" part of the easy twofm ass (2 m e) scalar box function F (s; $\left.; \mathrm{P}^{2} ; \mathrm{Q}^{2}\right)$, with
$F\left(s ; t ; P^{2} ; Q^{2}\right):=\frac{1}{2}(s)+(t) \quad\left(P^{2}\right) \quad\left(Q^{2}\right)^{i}+B\left(s ; t ; P^{2} ; Q^{2}\right):$
A s in [37] w e have introduced the follow ing conven ient kinem atical invariants:

$$
\begin{equation*}
s:=(P+p)^{2} ; \quad t:=(P+q)^{2} \tag{2.1.8}
\end{equation*}
$$

where p and q are null m om enta and P and Q are in general massive. W e also have m om entum conservation in the form $p+q+P+Q=0[1]$ In [37] the follow ing new expression for B w as found:

$$
B\left(s ; t ; P^{2} ; Q^{2}\right)=L i_{2}\left(1 \quad a P^{2}\right)+L i_{2}\left(1 \quad a Q^{2}\right) \quad L i_{2}\left(\begin{array}{ll}
1 & \text { as })
\end{array} \quad L i_{2}\left(\begin{array}{ll}
1 & \text { at }) ;(2.1 .9
\end{array}\right)\right.
$$

where

$$
\begin{equation*}
a=\frac{P^{2}+Q^{2} \quad s \quad t}{P^{2} Q^{2}}: \tag{2.1.10}
\end{equation*}
$$

The expression 2.1.9) contains one less dilogarithm and one less logarithm than the

[^31]

Figure 2.1: The box function F of 2.1.7), whose nite part B, Eq. 2.1.9), appears in the $\mathrm{N}=1 \mathrm{am}$ plitude 2.1.2). T he two extemalghons w ith negative helicity are labelled by i and j. The legs labelled by s and m correspond to the nullm om enta p and q respectively
 appearing in the box function B in (2.1.19) correspond to the kinem atical invariants $t:=(Q+p)^{2}, s:=(P+p)^{2}, Q^{2}, P^{2}$ in the notation of 2.1.9), with $p+q+P+Q=0$.
traditional form used by BDDK,

$$
\begin{align*}
\mathrm{B}\left(\mathrm{~s} ; 丿 ; \mathrm{P}^{2} ; \mathrm{Q}^{2}\right)= & \mathrm{L} i_{2} 1 \frac{\mathrm{P}^{2}}{\mathrm{~S}}+\mathrm{L} i_{2} 1 \frac{\mathrm{P}^{2}}{t}+\mathrm{L} i_{2} 1 \frac{Q^{2}}{\mathrm{~s}}+\mathrm{L} i_{2} 1 \frac{Q^{2}}{t} \\
& \mathrm{~L} i_{2} 1 \frac{\mathrm{P}^{2} Q^{2}}{\mathrm{st}}+\frac{1}{2} \log ^{2} \frac{\mathrm{~S}}{\mathrm{t}}: \tag{2.1.11}
\end{align*}
$$

The agreem ent of (2.1.9) w ith 2.1.11) was discussed and proved in Section 5 of [37, 23 In F igure 2.1 we give a pictorial representation of the box function F de ned in (2.1.7) (w ith the leg labels identi ed by $\mathrm{s}!\mathrm{p}, \mathrm{m}$! q).

[^32]

Figure 2.2: A triangle function, corresponding to the rst term $T\left(p_{m} ; q_{a+1 ;} \quad 1 ; q_{m+1 ; a}\right)$ in the second line of 2.1.19). p, Q and P correspond to $\mathrm{p}_{\mathrm{m}}, q_{m+1 ; a}$ and $q_{a+1, m} \quad$ in the notation of Eq. 2.1.19), where $j 2 Q$, i 2 P . In particular, $Q^{2}!t_{m+1}^{[a \mathrm{~m}]}$ and P^{2} ! $t_{n}^{[a m+1]}$.

F inally, infrared divergences are contained in the bub.ble functions $K_{0}(t)$, de ned by

$$
\begin{equation*}
K_{0}(t):=\frac{(t)}{(12)}: \tag{2.1.12}
\end{equation*}
$$

W e notice that in order to re-express (2.1.2) in a sim pler form, it is useful to introduce the triangle function 73]

$$
\begin{equation*}
T(\mathrm{p} ; \mathrm{P} ; \mathrm{Q}):=\frac{\log \left(\mathrm{Q}^{2}=\mathrm{P}^{2}\right)}{\mathrm{Q}^{2} \mathrm{P}^{2}} ; \tag{2.1.13}
\end{equation*}
$$

w ith $\mathrm{p}+\mathrm{P}+\mathrm{Q}=0$. A diagram m atic representation of this function is given in F igure 2.2 (with m^{+}! p). W e also nd it useful to introduce an -dependent triangle function $\sqrt[3]{ }$

$$
\begin{equation*}
T(p ; P ; Q):=\frac{1}{\left(P^{2}\right)\left(Q^{2}\right)} Q^{2} P^{2} \quad: \tag{2.1.14}
\end{equation*}
$$

As long as P^{2} and Q^{2} are non-vanishing, one has

$$
\begin{equation*}
\lim _{!} T(\mathrm{p} ; \mathrm{P} ; \mathrm{Q})=\mathrm{T}(\mathrm{p} ; \mathrm{P} ; \mathrm{Q}) ; \quad \mathrm{P}^{2} \in 0 ; \mathrm{Q}^{2} \in 0: \tag{2.1.15}
\end{equation*}
$$

[^33]

Figure 2.3: This triangle function corresponds to the second term in the second line of 2.1.19) \{ where i and j are swapped. As in Figure 2.2, P, Q and P correspond to $p_{m}, q_{m+1 ; a}$ and $q_{a+1 m} 1$ in the notation of Eq. 2.1.19), where now i2 $2, j 2 P$. In particular, $Q^{2}!t_{a+1}^{[m}{ }^{\text {a] }}$ and $P^{2}!t_{a+1}^{[m}{ }^{\text {a }}$.

If either of the invariants vanishes, one has a di erent lim it. For exam ple, if $Q^{2}=0$ one has

$$
\begin{equation*}
T(\mathrm{p} ; \mathrm{P} ; Q) \dot{\underline{2}}_{2}=0 \quad!\quad-\frac{1}{\left(\mathrm{P}^{2}\right)} \mathrm{P}^{2} \quad ; \quad!0: \tag{2.1.16}
\end{equation*}
$$

W e w ill call these cases \degenerate triangles".
T he usefulness of the previous rem ark stem s from the fact that precisely the quantity ($1=$) $\left(P^{2}\right)=P^{2}$ appears in the last line of 2.1.2) \{ the bubble contributions. T herefore, these can be equivalently obtained as degenerate triangles i.e. triangles w here one of the m assive legs becom es m assless.

Speci cally, we notice that the four degenerate triangles (bubbles) in the last line of 2.1.2) can be precisely obtained by including the $\backslash m$ issing" index assignm ents in D_{m} and C_{m} :

$$
\begin{equation*}
(m=i+1 ; a=i \quad 1) ; \quad(m=j \quad 1 ; a=j) \quad \text { for } D_{m} ; \tag{2.1.17}
\end{equation*}
$$

which correspond to tw o degenerate triangles, and

$$
\begin{equation*}
(m=j+1 ; a=j \quad 1) ; \quad(m=i \quad 1 ; a=i) \quad \text { for } C_{m} ; \tag{2.1.18}
\end{equation*}
$$

corresponding to two m ore degenerate triangles.

In conclusion, the previous rem arks allow us to rew rite 2.1.2) in a m ore com pact form as follow s :

In this expression it is understood that we only keep term s that survive in the lim it
! 0. This m eans that the factor $1=\left(\begin{array}{ll}1 & 2\end{array}\right)$ can be replaced by 1 whenever the term in the sum is nite, i.e. whenever the triangle is non-degenerate. H ow ever, in the case of degenerate triangles, which contain infrared-divergent term s, we have to expand this factor to linear order in . In the notation of (2.1.19), $q_{m}^{2}+1_{a}=t_{m+1}^{[a \quad m}$ and $\left.q_{a+1 m}^{2}{ }_{1}=t_{n}^{[a} m+1\right]$; in F igure 2.2, these invariants correspond to Q^{2} and P^{2} respectively, where $2 Q$,i2 P. In the sum with i\$ j, onewould have $q_{m+1 i a}^{2}=t_{a+1}^{[m}{ }^{a]}$, $q_{a+1 m}^{2} \quad=t_{a+1}^{[m} a^{1]}$, corresponding respectively to Q^{2} and P^{2} in Figure $2.3, w$ ith i $2 Q$, $j 2 \mathrm{P}$. It is the expression 2.1.19) for the $\mathrm{N}=1$ chiralm ultiplet am plitude which we w ill derive using M HV diagram s.

2.2 M HV one-loop am plitudes in $N=1$ SYM from M HV vertices

In 1.8 we review ed how M HV vertices can be sew n together into one-loop diagram s, and how a particular decom position of the loop m om entum m easure leads to a representation of the am plitudes strikingly sim ilar to traditionaldispersion form ul. This m ethod was tested successfully in [37] for the case of M HV one-loop am plitudes in $N=4$ SYM as review ed in 1.9 . In the follow ing we w ill apply the sam e philosophy to am plitudes in $\mathrm{N}=1$ SYM, in particular to the in nite sequence of M HV one-loop am plitudes, which were obtained using the cut-constructibility approach [42], and whose tw istor space picture has been analysed in 73].

Sim ilarly to the $\mathrm{N}=4$ case, the one-loop am plitude has an overall factor proportional to the M H V tree-level am plitude, but, as opposed to the $N=4$ case, the rem ain ing oneloop factor depends non-trivially on the positions i and j of the tw o extemal negativehelicity gluons. T his is due to the fact that a di erent set of elds is allow ed to propagate in the loop.

TheM HV diagram s contributing to M HV one-loop am plitudes consist of two M HV vertices connected by tw o o shell scalar propagators. If both negative-helicity ghuons are on one M HV vertex, only ghons of a particular helicity can propagate in the loop. This is independent of the num ber of supersym m etries. O n the other hand, for diagram sw ith one negative helicity ghon on one M HV vertex and the other negative-
helicity gluon on the other M HV vertex, all com ponents of the supersym m etric $m u l-$ tiplet propagate in the loop. In the case of $N=4$ SYM this corresponds to helicities $\mathrm{h}=1 ; 1=2 ; 0 ; 1=2 ; 1 \mathrm{w}$ ith m ultiplicities $1 ; 4 ; 6 ; 4 ; 1$, respectively; for the $\mathrm{N}=1$ vector m ultiplet the m ultiplicities are $1 ; 1 ; 0 ; 1 ; 1$. Hence, we can obtain the $\mathrm{N}=1$ (vector) am plitude by sim ply taking the $N=4$ am plitude and subtracting three tim es the contribution of an $N=1$ chiralm ultiplet, which has m ultiplicities $0 ; 1 ; 2 ; 1 ; 0.4$

This supersym m etric decom position of general one-loop am plitudes is useful as it splits the calculation into pieces of increasing di culty, and allow s one to reduce a oneloop diagram w ith ghons circulating in the loop to a combination of an $N=4$ vector am plitude, an $N=1$ chiralam plitude and nally a non-supersym m etric am plitude w ith a scalar eld running in the loop as in Equation (1.3.3).

In our case, the supersym m etric decom position takes the form

$$
\begin{equation*}
A_{n}^{N}=1 \text {;vector }=A_{n}^{N}=4 \quad 3 A_{n}^{N}=1 \text {;chiral ; } \tag{2.2.1}
\end{equation*}
$$

where n denotes the num ber of extemal lines. Since the $N=4$ contribution is know n, one only needs to determ ine $A_{n}^{N}=1$;chiral using $M H V$ diagram s. To be m ore precise, we are solely addressing the com putation of the planar part of the am plitudes. H ow ever, this is su cient since at one-loop level the non-planar partial am plitudes are obtained as appropriate sum s of perm utations of the planar partial am plitudes [38], as discussed in 1.1.

Figure 2.4: A one-loop M HV diagram, com puted in 2.2.4) using M HV am plitudes as interaction vertices, with the CSW \circ-shell prescription. T he two external ghons w ith negative helicity are labelled by i and j.

[^34]
2.2.1 The procedure

O ur task therefore consists of:

1. Evaluating the class of diagram s where we allow all the helicity states of a chiral m ultiplet,

$$
\begin{equation*}
\text { h } 2 \text { f } 1=2 ; 0 ; 0 ; 1=2 g ; \tag{2.2.2}
\end{equation*}
$$

to run in the loop. W e depict the prototype of such diagram s in F igure 2.4.
2. Sum m ing over all diagram s such that each of the two M HV vertices always has one extemal ghon of negative helicity. Assigning i to the left and j to the right, the sum m ation range of m_{1} and m_{2} is determ ined to be:

$$
\begin{equation*}
j+1 \quad m_{1} \quad i ; \quad i \quad m_{2} \quad j \quad 1: \tag{2.2.3}
\end{equation*}
$$

H ence we get

$$
\begin{align*}
& A_{n}^{N=1 \text {;chiral }=\quad X \quad Z \quad d M A\left(l_{1} ; m_{1} ;::: ; i \quad ;::: m_{2} ; l_{2}\right) ~} \\
& m_{1} \text { m } 2 \text {;h } \tag{2.2.4}
\end{align*}
$$

where the sum m ation ranges of h, m_{1} and m_{2} are given in 2.2.2), 2.2.3). N otice that, in order to com pute the loop am plitude (2.2.4), wem ake use of the integration m easure dM given in (1.8.12).

A fter som e spinor algebra and after perform ing the sum over the helicities h, the integrand of 2.2.4) becom es

The focus of the rem ainder of this section will be to evaluate the integral in (2.2.4) explicitly. Since iA ${ }_{n}^{\text {tree }}$ factors out com pletely, we w ill now drop it and only reinstate it at the very end of the calculation.
T he integrand (w ithout this factor) can be rew ritten in term s of dot products of m om entum vectors,
w ith
\mathscr{N} is a product of D irac traces, where the tr sym bol indicates that the pro jector $\left(1+{ }^{5}\right)=2$ has been inserted .
N ext, notice that each of these D irac traces involving six m om enta can be expressed in term s of sim pler D irac traces involving only four m om enta. For the rst factor of 2.2.7) we nd

where

T he second factor in 2.2.7) takes a sim ilar form. C onsequently, the integrand becom es a sum of four term s, one of w hich is

$$
\begin{equation*}
\frac{\operatorname{tr}_{+}\left(k_{i} k_{j} k_{m_{1}} z_{1}\right) \operatorname{tr}_{+}\left(k_{i} k_{j} k_{\mathrm{m}_{2}} z_{2}\right)}{\left(i j^{2}\left(m_{1} 1_{1}\right)\left(m_{2} \quad 2\right)\right.}: \tag{2.2.10}
\end{equation*}
$$

The other three term s are obtained by replacing $m_{1} w$ ith $m_{1} \quad 1$ and/or $m_{2} \mathrm{w}$ ith $\mathrm{m}_{2}+1$ in 2.2.10) and com ew ith altemating signs. N ote that the original expression (2.2.5) is sym m etric in i, and j, although when wem ake use of the decom position (2.2.10) this sym m etry is no longer m anifest. W e will sym m etrize over i and j at the end of the calculation in order to m ake this exchange sym m etry m anifest in the nal expression.

In the next step we have to perform the phase space integration, which is equivalent to the calculation of a unitarity cut w ith m om entum $P_{L, z}=\underset{\substack{m_{2} \\ m_{1}}}{ } k_{1} \quad z \quad$ ow ing through the cut. N ote that, as explained in 1.7.1, the m om entum is shitted by a term proportional to the referencem om entum. Theterm ($l_{1} m_{1}$) ($l_{2} m_{2}$) in thedenom inator of 2.2.10) corresponds to tw o propagators, hence the denom inator by itself corresponds to a cut box diagram. H ow ever, the num erator of 2.2.10) depends non-trivially on the loop m om entum, so that in fact 2.2.10) corresponds to a tensor box diagram, not sim ply a scalar box diagram . U sing the P assarino-Veltm an m ethod [212], we can reduce the expression 2.2.10), integrated w ith the LIPS m easure, to a sum of cuts of scalar box diagram s, scalar and vector triangle diagram s, and scalar bubble diagram s. This procedure is som ew hat technical and details are collected in A ppendix E. Luckily, the nal result takes a less intim idating form than the interm ediate expressions. W e will now present the result of these calculations after the LIPS integration.

2.2.2 D iscontinuities

W e rst observe that loop integrations are perform ed in 42 dim ensions. It tums out that singular $1=$ term s appearing at interm ediate steps of the phase space integration
cancel out com pletely. N otice that this does not m ean that the nal result w ill be free of infrared divergences. In fact the dispersion integral can and does give rise to $1=$ divergent term s but there cannot be any $1={ }^{2}$ term s, as expected for the contribution of a chiralm ultiplet [42]. T he 1= divergences in the scattering am plitude correspond to the bubble contributions in 2.1.2), or degenerate triangles contributions in 2.1.19), as explained in 2.1. In A ppendix E we show that the nite term s of the phase space integral com bine into the follow ing sim ple expression:

$$
\begin{equation*}
\hat{C}=C\left(m_{1} \quad 1 ; m_{2}\right) \quad C\left(m_{1} ; m_{2}\right)+C\left(m_{1} ; m_{2}+1\right) \quad C\left(m_{1} \quad 1 ; m_{2}+1\right) \tag{2.2.11}
\end{equation*}
$$

w ith 5

$$
\begin{align*}
& C\left(m_{1} ; m_{2}\right)=\frac{2}{12} \frac{\left(P_{L ; z}^{2}\right)}{\left(i \quad j^{-}\right)\left(m_{1} m_{z}\right)} \frac{T\left(m_{1} ; m_{2} ; P_{L ; z}\right)}{\left(m_{1} P_{i z}\right)}+\frac{T\left(m_{2} ; m_{1} ; P_{L ; z}\right)}{\left(m_{2} X_{i z}\right)} \\
& \frac{2 \mathrm{~T}\left(\mathrm{~m}_{1} ; \mathrm{m}_{2} ; \mathrm{m}_{2}\right)}{\left(\mathrm{i} \quad \mathrm{~J}^{2}\right)\left(\mathrm{m}_{1} \quad \mathrm{~m}_{\mathrm{L}}\right)^{2}}\left(\mathrm{P}_{\mathrm{L} ; \mathrm{z}}^{2}\right) \quad \log 1 \quad \mathrm{a}_{\mathrm{z}} \mathrm{P}_{\mathrm{L} ; \mathrm{z}}^{2} \quad ; \tag{2.2.12}
\end{align*}
$$

where

$$
\begin{align*}
\mathrm{T}\left(\mathrm{~m}_{1} ; \mathrm{m}_{2} ; \mathrm{P}\right) & =\operatorname{tr}_{+}\left(k_{i} k_{j} k_{\mathrm{m}_{1}} \mathrm{P}\right) \operatorname{tr}_{+}\left(k_{\mathrm{i}} k_{j} k_{\mathrm{m}_{2}} k_{\mathrm{m}_{1}}\right) ; \\
\mathrm{a}_{\mathrm{z}} & =\frac{\mathrm{m}_{1} \mathrm{~m}_{\mathrm{l}}}{\mathrm{~N}\left(\mathrm{P}_{\mathrm{L} ; \mathrm{z}}\right)} ; \tag{2.2.13}
\end{align*}
$$

and

$$
N(P):=\left(\begin{array}{llll}
m_{1} & m_{2} \tag{2.2.14}
\end{array}\right) P^{2} \quad 2\left(m_{1} \quad P\right)\left(m_{2} \quad P\right):
$$

A closer inspection of 2.2.12) reveals that the rst line of that expression corresponds to two cuts of scalar triangle integrals, up to an -dependent factor and the explicit z-dependence of the two num erators. The second line is a term fam iliar from [37], corresponding to the $P_{L ; z}^{2}$-cut of the nite part B of a scalar box function, de ned in 2.1.9) (see also 2.1.7)). The full result for the one-loop M H V am plitudes is obtained by sum m ing over all possible M H V diagram s, as speci ed in (2.2.4) and (2.2.2), 2.2.3).

2.2.3 T he full am plitude

W e begin our analysis by focusing on the box function contributions in 2.2.12), and notice the follow ing im portant facts:

1. By taking into account the four term s in 2.2.11) and sum m ing over Feynm an diagram s, we see each xed nite box function B appears in exactly four phase

[^35]space integrals, one for each of its possible cuts, in com plete sim ilarity w ith 37]. It was show n in Section 5 of that paper that the corresponding dispersion integration over $z \mathrm{w}$ ill then yield the nite B part of the scalar box functions F. It was also noted in [37] that one can m ake a particular gauge choice for such that the z-dependence in N disappears. This happenswhen is chosen to be equal to one of the m assless extemal legs of the box function. T he question of gauge invariance is further discussed in A ppendix F.
2. The coe cient m ultiplying the nite box function is precisely equal to $\mathrm{b}_{\mathrm{m}}^{\mathrm{m}_{1} \mathrm{~m}_{2}}$ de ned in (2.1.5).
3. Finally, the functions B generated by sum m ing over all M HV Feynm an diagram s w ith the range dictated by 2.2.3) are precisely those included in the double sum for the nite box functions in the rst line of (2.1.2) (or 2.1.19)) upon identifying m_{1} and $m_{2} w$ ith s and m. To be precise, (2.2.3) includes the case w here the ind ices s and/orm (in the notation of (2.1.2) and 2.1.19)) are equal to either i or j; but for any of these choices, it is easy to check that the corresponding coe cient $b_{m}^{i ; j}$;s vanishes.

This settles the agreem ent betw een the result of our com putation w ith M HV vertices and 2.1.19) for the part corresponding to the box functions. N ext we have to collect the cuts contributing to particular triangles, and show that the z-integration reproduces the expected triangle functions from 2.1.19), each w ith the correct coe cient.

To this end, we notice that for each xed triangle function $T(p ; P ; Q$), exactly four phase space integrals appear, two for each of the two possible cuts of the function. M oreover, a gauge invariance sim ilar to that of the box functions also exists for triangle cuts (see Appendix F), so that we can choose in a way that the T num erators in 2.2.12) becom e independent of z. A particularly convenient choice is $=k_{i}$, since it can be kept xed for all possible cuts. Choosing this gauge, we see that a sum, T, of term s proportional to cut-triangles is generated from 2.2.11) (up to a com m on norm alisation):

$$
\begin{equation*}
\mathrm{T}:=\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}+\mathrm{T}_{\mathrm{C}}+\mathrm{T}_{\mathrm{D}} ; \tag{2.2.15}
\end{equation*}
$$

where

$$
\begin{aligned}
& T_{B}=\frac{S\left(i ; j ; m_{2} ; m_{1}\right)}{\left(m_{1} m_{2}\right)} \frac{S\left(i ; j ; m_{2}+1 ; m_{1}\right)}{\left(\left(m_{2}+1\right) m_{1}\right)} S\left(i ; j ; m_{1} ; \mathrm{P}_{L}\right) \quad \text { в } ; \\
& T_{C}=\frac{S\left(i ; j ; m_{2}+1 ; m_{1} \quad 1\right)}{\left(\left(m_{2}+1\right)\left(m_{I} 1\right)\right)} \quad \frac{S\left(i ; j ; m_{2} ; m_{1} \quad 1\right)}{\left(m_{2}\left(m_{I} 1\right)\right)} \quad S\left(i ; j ; m_{1} \quad 1 ; P_{L}\right) \quad \text { с } \quad ;
\end{aligned}
$$

$$
T_{D}=\frac{S\left(i ; j ; m_{1} 1 ; m_{2}+1\right)}{\left(\left(m_{1} 1\right)\left(m_{2}+1\right)\right)} \quad \frac{S\left(i ; j ; m_{1} ; m_{2}+1\right)}{\left(m_{1}\left(m_{2}+1\right)\right)} S\left(i ; j ; m_{2}+1 ; P_{L}\right) \quad D:
$$

H ere we have de ned

$$
\begin{equation*}
S(a ; b ; c ; d)=\operatorname{tr}_{+}\left(k_{\mathrm{a}} k_{\mathrm{b}} k_{\mathrm{c}} k_{\mathrm{d}}\right) ; \tag{2.2.17}
\end{equation*}
$$

and $I, I=A ;::: ; D$, are the follow ing cut-triangles, all in the $P_{L ; z}$-cut:

$$
\begin{align*}
& A \quad=\frac{1}{\left(\mathrm{~m}_{2} \quad \mathrm{P} ; \mathrm{z}\right)}=\mathrm{Q}^{2} \text {-cut of } \quad \mathrm{Tm}_{2} ; \mathrm{P}_{\mathrm{L} ; \mathrm{z}} \quad \mathrm{~m}_{2} ; \mathrm{P}_{\mathrm{L} ;} ; \tag{2.2.18}\\
& \text { B }:=\frac{1}{\left(m_{1} \mathrm{P} ; z\right)}=\mathrm{P}^{2} \text {-cut of } \mathrm{T} \mathrm{~m}_{1} ; \mathrm{P}_{\mathrm{L} ; \mathrm{z}} ; \mathrm{P}_{\mathrm{L}, \mathrm{z}} \mathrm{~m}_{1} \text {; }
\end{align*}
$$

$$
\begin{aligned}
& \text { D }:=\frac{1}{\left(\left(\mathrm{~m}_{2}+1\right) \quad \mathrm{P} ; z\right)}=\mathrm{P}^{2} \text {-cut of } \mathrm{T} \mathrm{~m}_{2}+1 ; \mathrm{P}_{\mathrm{L} ; \bar{\prime} ;} ; \mathrm{P}_{\mathrm{L} ; \mathrm{z}}\left(\mathrm{~m}_{2}+1\right):
\end{aligned}
$$

Figure 2.5: A triangle function w ith m assive legs labelled by P and Q, and m assless leg p. This function is reconstructed by sum m ing two dispersion integrals, corresponding to the P_{z}^{2} - and Q_{z}^{2}-cut.

Next, we notice that the prefactors multiplying B, c becom e the sam e, up to a m inus sign, upon shifting $m_{1} 1!m_{1}$ in the second prefactor; and so do the prefactors of A, D upon shifting m_{2} ! $m_{2}+1$. Doing this, B and the shifted C becom e the tw o cuts of the sam e triangle function $T\left(m_{1} ; P_{L ; z} ; P_{L ; z} \quad m_{1}\right)$, and sim ilarly, A and D give the two cuts of the function $T\left(m_{2} ; P_{L ; z} m_{2} ; P_{L ; z}\right)$. Furtherm ore, in

Figure 2.6: A degenerate triangle function. H ere the leg labelled by P is still m assive, but that labelled by Q becom es m assless. T his function is also reconstructed by sum m ing over two dispersion integrals, corresponding to the P_{z}^{2} - and Q_{z}^{2}-cut.

A ppendix $\mathbb{F} w$ w will show that sum m ing the two dispersion integrals of the two di erent cuts of a triangle indeed generates the triangle function \{ in fact this procedure gives a novel way of obtaining the triangle functions 6 Speci cally, the result derived in A ppendix F is

$$
\begin{equation*}
\frac{\mathrm{Z}}{\mathrm{dz}} \frac{\left(\mathrm{P}_{z}^{2}\right)}{\left(\mathrm{P}_{\mathrm{z}} \mathrm{P}\right)}+\frac{\left(\mathrm{Q}_{z}^{2}\right)}{\left(\mathrm{Q}_{\mathrm{z}} \mathrm{P}\right)}=2 \quad \operatorname{Csc}(\quad) T(\mathrm{p} ; \mathrm{P} ; Q) ; \tag{2.2.19}
\end{equation*}
$$

where the -dependent triangle function $T(p ; P ; Q$) (w ith $p+P+Q=0$) was introduced in 2.1.14) and gives, as ! 0 , the triangle function (2.1.13) (aswellas the bubbles w hen either P^{2} or Q^{2} vanish). The result 2.2.19) holds for a generic choice of the reference vector, see (\mathbb{F}.1.6)- F.1.11). W e give a pictorial representation of the non-degenerate and degenerate triangle functions in F igures 2.5 and 2.6 , respectively.

[^36]At this point, it should be noticed that for a gauge choice di erent from $=k_{i}$ adopted so far, the num erators T in 2.2.12) do acquire an -dependence. This gauge dependence should not be present in the nalresult for the scattering am plitude. Indeed, it is easy to check that, thanks to F.1.6), the coe cient of the -dependent term s actually vanishes.

U sing (2.2.15)-2.2.19) and collecting term s as speci ed above, we see that the generic term produced by this procedure takes the form

$$
\begin{equation*}
\frac{S\left(i ; j ; a ; p_{m}\right)}{\left(k_{a}\right)} \quad \frac{S\left(i ; j ; a+1 ; p_{m}\right)}{\left(k_{a+1} \mathbb{P}\right)} \quad S\left(i ; j ; p_{m} ; Q\right) T\left(p_{m} ; P ; Q\right) ; \tag{2.2.20}
\end{equation*}
$$

w ith $P=q_{a+1 m} \quad 1$ and $Q=q_{m+1 ; a}$.
F inally, we im plem ent the sym m etrization of the indices i, j, as explained earlier, and convert 2.2.20) into

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}}^{\mathrm{i} ; \mathrm{j}} \mathrm{~T}\left(\mathrm{p}_{\mathrm{m}} ; \mathrm{P} ; \mathrm{Q}\right) ; \tag{2.2.21}
\end{equation*}
$$

where the coe cient $\mathrm{C}_{\mathrm{m}}^{\mathrm{i} ;{ }_{\mathrm{a}}}{ }_{a}$
which coincides w ith the de nition of $c_{m}^{i ; j}$ a given in 2.1.6). Lastly, it is easy to see that in sum m ing over the range given by 2.2.3), we produce exactly all the triangle functions appearing in the second line of 2.1.19). It is also im portant to notice that the bubbles, which appear in the last line of (2.1.2), are actually obtained as particular cases of triangle functions where one of the m assive legs becom es m assless, as observed at the end of 2.1.

In conclusion, we have seen that all the term s in 2.1.19), i.e. nite box contributions and triangle contributions - which include the bubbles as special (degenerate) cases are precisely reproduced in our diagram m atic approach.

[^37]
CHAPTER 3

NON -SUPERSYM M ETRIC M HV
 AMPLITUDES

H aving seen that the C SW rules can be applied at loop level in supersym m etric gauge theories, the obvious question is whether the sam e also holds in non-supersym m etric gauge theories. To this end the one-loop M HV am plitudes in pure Yang M ills with a scalar running in the loop were com puted in [43]. This is the last contribution to the M HV am plitudes for gluon scattering in QCD in the supersym m etric decom position of Eq. 1.3.3) and has only been com puted previously in certain special cases in [42, 44].

In th is chapter we follow [43] and apply the C SW rules to this scalar am plitude in the general case of n-gluon M HV scattering where the tw o negative helicity gluons sit at anbitrary positions. W e nd that the results agree perfectly with those already obtained in [42, 44] and we go on to present the general result for the cut-constructible part of the one-loop M HV am plitudes in pure YangM ills. It tums out that the CSW rules only com pute this cut-constructible part and the rational term s (which do not contain cuts) are not found. This is discussed in [43] and 3.2.1 below. They can and have, how ever, been recently com puted using an on-shell unitarity bootstrap [45] which thus com pletely determ ines the one-loop M HV n-ghon am plitudes in QCD.

3.1 The scalar am plitude

In complete sim ilarity w ith the $N=4$ and $N=1$ cases - see Chapters $\mathrm{T}_{1} \& 2$ and e.g. [37, 40] - we can im m ediately w rite dow n the expression for the scalar am plitude in term s of MHV vertices as

$$
\begin{align*}
A_{n}^{\text {scalar }}= & X_{m_{1} ; m_{2} ;}^{Z} d M A\left(1_{1} ; m_{1} ;::: ; i \quad ;::: ; m_{2} ; 1_{2}\right) \\
& A\left({ }_{2} ; m_{2}+1 ;::: ; j ;::: ; m_{1} \quad 1 ; 1_{1}\right) ; \tag{3.1.1}
\end{align*}
$$

where the ranges of sum m ation of m_{1} and m_{2} are

$$
\begin{equation*}
j+1 \quad m_{1} \quad i ; \quad i \quad m_{2} \quad j \quad 1: \tag{3.1.2}
\end{equation*}
$$

A typical M HV diagram contributing to $A_{n}^{\text {scalar }}$, for xed m_{1} and m_{2}, is depicted in Figure 3.1. The o shell vertices A in (3.1.1) correspond to having com plex scalars

Figure 3.1: A one-loop M HV diagram with a com plex scalar running in the loop, com puted in Eq. 3.1.1). W e have indicated the possible helicity assignm ents for the scalar particle.
running in the loop. It follow s that there are tw o possible helicity assignm ent for the scalar particles in the loop which have to be sum m ed over. T hese tw o possibilities are denoted by in 3.1.1) and in the intemal lines in Figure 3.1. It tums out that each of them gives rise to the sam e integrand for (3.1.1):

$$
\begin{equation*}
i A_{n}^{\text {tree }} \frac{l m_{2} m_{2}+1 i m_{1} \quad 1 m_{1} i h i l_{1} i^{2} h j l_{1} i^{2} h i l_{2} i^{2} h j l_{2} i^{2}}{h i j i^{4} m_{1} l_{1} i h m_{1}} 1 l_{1} i m_{2} l_{2} i m_{2}+1 l_{2} i h l_{1} l_{2} i^{2} \quad: \tag{3.1.3}
\end{equation*}
$$

A crucialingredient in 3.1.1) is (as before in C hapters 1 \& 2) the integration m easure dM . This m easure was constructed in [37, 79] using the decom position $L:=1+z$ for a non-null four-vector L in term s of a null vector l and a real param eter z as review ed in r1.8.2. W e refer the reader to $\times 1.8 .2$ and 37,79$]$ for the construction of this m easure, and here we m erely quote the result:

$$
\begin{equation*}
d M=2 i \quad\left(P_{L ; z}^{2}\right) \frac{d P_{L}^{2} ; z}{P_{L ; z}^{2} P_{L}^{2}} \mathrm{i}^{\prime \prime} d^{4}{ }^{2} \mathrm{LPP}\left(l_{2} ; l_{1} ; \mathrm{P}_{\mathrm{L} ; z}\right): \tag{3.1.4}
\end{equation*}
$$

In order to calculate 3.1.1), we w ill rst integrate the expression 3.1.3) over the Lorentz-invariant phase space (appropriately regularised to 42 dim ensions), and then perform the dispersion integral.

For the sake of clarity, we w ill separate the analysis into two parts. F irstly, we will

[^38]present the (sim pler) calculation of the am plitude in the case where the two negativehelicity gluons are ad jacent. This particular am plitude has already been com puted by Bem, D ixon, D unbar and K osower in [42] using the cut-constructibility approach; the result we w ill derive here will be in precise agreem ent w ith the result in that approach. Then, in 3.3 we w ill m ove on to address the general case, deriving new results.

3.2 T he scattering am plitude in the ad jacent case

T he ad jacent case corresponds to choosing $i=m_{1}, j=m_{1} \quad 1$ in F igure 3.1. Therefore we now have a single sum over M HV diagram s, corresponding to the possible choices of m_{2}. W e willalso set $i=2, j=1$ for the sake of de niteness, and $m_{2}=m$.

A fter conversion into traces, the integrand of 3.1.1) takes on the form :
where we note that $\left(\begin{array}{ll}1 & 2\end{array}\right)=P_{L ; z}^{2}=2$ by m om entum conservation.
T he next step consists of perform ing the Passarino-V eltm an reduction [212] of the Lorentz-invariant phase space integral of 3.2.1). This requires the calculation of the three-index tensor integral

$$
\begin{equation*}
\mathrm{I} \quad\left(\mathrm{~m} ; \mathrm{P}_{\mathrm{L} ; z}\right)=\mathrm{Z} \mathrm{dL} \mathbb{P}\left(I_{2} ; I_{1} ; \mathrm{P}_{\mathrm{L}, z}\right) \frac{l_{2} I_{2} I_{2}}{\left(l_{2} \mathrm{~m}\right)} \text { : } \tag{3.2.2}
\end{equation*}
$$

T his calculation is perform ed in A ppendix G. T he result of this procedure gives the follow ing term at $\mathrm{O}\left({ }^{0}\right)$, which we w ill later integrate w ith the dispersive m easure:

$$
\begin{align*}
& \text { (m \$ m + 1); } \tag{3.2.3}
\end{align*}
$$

and we have dropped a factor of $4{ }^{\wedge}$ A tree on the right hand side of 3.2.3), where ${ }^{\wedge}$ is de ned in (G.1.11). W e can reinstate this factor at the end of the calculation. W e also notice that 3.2 .3) is a nite expression, i.e. it is free of infrared poles.

3.2.1 R ational term s

A n im portant rem ark is in order here. On general grounds, the result of a phase space integral in, say, the P^{2}-channel, is of the form

$$
\begin{equation*}
I()=\left(P^{2}\right) \quad f() ; \tag{3.2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{)}=\frac{\mathrm{f} 1}{1}+\mathrm{f}_{0}+\mathrm{f}_{1}+\quad ;\right. \tag{3.2.5}
\end{equation*}
$$

and f_{i} are rational coe cients. In the case at hand, infrared poles generated by the phase space integrals cancel com pletely, so that we can in practice replace 3.2.5) by f()$!\mathrm{f}_{0}+\mathrm{f}_{1}+\quad$. The am plitude A is then obtained by perform ing a dispersion integral, which converts 3.2.4) into an expression of the form

$$
\begin{equation*}
A()=\underline{\left(P^{2}\right)} \quad g()=\frac{g_{0}}{} \quad g_{0} \log \left(P^{2}\right)+g_{1}+O() ; \tag{3.2.6}
\end{equation*}
$$

$w h e r e g()=g+g_{1}+$, and the coe cientsoge rationalfunctions, i.e. they are free of cuts. Im portantly, errors can be generated in the evaluation of phase space integrals if one contracts ($4 \quad 2$)-dim ensional vectors w ith ordinary four-vectors. This does not a ect the evaluation of the coe cientg $0:=g(=0)$, and hence the part of the am plitude containing cuts is reliably com puted; but the coe cients g_{i} for $i \quad 1$, in particular g_{1}, are in general a ected. This im plies that rational contributions to the scattering am plitude cannot be detected [42] in this construction. A notable exception to this is provided by the phase space integrals which appear in supersym m etric theories. T hese are \four-dim ensional cut-constructible" [42], in the sense that the rational parts are unam biguously linked to the discontinuities across cuts, and can therefore be uniquely determ ined 2 T his occurs, for exam ple, in the calculation of the $\mathrm{N}=4 \mathrm{MHV}$ am plitudes at one-loop perform ed in [37] and review ed in r1.9 and the $\mathrm{N}=1 \mathrm{MHV}$ am plitudes at one-loop in C hapter2. In the present case, how ever, the relevant phase space integrals violate the cut-constructibility criteria given in 423 , since we encounter tensor triangles w ith up to three loop m om enta in the num erator. H ence, we will be able to com pute the part of the am plitude containing cuts, but not the rational term s. In practice this m eans that we w ill com pute all phase space integrals up to $O\left({ }^{0}\right)$ and discard $O($) contributions, which w ould generate rational term s that cannot be determ ined correctly.

3.2.2 D ispersion integrals for the ad jacent case

A fter this digression, we now m ove on to the dispersive integration. In the center of m ass fram e, w here $P_{L ; z}:=P_{L ; z}(1 ; 0)$, all the dependence on $P_{L ; z}$ in 3.2.3) cancels out, as there are equal pow ens of $P_{L ; z}$ in the num erator as in the denom inator of any term. A s a consequence, the dependence on the arbitrary reference vector disappears (see [41] for the application of this argum ent to the $N=1$ case). W e are thus left w ith

[^39]dispersion integrals of the form
\[

$$
\begin{equation*}
I\left(P_{L}^{2}\right):=\frac{Z}{s^{0} P_{L}^{2}}\left(s^{0}\right)=\frac{1}{-}[\csc (\quad)](\underbrace{3}) \quad: \tag{3.2.7}
\end{equation*}
$$

\]

Taking this into account, the dispersion integral of 3.2.3) then gives

$$
\begin{align*}
& A_{n}^{\text {scalar }}={ }_{n} \quad \csc (\quad) \frac{\left(P_{L}^{2}\right)}{3} \frac{\left[\operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} P_{L}\right)\right]^{2}}{2^{5}\left(k_{1} k\right)^{3}} \\
& \frac{\operatorname{tr}_{+}\left(k_{1} k_{2} \mathrm{P}_{\mathrm{L}} k_{\mathrm{m}}\right)}{(\mathrm{m} \mathrm{E})^{3}}+\frac{2\left(\mathrm{k}_{1} \mathrm{k}\right)}{(\mathrm{m} \mathrm{R})^{2}} \quad(\mathrm{~m} \$ \mathrm{~m}+1): \tag{3.2.8}
\end{align*}
$$

Them om entum ow can be conveniently represented as in Figure 3.2, where we de ne

$$
\begin{equation*}
\mathrm{P}:=\mathrm{q}_{2 m} 1 ; \quad \mathrm{Q}:=q_{m+1 ; 1}=q_{2 m} ; \tag{3.2.9}
\end{equation*}
$$

and $q_{p_{1} p_{2}}:={ }_{P}^{p_{l=p_{1}} k_{1} . W \text { e also have } P_{L}:=q_{2 m}=Q . ~}$
N ow wew ish to com bine the term sw ritten explicitly in 3.2.8) w ith those that arise under m \$ $m+1$. Since 3.2.8) is sum m ed over m, we simply shift $m+1!m$ in these latter term s . Let us now focus our attention on the second term in 3.2.3) (sim ilar m anipulations willbe applied to the rst term). W riting them $\$ \mathrm{~m}+1$ term explicitly, we obtain a contribution proportional to

$$
\begin{equation*}
\left(P_{L}^{2}\right) \frac{\left[t r_{+}\left(k_{1} k_{2} k_{m} R_{L}\right)\right]^{2}}{\left(m R_{1}\right.} \quad \frac{\left[t r_{+}\left(k_{1} k_{2} k_{m+1} R_{L}\right)\right]^{2}}{((m+1) R)^{2}}: \tag{3.2.10}
\end{equation*}
$$

By shifting $m+1!m$ in the second term of 3.2.10), we change its P_{L} so that $P_{L}!q_{2 m} I_{1}=P$ (w hereas, in the non-shifted term, $P_{L}=Q$). T he expression 3.2.10) then reads

$$
\begin{equation*}
\frac{\left[\operatorname{tr}_{+}\left(k_{1} k_{2} k_{m}(2)\right]^{2 h}\right.}{\left(m Q^{2}\right.}\left(Q^{2}\right) \quad\left(P^{2}\right)^{i} \tag{3.2.11}
\end{equation*}
$$

where we used $\operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} Q\right)=\operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} P\right)$ and $Q \quad m=P \quad m . N$ otice also that $m \quad Q=(1=2)\left(Q^{2} \quad P^{2}\right)$.
N ext we re-instate the antisym m etry of the am plitudes under the exchange of the indices $1 \$ 2$ (which is m anifest from equation 3.1.3)). D oing this we get

$$
\begin{align*}
\operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} Q\right)^{2} & !\frac{1}{2}^{h} \operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} \Theta\right)^{2} \quad \operatorname{tr}_{+}\left(k_{1} k_{2} Q k_{m}\right)^{2^{i}} \text { (3.2. } \tag{3.2.12}\\
& =2\left(k_{1} \quad k\right)(m \quad Q) t r_{+}\left(k_{1} k_{2} k_{m} Q\right) \quad \operatorname{tr}_{+}\left(k_{1} k_{2} Q k_{m}\right)^{i}:
\end{align*}
$$

Follow ing sim ilar steps for the rst term in (3.2.8), we arrive at the follow ing expression

Figure 3.2: A triangle function contributing to the am plitude in the case of adjacent negative-helicity ghons. H ere we have de ned $P:=q_{j m}{ }_{1}, Q:=q_{m+1 ; i}=q_{j m}$ (in the text we set $i=1, j=2$ for de niteness).
for the am plitude before taking the ! $0 \lim$ it:

$$
\begin{equation*}
A=A_{1 ;}+A_{2} ; ; \tag{3.2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} \exists_{m ; 1}\right) \operatorname{tr}_{+}\left(k_{1} k_{2} ध_{m ; 1} k_{m}\right)^{2^{i}} T^{(3)}\left(m ; q_{2} m \quad 1 ; q_{2} m\right) ; \tag{3.2.14}
\end{equation*}
$$

and $t_{1}^{[2]}$ follows from the de nition of equation (1.9.5). In order to w rite 3.2.14) in a com pact from, we have introduced -dependent triangle functions $\mathbb{4 0}$] as in the previous chapter (c.f. Eq. 2.1.14))

$$
\begin{equation*}
\mathrm{T}^{(r)}(\mathrm{p} ; \mathrm{P} ; \mathrm{Q}):=\frac{1}{-\frac{\left.\mathrm{P}^{2}\right)}{\left(\mathrm{Q}^{2} \mathrm{P}^{2}\right)^{r}} ; ~} \tag{3.2.15}
\end{equation*}
$$

where $p+P+Q=0$, and r is a positive integer 4

[^40]\[

$$
\begin{aligned}
& A_{2 ;}=\frac{A^{\text {tree }}}{\left(t_{1}^{[2]}\right)^{3}} \overline{3}^{h} \operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} f_{m ; 1}\right)^{2} \operatorname{tr}_{+}\left(k_{1} k_{2} ध_{m ; 1} \xi_{m}\right)
\end{aligned}
$$
\]

W e can now take the ! 0 lim it. As long as P^{2} and Q^{2} are non-vanishing, one has

$$
\begin{equation*}
\lim _{0} T^{(r)}(p ; P ; Q)=T^{(r)}(p ; P ; Q) ; \quad P^{2} \in 0 ; Q^{2} \in 0 ; \tag{3.2.16}
\end{equation*}
$$

where the -independent triangle functions are de ned by

$$
\begin{equation*}
T^{(r)}(p ; P ; Q):=\frac{\log \left(Q^{2}=P^{2}\right)}{\left(Q^{2} P^{2}\right)^{r}}: \tag{3.2.17}
\end{equation*}
$$

If either of the invariants vanishes, the lim it of the -dependent triangle gives rise to an infrared-divergent term (which we call a \degenerate" triangle - this is one with two m assless legs). For exam ple, if $Q^{2}=0$, one has

$$
\begin{equation*}
\mathrm{T}(\mathrm{p} ; \mathrm{P} ; Q) \dot{\xi}_{2}^{2}=0 \quad!\quad \frac{1}{} \frac{\left(\mathrm{P}^{2}\right)}{\mathrm{P}^{2}} ; \quad!0: \tag{3.2.18}
\end{equation*}
$$

The tw o possible con gurations which give rise to infrared-divergent contributions correspond to the follow ing tw o possibilities:
a. $q_{2 m} \quad 1=k_{2}$ (hence $q_{2 m}^{2} \quad 1=0$). In this case we also have $q_{2 m}^{2}=t_{2}^{[2]}$.
b. $q_{2 m}=k_{1}\left(\right.$ hence $\left.q_{2 m}^{2}=0\right)$. Therefore $q_{2 m}^{2} \quad 1=t_{n}^{[2]}$.

W e notice that infrared poles will appear only in term s corresponding to the triangle function T. Indeed, whenever one of the kinem atical invariants contained in $T{ }^{(3)}$ vanishes, the com bination of traces m ultiplying this function in 3.14) vanishes as well.

In conclusion we arrive at the follow ing result, w here we have explicitly separated-out the infrared-divergent term $s \sqrt[5]{5}$

$$
\begin{equation*}
A_{n}^{\text {scalar }}=A_{\text {poles }}+A_{1}+A_{2} ; \tag{3.2.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{\text {poles }}=\frac{1}{6} \mathrm{~A}^{\mathrm{tree}} \underline{1}^{\mathrm{h}}\left(t_{2}^{[2]}\right)+\left({\left.t_{n}^{[2]}\right)}^{i} ;\right.
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} \Theta_{m ; 1}\right) \operatorname{tr}_{+}\left(k_{1} k_{2} \Theta_{m ; 1} k_{m}\right)^{2^{i}} T^{(3)}\left(m ; q_{2} m \quad 1 ; q_{2 m}\right) \text { : }
\end{aligned}
$$

[^41]M ore com pactly, we can recognise that $A_{\text {poles }}$ and A_{1} reconstruct the contribution of an $\mathrm{N}=1$ chiralm ultiplet, and rew rite 3.2.19) as
\[

$$
\begin{equation*}
A_{n}^{\text {scalar }}=\frac{1}{3} A_{12}^{N=1 ; \text { chiral }}+\frac{1}{3} A_{12}^{\text {tree }} \frac{1}{\left(t_{1}^{[2]}\right)^{3}}{ }_{m=4}^{\mathbb{N}} B_{12}^{m} T^{(3)}\left(m ; q_{2 ; m} \quad ; q_{2 m}\right) ; \tag{3.2.21}
\end{equation*}
$$

\]

where

$$
\begin{align*}
\mathrm{B}_{12}^{m}= & \operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} ध_{m ; 1}\right)^{2} \operatorname{tr}_{+}\left(k_{1} k_{2} \bigoplus_{m} ; 1 k_{m}\right) \tag{3.2.22}\\
& \operatorname{tr}_{+}\left(k_{1} k_{2} ध_{m} ; 1 k_{m}\right)^{2} \operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} \bigoplus_{m} ; 1\right):
\end{align*}
$$

and

$$
\begin{align*}
& A_{12}^{N=1 ; \text { chiral }}=\frac{1}{2} A_{12}^{\operatorname{tree}} \frac{1}{t_{1}^{[2]}} X_{m=3}^{n} \quad \operatorname{tr}_{+}\left(k_{1} k_{2} k_{m} f_{m ; 1}\right) \quad \operatorname{tr}_{+}\left(k_{1} k_{2} f_{m ; 1} k_{m}\right) \\
& \mathrm{T}\left(\mathrm{~m} ; \mathrm{E}_{\mathrm{m}} \quad 1 ; \mathrm{G}_{2 \mathrm{~m}}\right) \quad \text { : } \tag{3.2.23}
\end{align*}
$$

 with adjacent negative-helicity ghons in positions 1 and 2. This expression was rst derived by Bem, D ixon, D unbar and K osow er in [42], and our result agrees precisely w ith this. A rem ark is in order here. In [42], the nal result is expressed in term s of a function

$$
\begin{equation*}
L_{2}(x):=\frac{\log x \quad(x \quad 1=x)=2}{(1 \quad x)^{3}} ; \tag{3.2.24}
\end{equation*}
$$

which contains a rational part $\left(\begin{array}{ll}x & 1=x\end{array}\right)=2\left(\begin{array}{ll}1 & x\end{array}\right)^{3}$ which rem oves a spurious thirdorder pole from the am plitude. W ith our approach how ever w e did not expect to detect rational term s in the scattering am plitude, and indeed we do not nd such term s^{6} Furtherm ore, we do not nd the other rational term s which are known to be present in the one-loop scattering am plitude [44, 45].

3.3 T he scattering am plitude in the general case

The situation where the negativehelicity gluons are not ad jacent is technically m ore challenging. O ur starting point will be (3.1.3), to which we will apply the Schouten identity (see A ppendix A for a collection of spinor identities used). Eq. 3.1.3) can then

[^42]be w ritten as a sum of four term $\mathrm{s}: 7$
$$
\mathscr{C}=\mathscr{C}\left(\mathrm{m}_{1} ; \mathrm{m}_{2}+1\right) \quad \mathscr{C}\left(\mathrm{m}_{1} ; \mathrm{m}_{2}\right) \quad \mathscr{C}\left(\mathrm{m}_{1} \quad 1 ; \mathrm{m}_{2}+1\right)+\mathscr{C}\left(\mathrm{m}_{1} \quad 1 ; \mathrm{m}_{2}\right)(3.3 .1)
$$
where
\[

$$
\begin{equation*}
\mathscr{C}(\mathrm{a} ; \mathrm{b}):=\frac{h i l_{1} i h j l_{1} i^{2} h i l_{2} i^{2} h j l_{2} i}{h i j i^{4} h l_{1} l_{2} i^{2}} \frac{\text { hiaihj bi }}{h l_{1} \text { aihl bi }}: \tag{3.3.2}
\end{equation*}
$$

\]

T he calculation of the phase space integral of this expression is discussed in A ppendix G. T he result is

$$
\mathrm{d}^{\mathrm{Z}}{ }^{2} \operatorname{LPPS}\left(\mathrm{l}_{2} ; \mathrm{I}_{1} ; \mathrm{P}_{\mathrm{L} ; z}\right) \mathscr{C}(\mathrm{a} ; \mathrm{b})
$$

"

where $N \quad N(P):=\left(\begin{array}{lll}\mathrm{a} & \mathrm{b}\end{array} \mathrm{P}^{2} \quad 2\left(\begin{array}{ll}\mathrm{P} & \mathrm{a}\end{array}\right)(\mathrm{P} \quad \mathrm{b})\right.$, and we have suppressed a factor of $4^{\wedge}\left(P_{L}^{2}\right) \quad\left[2\left(i \quad j^{4}\right)\right]^{1}$ on the right hand side of 3.3 .3$)$, where ${ }^{\wedge}$ is de ned in G.1.11). W e notice that 3.3.3) is sym m etric under the sim ultaneous exchange of i w ith j and $a w$ ith b. This sym m etry is m anifest in the coe cient m ultiplying the logarithm \{ the last term in 3.3.3) ; for the rem aining term s, nontrivial gam m a m atrix identities are required. For instance, consider the term s in the second line of 3.3.3). T hese term s are present in the ad jacent gluon case 3.2.3), and it is therefore natural to expect that the trace structure of this tem is separately invariant when i\$ j and a \$ b. Indeed this is the case thanks to the identity

[^43]Sim ilar identities show that the third and fourth line of 3.3.3) are invariant under the sim ultaneous exchange i\$ jand a \$ b.

The next step is to perform the dispersion integral of 3.3.3), i.e. the integral over the variable z which has been converted to an integral over $P_{L ; z}$. The relevant term s are thus those involving $P_{L ; z}$ in 3.3 .3), and in an overall factor ($\mathrm{P}_{\mathrm{L} ; \mathrm{Z}}^{2}$) arising from the dim ensionally regulated m easure.

The integral over the term involving the logarithm has been evaluated in [37], w ith the result

N otice that these term s were not present in the ad jacent negative-helicity gluon case considered in 3.2 .
N ext we m ove on to the rem aining term s in 3.3.3). Inspecting their z-dependence, we see that, in com plete sim ilarity w ith the ad jacent case of 3.2 , in each term there are the sam e powers of $P_{L ;}$ in the num erator as in the denom inator. H ence, in the centre of m ass fram e in which $P_{L ; z}:=P_{L ; z}(1 ; 0)$, one nds that $P_{L ; z}$ cancels com pletely. N ote that this also im m ediately resolves the question of gauge invariance for these term s \{ this occurs only through the dependence in $P_{L ; z}=P_{L} \quad z$. Furtherm ore, the box functions com ing from 3.3.5) are separately gauge-invariant [37]. The conclusion is that our expression for the am plitude below, built from sum s over M HV diagram s of the dispersion integral of (3.3.3), w ill be gauge-invariant. M oreover, apart from 3.3.5), the only other dispersion integral we will need is that com puted in 3.2.7).

It follow s from this discussion that the result of the dispersion integral of 3.3.3) is (suppressing a factor of $4^{\wedge}\left(P_{L}^{2}\right) \quad\left[2\left(i \quad j^{4}\right)\right]^{1} \quad\left[\begin{array}{ll}\csc (&)\end{array}\right]$):

$$
\frac{\mathrm{dz}}{\mathrm{z}}{ }^{\mathrm{Z}} \mathrm{~d}^{4}{ }^{2} \mathrm{LPS}\left(\mathrm{l}_{2} ; \mathrm{I}_{1} ; \mathrm{P}_{\mathrm{L}, z}\right) \mathscr{C}(\mathrm{a} ; \mathrm{b})
$$

$$
\begin{aligned}
& \text { " }
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } \\
& \text { \#) }
\end{aligned}
$$

N ow, due to the four term s in 3.3.1), the sum over M HV diagram s w ill include a signed sum over four expressions like 3.3.6) . Let us begin by considering the last line of 3.3.6). This is a term fam iliar from [37] and [40] and corresponds to one of the four dilogarithm s in the novel expression found in [37] for the nite part B of a scalar box function,

$$
\begin{align*}
& B\left(s ; t ; P^{2} ; Q^{2}\right)=L i_{2} 1 \frac{(a \quad b)_{2}}{N(P)} P^{2}+L i_{2} 1 \frac{(a b)^{2}}{N(P)} Q^{2} \\
& \mathrm{Li} 1 \frac{(\mathrm{a} \quad \mathrm{~b})}{\mathrm{N}(\mathrm{P})} \mathrm{S} \quad \mathrm{~L} i_{2} 1 \frac{(\mathrm{a} \quad \mathrm{~b})}{\mathrm{N}(\mathrm{P})} \mathrm{t} \text {; } \tag{3.3.7}
\end{align*}
$$

w ith $s:=(P+a)^{2}, t:=(P+b)^{2}$, and $P+Q+a+b=0$. By taking into account the four term s in 3.3.1) and sum m ing over M HV diagram s as speci ed in 3.1.1) and 3.1.2), one sees that each of the four term s in any nite box function B appears exactly once, in com plete sim ilarity w ith [37] and [40]. The nal contribution of this term w ill then be 8

$$
\begin{equation*}
\dot{m}_{1}=j+1 m_{2}=i+1, \dot{X}^{1} \frac{1}{2} b_{m_{1} m_{2}}^{i j}{ }^{2} B\left(q_{m_{1} m_{2}}^{2} \quad ; q_{m_{1}+1 m_{2}}^{2} ; q_{m_{1}+1_{m_{2}}}^{2} ; q_{m_{2}+1 m_{1}}^{2} \quad\right) ; \tag{3.3.8}
\end{equation*}
$$

where $t_{i}^{[k]}:=\left(p_{i}+p_{i+1}+\quad{ }_{i+1} p_{1}\right)^{2}$ for $k \quad 0$, and $t_{i}^{[k]}=t_{i}^{[n]}$ for $k<0$. In writing 3.3.8), we have taken into account that the dilogarithm in 3.3.6) is multiplied by a coe cient proportional to the square of $\mathrm{b}_{\mathrm{m}}^{\mathrm{ij} \mathrm{m}_{2}}$, where

$$
\begin{equation*}
\mathrm{g}_{\mathrm{m}_{1} \mathrm{~m}_{2}}^{\mathrm{ij}}:=2 \frac{\operatorname{tr}_{+}\left(k_{i} k_{j} k_{\mathrm{m}_{1}} k_{\mathrm{m}_{2}}\right) \operatorname{tr_{+}}\left(k_{i} k_{j} k_{\mathrm{m}_{2}} k_{\mathrm{m}_{1}}\right)}{\left[\left(k_{i}+k_{j}\right)^{2}\right]^{2}\left[\left(k_{m_{1}}+k_{m_{2}}\right)^{2}\right]^{2}}: \tag{3.3.9}
\end{equation*}
$$

W e notice that $\mathrm{b}_{\mathrm{m}_{1} \mathrm{~m}_{2}}^{\mathrm{ij}}$ is the coe cient of the box functions in the one-loop $\mathrm{N}=1$ M H V am plitude, originally calculated by Bem, D ixon, D unbar and K osow er in 42], and derived in [40, 41] using the M HV diagram approach for loops proposed in [37]. Furtherm ore, we observe that $\mathrm{om}_{1}^{\mathrm{ij}} \mathrm{m}_{2}$ is holom onphic in the spinor variables, and as such has sim ple localisation properties in tw istor space. Indeed, from 3.3.9) it follow s that

$$
\begin{equation*}
\mathrm{b}_{\mathrm{m}_{1} \mathrm{~m}_{2}}^{\mathrm{ij}}=2 \frac{\text { him }_{1} \mathrm{ihim}_{2} \mathrm{ihjm}_{1} \text { ihjm }_{2} i}{\text { hiji}^{2} \mathrm{~mm}_{1} \mathrm{~m}_{2} \mathrm{i}^{2}}: \tag{3.3.10}
\end{equation*}
$$

Sum m ing over the four term s for the rem ainder of 3.3.6) can be done in com plete sim ilarity w ith 2.2 (and Section 4 of [40]) 9 W ew ill skip the details of this derivation and now present our result.

[^44]

Figure 3.3: A box function contributing to the am plitude in the general case. The negative-helicity gluons, i and j, cannot be in adjacent positions, as the gure shows.

In order to do this, we nd it convenient to de ne the follow ing expressions:

$$
\begin{align*}
& A_{m_{1} m_{2}}^{i j}=\frac{\left(i j m_{2}+1 m_{1}\right)}{\left(\left(m_{2}+1\right) m_{1}\right)} \frac{\left(i j m_{2} m_{1}\right)}{\left(m_{2} m_{1}\right)} \tag{3.3.11}\\
&=2[i j] m_{1} i i m_{1} j i \frac{1 m_{2} m_{2}+1 i}{m_{2}+1 m_{1} i m_{1} m_{2} i} ; \\
& S_{m_{1} m_{2}}^{i j}\left.=\frac{\left(i j m_{1} m_{2}+1\right)\left(i j m_{2}+1 m_{1}\right)}{\left(\left(m_{2}+1\right)\right.} m_{I}\right)^{2} \tag{3.3.12}\\
& \\
& I_{m_{1} m_{2}}^{i j}=\frac{\left(i j m_{1} m_{2}\right)\left(i j m_{2} m_{1}\right)}{\left(m_{2} m_{I}\right)^{2}} ; \text { (3.3.12) } \\
&\left(\left(m_{2}+1\right) m_{1}\right)^{3}\left.\frac{\left(i j m_{1} m_{2}+1\right)^{2}\left(i j m_{2}+1 m_{1}\right)}{\left(m_{2}\right)^{2}\left(i j m_{2} m_{1}\right)} m_{1}\right)^{3}
\end{align*} \text { (3.3.13) }
$$

where for notational sim plicity we set $\left(a_{1} a_{2} a_{3} a_{4}\right):=\operatorname{tr}_{+}\left(a_{1} a_{2} a_{3} a_{4}\right)$ in the above. We also note the sym m etry properties

$$
\begin{equation*}
\mathrm{A}_{\mathrm{m}_{1} \mathrm{~m}_{2}}^{\mathrm{ji}}=\mathrm{A}_{\mathrm{m}_{1} \mathrm{~m}_{2}}^{\mathrm{ij}} ; \quad S_{\mathrm{m}_{1} \mathrm{~m}_{2}}^{\mathrm{ji}}=S_{\mathrm{m}_{1} \mathrm{~m}_{2}}^{\mathrm{ij}}: \tag{3.3.14}
\end{equation*}
$$

The mom entum ow is best described using the triangle diagram in F igure 3.4, where
we use the follow ing de nitions:

$$
\begin{align*}
& \mathrm{P}:=\mathrm{q}_{2+1 m_{1}}=\mathrm{q}_{m_{1} m_{2}} ; \tag{3.3.15}\\
& \mathrm{Q}:=\mathrm{m}_{1+1 m_{2}}:
\end{align*}
$$

The triangle in F igure 3.5 also appears in the calculation, and can be converted into a triangle as in Figure 3.4 - but with i and j swapped - if one shifts $m_{1} 1!m_{1}$, and then $\mathrm{swaps} \mathrm{m}_{1} \$ \mathrm{~m}_{2}$ 。

N ext we introduce the coe cients

$$
\begin{align*}
& A_{m_{1} m_{2}}^{i j}:=2^{8}(i \quad j)^{4} A_{m_{1} m_{2}}^{i j}\left(i j m_{1} Q\right)^{2}\left(i j Q m_{1}\right) . \\
& \text { (ijm } \left.2 \text {) (ijQ } m_{1}\right)^{2^{i}} \text {; } \tag{3.3.16}\\
& A_{m_{1} m_{2}}^{\sim i j}=2^{8}(i \quad j)^{4} A_{m_{1} m_{2}}^{i j}\left(i j m_{1} Q\right)^{2} \quad\left(i j Q m_{1}\right)^{2} \text {; } \tag{3.3.17}\\
& S_{m_{1} m_{2}}^{i j}=2^{8}(i \quad j)^{4} S_{m_{1} m_{2}}^{i j}\left(i j m_{1} Q\right)^{2}+\left(i j Q m_{1}\right)^{2^{i}} ; \tag{3.3.18}\\
& I_{m_{1} m_{2}}^{i j}=2^{8}(i \quad j)^{4}{ }^{h} I_{m_{1} m_{2}}^{i j}\left(i j Q m_{1}\right)+I_{m_{1} m_{2}}^{j i}\left(i j m_{1} Q\right)^{i}: \tag{3.3.19}
\end{align*}
$$

We will also make use of the -dependent triangle functions introduced in (3.2.15), whose ! 0 lim its have been considered in (B.2.16) \{ 3.2.18). This is in order to write a com pact expression which also inconporates the infrared-divergent term s 10

W e can now present our result for the one-loop M HV am plitude:

$$
\begin{align*}
& \frac{A_{\text {scalar }}}{A_{\text {tree }}}=\dot{X}_{m_{1}=j+1 m_{2}=i+1} \dot{X}^{1} \frac{1}{2} \operatorname{b}_{m_{1} m_{2}}^{i j}{ }^{2} B\left(q_{m_{1} m_{2}}^{2} \quad 1 ; q_{m_{1}+m_{2}}^{2} ; q_{m_{1}+1 m_{2}}^{2} \quad ; q_{m_{2}+1_{m 1}}^{2} \quad 1\right) \\
& \frac{8}{3}{ }_{m_{1}=j+1 m_{2}=i}^{X^{1}} \dot{X}^{1} h A_{m_{1} m_{2}}^{i j} T^{(3)}\left(m_{1} ; P ; Q\right) \quad\left(i \quad j \not x_{m_{1} m_{2}}^{i j} T^{(2)}\left(m_{1} ; P ; Q\right)^{i}\right. \\
& +2_{m_{1}=j+1 m_{2}=i}^{\dot{X}^{1} \text { X }^{1} h} S_{m_{1} m_{2}}^{i j} T^{(2)}\left(m_{1} ; P ; Q\right)+I_{m_{1} m_{2}}^{i j} T\left(m_{1} ; P ; Q\right)^{i}+(i \$ j) ; \tag{3.3.20}
\end{align*}
$$

where on the right hand side of (3.3.20) a factor of 4^{\wedge} is understood and ${ }^{\wedge}$ is de ned

[^45]in G.1.11). W e can also introduce the coe cient
\[

$$
\begin{equation*}
c_{m_{1} m_{2}}^{i j}=\frac{1}{2} \frac{\left(i j m_{2}+1 m_{1}\right)}{\left(m_{2}+1\right) m_{1}} \quad \frac{\left(i j m_{2} m_{1}\right)}{\left(m_{2} m_{1}\right)} \frac{\left(i j m_{1} Q\right)\left(i j Q m_{1}\right)}{\left[(i+j)^{2}\right]^{2}} ; \tag{3.3.21}
\end{equation*}
$$

\]

which already appears as the coe cient m ultiplying the triangle function T in the $N=1$ am plitude, (see e.g. Eq. 2.1.19)), and rew rite 3.3.20) as

$$
\begin{align*}
& \frac{1}{2} \dot{x}_{1=j+1 m_{2}=i^{1}}^{\dot{X}^{1}} \frac{1}{3} C_{m_{1} m_{2}}^{i j} \frac{h\left(i j m_{1} Q\right)\left(i j Q m_{1}\right)}{2\left(i J^{-}\right)} T^{(3)}\left(m_{1} ; P ; Q\right)+T\left(m_{1} ; P ; Q\right)^{i} \\
& \dot{X}^{1} \dot{X}^{1} \mathrm{~h} \text { i } \\
& +2 \underset{m_{1}=j+1 m_{2}=i}{ } S_{m_{1} m_{2}}^{i j} T^{(2)}\left(m_{1} ; P ; Q\right)+I_{m_{1} m_{2}}^{i j} T\left(m_{1} ; P ; Q\right)+(i \$ j) \quad ; \tag{3.3.22}
\end{align*}
$$

where $F=A_{\text {scalar }}=A_{\text {tree }}$.

Figure 3.4: O ne type of triangle function contributing to the am plitude in the general case, where i 2 Q , and j 2 P .

Several rem arks are in order.

1. A s usual, the variables $q_{m_{1} m m_{2}}^{2}, q_{m_{1}+1 m_{2}}^{2}$ correspond to the s - and t-channel of the nite part of the leasy tw o-m ass" box function w ith m assless legs m_{1} and m_{2}, and m assive legs $q_{m_{1}+1 m_{2} \quad 1}^{2}, q_{m_{2}+1 m_{1}}^{2} \quad$ (Figure 3.3).

Figure 3.5: A nother type of triangle function contributing to the am plitude in the general case. By rst shifting $m_{1} 1!m_{1}$, and then swapping $m_{1} \$ m_{2}$, we convert this into a triangle function as in F igure 3.4 \{ but with i and j swapped. T hese are the triangle functions responsible for the i\$ j swapped term s in 3.3.20) \{ or 3.3.22).
2. C om pared to the ranges ofm m_{1} and m_{2} indicated in 3.1.2), we have om itted $m_{1}=i$ in the sum m ation of the triangles as for this value the coe cients A, S, I de ned in 3.3.16) \{ 3.3.19) vanish. N otice also that we have i2 Q and j2 P.
3. In the case of ad jacent negative helicity ghons, the only surviving term s are those containing the coe cient $\mathrm{c}_{\mathrm{m}{ }_{1} \mathrm{~m}_{2}}^{\mathrm{ij}}$, on the second line of 3.3.20) or 3.3.22). We w ill retum to this point in 3.4 .
4. We com m ent that, in contrast to the adjacent case (see 3.2.21)), in the general case the $N=1$ chiralam plitude does not separate out naturally in the nalresult. O ne can quickly see this from the coe cient of the box function B in (3.3.20) for exam ple.

N ext we wish to explicitly separate out the infrared divergences from 3.3.20). W e can im m ediately anticipate that there $w i l l$ be four infrared-divergent term s, corresponding to the four possible degenerate triangles. Two of these degenerate triangles occur when either P^{2} or Q^{2} happen to vanish. The other tw o originate from the i\$ jswapped term s .

Let us rst consider the term s arising from the sum m ation w ith i\$ j unswapped. W hen $Q^{2}=0$, it follow s that $m_{1}=i \quad 1$ and $m_{2}=i\left(\right.$ see F igure 3.4). W hen $P^{2}=0$, it
follow s that $m_{1}=j+1$ and $m_{2}=j \quad 1$ (see Figure 3.4). H ence

$$
\begin{array}{lll}
T^{(r)}(p ; P ; Q) \quad! & ()^{r} \frac{1}{\left(t_{i 1}^{[2]}\right)} \tag{3.3.23}\\
\left(t_{i}^{[2]}\right)^{r}
\end{array} \quad Q^{2}!0 ;
$$

T he infrared-divergent term scom ing from $Q^{2}=0$ are then easily extracted, and are

$$
\begin{align*}
& \frac{1}{2} \quad\left({ }_{i}^{[2]}{ }_{1}\right) \quad 4\left(i \quad j \frac{(i j i}{} 1 i+1\right) \frac{(i+1)}{(i \quad 1)} \tag{3.3.24}\\
& \frac{8}{3}\left(i \quad j^{2}\right) \quad 2 \frac{(i j i+1 i \quad 1)}{(i+1)(i \quad 1)}(i)+\frac{(i j i+1 i \quad 1)(i j i 1 i+1)}{(i+1)(i \quad 1)^{2}} ;
\end{align*}
$$

and from $P^{2}=0$

$$
\begin{align*}
& \frac{1}{2} \quad\left({ }_{5}^{[2]}\right) \quad 4\left(i \quad j \frac{(i j j}{} 1 j+1\right) ~(j+1)(j 1) \tag{3.3.25}\\
& \frac{8}{3}(i \quad j) \quad 2 \frac{(i j j+1 j 1)}{(j+1)(j \quad 1)}(i \quad j)+\frac{(i j j+1 j 1)(i j j 1 j+1)}{(j+1)(j 1)^{2}}:
\end{align*}
$$

Likew ise, from the \sw apped" degenerate triangles we obtain the follow ing infrareddivergent term s :

$$
\begin{align*}
& \frac{8}{3}(i \quad j) \quad 2 \frac{(i j j 1 j+1)}{(j+1)(j \quad 1)}(i)+\frac{(i j j 1 j+1)(i j j+1 j 1)}{(j+1)(j 1)^{2}} \text {; } \tag{3.3.26}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{2} \quad\left({ }_{i}^{[2]}\right) \quad 4\left(i \quad j \frac{(i j i+1 i}{} \quad 1\right) \tag{3.3.27}\\
& \frac{8}{3}\left(i \quad \text { ju) } \quad 2 \frac{(i j i 1 i+1)}{(i+1)(i \quad 1)}(i)+\frac{(i j i \quad 1 i+1)(i j i+1 i \quad 1)}{(i+1)(i \quad 1)^{2}}:\right.
\end{align*}
$$

3.3.1 C om m ents on tw istor space interpretation

W e would like to m ake som e brief com m ents on the interpretation in tw istor space of our result 3.3.22).

1. A s noticed earlier, the coe cient. $\mathrm{b}_{\mathrm{m}}^{\mathrm{ij} \mathrm{m}_{2}}$ appears already in the $\mathrm{N}=1$ chiralm ultiplet contribution to a one-loop M HV am plitude, where it m ultiplies the box function. It was noticed in Section 4 of 73] that $\mathrm{b}_{\mathrm{m}_{1} \mathrm{~m}_{2}}^{\mathrm{ij}}$ is a holom onphic func-
tion and hence it does not a ect the tw istor space localisation of the nite box function.
2. The coe cient $\mathrm{c}_{\mathrm{m}}^{\mathrm{m}{ }_{1} \mathrm{~m}_{2}}$ also appears in the $\mathrm{N}=1$ am plitude as the coe cient of the triangles (see e.g. Eq. (2.19) of [40]). Its tw istor space interpretation was considered in Section 4 of 73], where it was found that $\mathrm{c}_{\mathrm{m}_{1} \mathrm{~m}_{2}}$ has support on two lines in tw istor space. Furtherm ore, it was also found that the corresponding term in the am plitude has a derivative of a delta function support on coplanar con gurations.
3. The combination $C_{m_{1}}^{i j} m_{2}\left(i j m_{1} Q\right)\left(i j Q m_{1}\right)=\left(\begin{array}{ll}i & f\end{array}\right)$ already appears in the case of ad jacent negative helicity ghons. T he localisation properties of the corresponding term in the am plitude were considered in Section 5.3 of 73] and found to have, sim ilarly to the previous case, derivative of a delta function support on coplanar con gurations.
4. On general grounds, we can argue that the rem aining term s in the am plitude have $a t w$ istor space interpretation which is sim ilar to that of the term s already considered. Theghonswhosem om enta sum to P are contained on a line; likew ise, the ghons whose m om enta sum to Q localise on another line.

W e observe that the rational parts of the am plitude are not generated from the M HV diagram construction presented here. Such rational term s were not present for the $N=1$ and $N=4$ amplitudes derived in [37, 40, 41]. H ow ever, for the am plitude studied here, rational term s are required to ensure the correct factorisation properties [42]. These term s have recently been com puted using an on-shell unitarity bootstrap [45]] wich m akes use of the cut-constructible part 3.3.20) (or 3.3.22)) as input.

3.4 C hecks of the general result

In this section we present three consistency checks that we have perform ed for the result 3.3.20) (or 3.3.22)) for the one-loop scalar contribution to the M HV scattering am plitude. T hese checks are:

1. For ad jacent negative-helicity ghons, the general expression 3.3.20) should reproduce the previously calculated form 3.2.21).
2. In the case of ve ghuons in the con guration ($\left.\begin{array}{lllll}1 & 2^{+} & 3 & 4^{+} 5^{+}\end{array}\right)$, the result 3.3.20) should reproduce the know n am plitude given in [44].
3. The result 3.3 .20) should have the correct infrared-pole structure.

W e next discuss these requirem ents in turm.

3.4.1 A d jacent case

The am plitude where the tw o negative-helicity extemal ghons are ad jacent is given in Section 7 of [42] and was explicitly rederived in 4.2 of this thesis by com bining M H V vertices, see Eq. 3.2.21). It is easy to show that our general result 3.3.22) reproduces 3.2.21) correctly as a special case.

To start w ith, recall that our result 3.3.22) is expressed in term s of box functions and triangle functions, see F igure 3.3 and F igures $3.4,3.5$ respectively. In the ad jacent case, the box functions are not present. Indeed, in the sum 3.3.8) the negative-helicity gluons can never be in ad jacent positions (see Figure 3.3).
N ext, we focus on the triangles of F igure 3.4. In term sof these triangles, requiring i and j to be ad jacent elim inates the sum overm ${ }_{2}$, aswem usthavem ${ }_{2}=$ iand $^{2} m_{2}+1=j$. M oreover, in this case $Q=q_{m_{1}+1 ; i}, P=q_{j m_{1}} 1$ and one has

$$
\begin{align*}
& A_{i j}^{m_{1 j}^{1 m_{2}}}=4(i \quad j) ; \\
& S_{i j}^{m_{1} m_{2}}=0 ; \quad I_{i j}^{m_{1} m_{2}}=0 ; \tag{3.4.1}
\end{align*}
$$

(for $m_{2}=i$, and $m_{2}+1=j$). Sim ilar sim pli cations occur for the swapped triangle. H ence the only surviving term s are those in the second line of 3.3.20) (or 3.3.22)), and it is then easy to see that they generate the sam e am plitude 3.2.8) already calculated in 3.2 .

3.4.2 Five-gluon am plitude

The other special case is the non-ad jacent ve-ghon am plitude ($\begin{array}{llll}1 & 2^{+} & 3 & 4^{+}\end{array} 5^{+}$), given in Equation (9) of [44]. This am plitude m ay be written as \mathbb{E}^{11} c A tree tim e $\12

$$
\begin{aligned}
& +\operatorname{tr}_{+}\left(\frac{1}{} \neq z \xi\right)^{2} \frac{\log \left(s_{34}=s_{51}\right)}{\left(s_{34} s_{51}\right)^{3}}
\end{aligned}
$$

[^46]\[

$$
\begin{align*}
& +(1 ; 4) \$(3 ; 5) \text {; } \tag{3.4.2}
\end{align*}
$$
\]

where the interchange on the last line applies to all term s above it in this equation, including the rst two term s. The box function B is de ned in (3.3.7). In deriving 3.4.2) from [44], we have used the dilogarithm identity

$$
L i_{2}\left(\begin{array}{ll}
1 & r
\end{array}\right)+L i_{2}(1 \quad s)+\log (r) \log (s)=L i_{2} \frac{1 r}{s}+L i_{2} \frac{1 s}{r} \quad L i_{2} \frac{1 s}{r} \frac{1 r}{s}:
$$

 3.3.20), when specialised to the case w ith veghons in the con guration (1 $2^{+} 34^{+} 5^{+}$), yields precisely the result (3.4.2) above. For the term s involving dilogarithm s, this is easily done. For the rem aining term s, which contain logarithm s, a m ore involved calculation is necessary using various spinor identities from A ppendix A. A straightforw ard m ethod of doing this calculation begins w ith the explicit sum over M HV diagram s in this case, isolating the coe cients of each logarithm ic function such as e.g. log (s 12), and then checking that these coe cients m atch those in (3.4.2). The rem aining $1=$ term arises from the follow ing discussion.

3.4.3 Infrared-pole structure

The infrared-divergent term s (poles in $1=$) can easily be extracted from 3.3.24) \{ 3.3.27) by simply replacing $\left(t_{x}^{[2]}\right) \quad!1(r=i \quad 1 ; i ; j 1 ; j)$. C onsider rst the term s in 3.3.25) and 3.3.26). A fter a little algebra, and using

$$
\begin{equation*}
(i j j+1 j \quad 1)+(i j j \quad 1 i \quad 1)=4(i \quad j)(j \quad 1)(j+1) ; \tag{3.4.3}
\end{equation*}
$$

one nds that these two contributions add up to

$$
\frac{64}{3}\left(\begin{array}{ll}
i & j^{4} \tag{3.4.4}
\end{array}\right):
$$

Sim ilarly, the pole contribution arising from 3.3.24) and 3.3.27) gives an additional contribution of (64=3) (i \quad 4). Reinstating a factor of $2 \quad 2^{8}(i \quad j)^{4}$ Aree, we see that the pole part of 3.3.20) is sim ply given by

$$
\begin{equation*}
A_{\text {scalar }} j_{\text {pole }}=\frac{A_{\text {tree }}}{3}: \tag{3.4.5}
\end{equation*}
$$

H ence our result 3.3.20) has the expected infrared-singular behaviour.

3.5 The M H V am plitudes in Q C D

W e conclude by mentioning that the full one-loop n-gluon M HV am plitudes (w ith arbitrary positions for the negative helicity ghons) in Q CD can now be constructed. T hese are given by :

$$
\begin{equation*}
A_{Q C D}^{M H V}=A_{N=4}^{M H V} \quad 4 A_{N=1 ; \text {;chiral }}^{M H V}+A_{\text {scalar }}^{M H V} ; \tag{3.5.1}
\end{equation*}
$$

where in contradistinction w ith (1.3.3) we have w ritten the scalar contribution in term s of a com plex scalar rather than a real scalar. T he individual pieces (to nite order in
) can be found as follow s:
$A_{N=4}^{\mathrm{MHV}}$ was rst com puted in 38] and can be found there as Equation (4.1). A 1tematively it is given as Equation (1.9.1) in C hapter 1 of this thesis. N ote that an altemative form to Eq. (1.9.6) for the 2 me box functions is given by Eq. 1.9 .25). $A_{N=1 ; \text {;hiral }}^{M H \text { as }}$ rst com puted in 42] and can be found there as Equation (5.12) or m ore com pactly as Equation 2.1.19) in C hapter 2 of this thesis.

In contrast to the $N=4$ and $N=1$ cases, $A_{\text {scalar }}^{\mathrm{MHV}}$ is an am plitude in a nonsupersym m etric theory and as such its cuts are not uniquely determ ined by its cut-constructible part ($\mathrm{A}_{\mathrm{s}-\mathrm{cut}}^{\mathrm{MHV}}$). $\mathrm{A}_{\mathrm{s} \text {-cut }}^{\mathrm{MHV}}$ was rst com puted in 43] and can be found there as Equation (4.20) or Equation (4.22). A ltematively it can be found earlier in this chapter as Equation 3.3.20) or Equation 3.3.22).
Building on the results of 43], the rational part of $A_{s c a l a r}^{M H V}\left(A_{s-r a t i o n a l}^{M H V}\right)$ was com puted in [45]. In doing this it was found that it is useful to 'com plete' the cutconstructible parts obtained in [43] by introducing certain prelim inary rational term s in order to rem ove spurious singularities. The cut-com pletion of $A{ }_{s-c u t}^{M H V}$ is given by Equation (A 1) of A ppendix A of [45] and the full am plitude is then obtained by adding the rem aining rational term s as given in Equation (5.30) of that paper. Explicitly, the full scalar am plitude is given by Equation (5.1) (for negative helicity gluons 1 and m), where \hat{C} is given by (A 1) and \hat{R} by Equation (5.30) of 45].
$A_{Q C D}^{M}$ HV can then be found using the decom position 3.5.1) and

$$
\begin{aligned}
\mathrm{A}_{\mathrm{NH}=4}^{\mathrm{MHV}} & =\text { Eq. (4.1) of [38] } \\
\mathrm{A}_{\mathrm{N}=1: \operatorname{chiral}}^{\mathrm{MHV}} & =\text { Eq. (5.12) of [42] } \\
\mathrm{A}_{\text {scalar }}^{\mathrm{MHV}} & =\text { Eq. (5.1) of [45]: }
\end{aligned}
$$

CHAPTER 4

RECURSION RELATIONS IN GRAVITY

The proposal of a tw istor string dual to pertunbative Y ang $-M$ ills in [31] led not-only to the advances described in C hapters 1-3 of the so-called M HV nules for perturbation theory, but to m any others as well. The support of m any quantities such as scattering am plitudes, their integral functions and the coe cients of these functions in tw istor space has led to m any insights $[31,43,47,53,72,73,75,76,91,179,180,181,182,183$, 184] as has the use of signature ++ (or equivalently the restriction of m om enta to be com plex rather than real). In particular, this second technique of using com plex m om enta has proved very powerful, leading to the idea of generalised unitarity [47, 84] and then to the tree-level on-shell recursion relations 48 , 49] w hich w ill be central to this chapter.
R ecursion relations have been know n for som e tim e in eld theory since B erends and G iele proposed them in term s of o -shell currents [171]. H ow ever, the ghon recursion relations introduced by Britto, C achazo and Feng in [48] (stem m ing from observations in [46]) and then proved in [49] are in som e ways much m ore powerful. They apply directly to on-shell scattering am plitudes and are particularly apt w hen the am plitudes are written in the spinor helicity form alism, which as we have seen in the preceding chapters is a form alism which tends to favour sim ple and com pact expressions.
T he proof of the on-shellrecursion relation for g huons presented in 49$]$ is very sim $p l e$, only relying (essentially) on the ability to express an am plitude as a function of a com plex variable z and then the asym ptotic behaviour of this function as z! 1 . As such, it is natural to ask whether such a recursive structure m ight persist in other eld theories and even in gravity 1 This question was answ ered independently in 50] and 51]] in the a mative, where the authors of [50] (including the present author) used it to present a new com pact form ula for n-graviton $\mathrm{M} H \mathrm{~V}$ am plitudes at tree-level in general relativity (GR). Such com pact form ul are particularly interesting as gravity is very-m uch m ore com plicated than Y ang M ills - the 3 -point vertex of $G R$ for exam ple contains 171 tem s in total, while the 4-point vertex has 2850 altogether [165].

In this chapter we w ill follow [50] and describe the recursion relation in E instein gravity at tree-level. We w ill not sum m arise the proof of the relation in Yang -M ills as

[^47]it is alm ost identical to that in gravity. A ny di erences betw een the two are pointed out in what follow s.

4.1 The recursion relation

In this section we closely follow the proof of the recursion relation in Yang M ills [49], which we will extend to the case of gravity am plitudes. A s we shall see, the m ain new ingredient is that gravity am plitudes depend on m ore kinem atical invariants than the corresponding Yang -M ills am plitudes, nam ely those which are sum s of non-cyclically ad jacent m om enta; hence, m ore m ulti-particle channels should be considered.

To derive a recursion relation for scattering am plitudes, we start by introducing a one-param eter fam ily of scattering am plitudes, M (z) [49], where we choose z in such a way that $\mathrm{M}(0)$ is the am plitude we wish to com pute. W e work in complexi ed M inkow ski space and regard $M(z)$ as a com plex function of z and the m om enta. O ne can then consider the contour integral [103]

$$
\begin{equation*}
C_{1}:=\frac{1}{2 i}^{I} d z \frac{M(z)}{z} \tag{4.1.1}
\end{equation*}
$$

where the integration is taken around the circle at in nity in the com plex z plane. A ssum ing that $M(z)$ has only simple poles at $z=z_{i}$, the integration gives

$$
\begin{equation*}
C_{1}=M(0)+{\underset{i}{X} \frac{\left[\operatorname{ResM}(z) l_{=z_{i}}\right.}{z_{i}}: ~}_{i} \tag{4.1.2}
\end{equation*}
$$

In the im portant case of Y ang -M ills am plitudes, $\mathrm{M}(\mathrm{z})!0$ as z ! 1 , and hence $C_{1}=0$ 49].
N otice that up to this point the de nition of the fam ily of am plitudes M (z) has not been given \{ we have not even speci ed the theory whose scattering am plitudes we are com puting.
T here are som e obvious requirem ents for $M(z)$. Them ain point is to de neM (z) in such a way that poles in z correspond to m ulti-particle poles in the scattering am plitude $M(0)$. If this occurs then the corresponding residues can be com puted from factorisation properties of scattering am plitudes (see, for exam ple, [3, 154]). In order to accom plish this, M (z) wasde ned in 48, 49] by shifting them om enta of tw o of the extemalparticles in the original scattering am plitude. For th is procedure to m ake sense, we have to m ake sure that even w ith these shifts overall m om entum conservation is preserved and that all particle m om enta rem ain on-shell. W e are thus led to de ne $M(z)$ as the scattering am plitude M ($\left.\mathrm{p}_{1} ;::: ; \mathrm{p}_{\mathrm{k}}(\mathrm{z}) ;::: ; \mathrm{p}_{1}(\mathrm{z}) ;::: ; \mathrm{p}_{\mathrm{n}}\right)$, where the m om enta of particles k and 1 are shifted to

$$
\begin{equation*}
\mathrm{p}_{\mathrm{k}}(\mathrm{z}):=\mathrm{p}_{\mathrm{k}}+\mathrm{z} ; \quad \mathrm{p}_{\mathrm{l}}(\mathrm{z}):=\mathrm{p}_{\mathrm{l}} \quad \mathrm{z}: \tag{4.1.3}
\end{equation*}
$$

M om entum conservation is then m aintained. A s in [48], we can solve $p_{k}^{2}(z)=p_{1}^{2}(z)=0$ by choosing $=\mathcal{I}^{\sim}{ }_{k}\left(\right.$ or $={ }^{\sim}{ }_{l}$), which m akes sense in complexi ed M inkow ski space. Equivalently,

$$
\begin{equation*}
\mathrm{k}(\mathrm{z}):=\mathrm{k}+\mathrm{z}_{1} ; \quad \sim_{1}(\mathrm{z}):=\sim_{1} \mathrm{z}_{\mathrm{k}} \tilde{j}^{\prime} ; \tag{4.1.4}
\end{equation*}
$$

With \quad and \sim_{k} unshifted.
M ore general fam ilies of scattering am plitudes can also be de ned, as pointed out in [103]. For instance, one can single out three particles k, l, m, and de ne

$$
\mathrm{p}_{\mathrm{k}}(\mathrm{z}):=\mathrm{p}_{\mathrm{k}}+\mathrm{z}_{\mathrm{k}} ; \quad \mathrm{p}_{\mathrm{l}}(\mathrm{z}):=\mathrm{p}_{\mathrm{l}}+\mathrm{z}_{\mathrm{l}} ; \quad \mathrm{p}_{\mathrm{m}}(\mathrm{z}):=\mathrm{p}_{\mathrm{m}}+\mathrm{z}_{\mathrm{m}} ;
$$

where k, l and m arenulland $k+{ }_{1}+m=0$. Im posing $p_{k}^{2}(z)=p_{l}^{2}(z)=p_{m}^{2}(z)=0$, one nds the solution

$$
\begin{equation*}
\mathrm{k}=\mathrm{k}_{\mathrm{l}} \sim_{\mathrm{k}} \quad \sim_{\mathrm{m}} ; \quad \mathrm{l}=\mathrm{k} \tilde{\mathrm{I}}_{\mathrm{l}} ; \quad \mathrm{m}=\mathrm{k} \sim_{\mathrm{m}} ; \tag{4.1.6}
\end{equation*}
$$

for anbitrary and. This has been used in [103]. In the follow ing we will lim it ourselves to shifting only two m om enta as in [48] and [49].

At tree level, scattering am plitudes in eld theory can only have sim ple poles in m ulti-particle channels; for $M(z)$, these generate poles in z (unless the channel contains both particles k and l, or none). Indeed, if $P(z)$ is a sum of m om enta including $p_{l}(z)$ but not $p_{k}(z)$, then $P^{2}(z)=P^{2} \quad 2 z(P \quad)$ vanishes at $Z_{\mathrm{F}}=P^{2}=2(P \quad 40]$. In Y angM ills theory, one considers colour-ordered partial am plitudes which have a xed cyclic ordering of the extemal legs. This im plies that a generic Y ang M ills partial am plitude can only depend on kinem atical invariants m ade of sum s of cyclically ad jacent m om enta. H ence, tree-level Yang -M ills am plitudes can only have poles in kinem atical channels m ade of cyclically ad jacent sum s of m om enta.

For gravity am plitudes this is not the case as there is no such notion of ordering for the extemal legs. T herefore, the m ulti-particle poles which produce poles in z are those obtained by form ing all possible com binations of m om enta which include $p_{k}(z)$ but not $\mathrm{p}_{1}(\mathrm{z})$. This is the only m odi cation to the BCFW recursion relation we need to m ake in order to derive a gravity recursion relation.

For any such m ulti-particle channelP ${ }^{2}(z)$, we have

$$
\begin{equation*}
M(z)!\int_{h}^{X} M_{L}^{h}\left(z_{P}\right) \frac{1}{P^{2}(z)} M_{R}^{h}\left(z_{P}\right) ; \tag{4.1.7}
\end{equation*}
$$

as $P^{2}(z)!0$ (or, equivalently, $z!z_{P}$). The sum is over the possible helicity assignm ents on the tw o sides of the propagator which connects the tw o low er-point tree-level
am plitudes $M{ }_{L}^{h}$ and $M{ }_{R}{ }^{h}$. It follow s that

$$
\begin{equation*}
[\operatorname{esM}(z)]_{z_{2}}=X_{h}{\underset{L}{h}}_{h}\left(z_{P}\right) \frac{z_{P}}{P^{2}} M_{R}^{h}\left(z_{P}\right) ; \tag{4.1.8}
\end{equation*}
$$

so that nally

$$
\begin{equation*}
M(0)=C_{1}+X_{P ; h}^{X} \frac{M_{L}^{h}\left(z_{P}\right) M_{R}^{h}\left(z_{P}\right)}{P^{2}}: \tag{4.1.9}
\end{equation*}
$$

The sum is over all possible decom positions of m om enta such that $p_{k} 2 P$ but $p_{1} z P$.
If $C_{1}=0$ there is no boundary term in the recursion relation and

$$
\begin{equation*}
M(0)=\frac{X}{P \neq M_{L}^{h}\left(z_{P}\right) M_{R}^{h}\left(z_{P}\right)} P^{2}: \tag{4.1.10}
\end{equation*}
$$

In [49] it was show n that for Y ang M ills am plitudes the boundary term $\mathrm{S}_{1}^{Y M}$ alw ays vanish. T wo di erent proofs w ere presented, the rst based on the use ofC SW diagram s [33] and the second on Feynm an diagram s. An M HV -vertex form ulation of gravity only recently appeared [77], so at the tim e the authors of [50] could only rely on Feynm an diagram s. This is also the case for other eld theories we m ight be interested in (such as $\quad 4$, for exam ple).

A s we have rem arked, $C_{1}=0$ if $M(z)!0$ as $z!1 . M(z)$ is a scattering am plitude w ith shifted, z-dependent extemal nullm om enta. O ne can then try to estim ate the behaviour of $M(z)$ for large z by using power counting (di erent theories will of course give di erent results). In ${ }^{4}$ the Feynm an vertices are mom entum independent and $C_{1}=0$ (see 4.3) ; in quantum gravity, how ever, vertices are quadratic in m om enta, and one cannot determ ine a priori w hether or not a boundary term is present.

From the previous discussion, it follows that the behaviour of $M(z)$ as z ! 1 is related to the high-energy behaviour of the scattering am plitude (and hence to the renorm alisability of the theory). T he ultraviolet behaviour ofquantum gravity, how ever, is full of surprises (for a sum m ary, see for exam ple Section 2.2 of [217] and also m ore recent results of $555,56,57,58,59,60]$). W e m ay therefore expect a m ore benign behaviour of M (z) as z ! 1 . Speci cally, in the next section we will focus on the n-graviton M HV scattering am plitudes which have been com puted by Berends, G iele and K uiff (BGK) in [218]. Perform ing the shift 4.1.3) explicitly in the BGK form ula, one nds the surprising result ${ }^{2}$

$$
\begin{equation*}
\lim _{z!1} M \operatorname{MHV}(z)=0: \tag{4.1.11}
\end{equation*}
$$

[^48]In m ore general am plitudes one can (at least in principle) use the (eld theory lim it of the) K LT relations [219], which connect tree-level gravity am plitudes to treelevel am plitudes in Yang -M ills, to estim ate the large-z behaviour of the scattering am plitude 3 A s an exam ple, we have considered the next-to $M H V$ gravity am plitude M (1 ;2 ;3 ; $4^{+} ; 5^{+} ; 6^{+}$), and perform ed the shifts as in 4.1.4), with $k=1$ and $1=2$. Sim ilarly to the M HV case, we nd that

$$
\begin{equation*}
\lim _{z!} M\left(1 ; 2 ; 3 ; 4^{+} ; 5^{+} ; 6^{+}\right)(z)=0: \tag{4.1.12}
\end{equation*}
$$

In [51] it was show n that $M(z)$ vanishes as z ! 1 for all am plitudes up to eight gravitons and also for alln-point M HV and NM HV am plitudes. Further to this, recent w ork 52] provides a proof of th is statem ent for all tree-leveln-graviton am plitudes thus establishing the validity of the recursion relation in gravity unam biguously.

In the next section we w ill apply the recursion relation 4.1.10) to the case of M H V am plitudes in gravity and show that it does generate correct expressions for the am plitudes. As a bonus, we will derive a new closed-form expression for the n-particle scattering am plitude.

4.2 A pplication to M H V gravity am plitudes

In the follow ing wew ill com pute the M HV scattering am plitude M (1 ; $2 ; 3^{+} ;::: ; \mathrm{n}^{+}$) forn gravitons. W ew illchoose the tw o negative helicity gravitons 1 and 2 as reference legs. This is a particularly convenient choice as it reduces the num ber of term sarising in the recursion relation to $a \mathrm{~m}$ in im $u m$. The shifts for the m om enta of particles 1 and 2 are

$$
\begin{equation*}
\mathrm{p}_{1}!\mathrm{p}_{1}+\mathrm{z}_{2} \tilde{1}_{1} ; \quad \mathrm{p}_{2}!\mathrm{p}_{2} \quad \mathrm{z}_{2} \sim_{1} \text { : } \tag{4.2.1}
\end{equation*}
$$

In term s of spinors, the shifts are realised as

$$
\begin{equation*}
1!\hat{\wedge}_{1}:=1+z_{2} ; \quad \sim_{2}!\hat{\sim}_{2}:=\sim_{2} \quad \mathrm{z}_{1} ; \tag{4.2.2}
\end{equation*}
$$

W ith 2 and \sim_{1} unm odi ed.
Let us consider the possible recursion diagram s that can arise. There are only two possibilities, corresponding to the tw o possible intemalhelicity assignm ents, (+) and (+):

1. T he am plitude on the left is googly $(++\quad)$ whereas on the right there is an M HV gravity am plitude with n 1 legs (see Figure 4.1).

[^49]

Figure 4.1: O ne of the term s contributing to the recursion relation for the M HV am plitude M ($\left.1 ; 2 ; 3^{+} ;::: ; \mathrm{n}^{+}\right)$. The gravity scattering am plitude on the right is sym m etric under the exchange of gravitons of the sam e helicity. In the recursion relation, we sum over all possible values of k, i.e. $k=3 ;::: ; n$. This am ounts to sum m ing over cyclical perm utations of ($3 ;::: ; n$).
2. T he am plitude on the right is googly and the am plitude on the left is M HV (see F igure 4.2).

W e recall that a gravity am plitude is sym m etric under the interchange of identical helicity gravitons; this im plies that we have to sum $n 2$ diagrams for each of the con gurations in Figures 4.1 and 4.2. Each diagram is then com pletely speci ed by choosing k, w ith $k=3 ;::: ; n$.

H ow ever, it is easy to see that diagram s of type 2 actually give a vanishing contribution. Indeed, they are proportional to

$$
\begin{equation*}
[k \hat{P}]=\frac{[k \hat{P} \hat{\hat{R} i}}{h \hat{P} \hat{2} i}=\frac{[k P \hat{p} i}{h \hat{P} \hat{2} i}=0 ; \tag{4.2.3}
\end{equation*}
$$

where the last equality follows from $P=p_{k}+p_{2}$. H ence we will have to com pute diagram s of type 1 only. Wewill do this in the following.

4.2.1 Four-, ve-and six-graviton scattering

To show explicitly how our recursion relation generates am plitudes we will now derive the 4-, 5-and 6-point M HV scattering am plitudes.

Figure 4.2: T his class of diagram s also contributes to the recursion relation for the M HV am plitude $M\left(1 ; 2 ; 3^{+} ;::: ; \mathrm{n}^{+}\right)$; how ever, each of these diagram s vanishes if the shifts 4.2.2) are perform ed.

W e start w ith the four point case. There are two diagram s to sum, one of which is represented in F igure 4.3 ; the other is obtained by swapping the labels 4 and 3 . For the diagram in Figure 4.3, we have

$$
\begin{equation*}
M^{(4)}=M_{L} \frac{1}{P^{2}} M_{R} \text {; } \tag{4.2.4}
\end{equation*}
$$

where the superscriptdenotes the label on the positive helicity leg in the trivalent googly M HV vertex,

$$
\begin{align*}
& M_{L}=\frac{[\hat{P} 4]^{3}}{[41][1 \hat{P}]} ; \tag{4.2.5}\\
& M_{R}=\frac{h \hat{P} 2 i^{3}}{h 23 i h 3 \hat{P i}}{ }^{!_{2}} ;
\end{align*}
$$

and $P^{2}=\left(p_{1}+p_{4}\right)^{2} \cdot U$ sing

$$
\begin{equation*}
\operatorname{hi} \hat{P} i=\frac{\operatorname{hif} \hat{1}]}{[\hat{P} 1]} \tag{4.2.6}
\end{equation*}
$$

we nd, after a little algebra,

$$
\begin{equation*}
M^{(4)}=\frac{h 12 i^{6}[14]}{h 14 i h 23 i^{2} h 34 i^{2}}: \tag{4.2.7}
\end{equation*}
$$

Figure 4.3: O ne of the two diagram s contributing to the recursion relation for the M HV am plitude $M\left(\begin{array}{ll}1 & ;\end{array} 3^{+} ; 4^{+}\right)$. T he other is obtained from this by cyclically perm uting the labels $(3 ; 4)$ \{ i.e. sw apping 3 with 4 .

The full am plitude is $M\left(1 ; 2 ; 3^{+} ; 4^{+}\right)=M^{(3)}+M^{(4)}$. Thus, we conclude that the four point M HV am plitude generated by our recursion relation is given by

$$
\begin{equation*}
M\left(1 ; 2 ; 3^{+} ; 4^{+}\right)=\frac{h 12 i^{6}[14]}{h 14 i h 23 i^{2} h 34 i^{2}}+3 \$ 4: \tag{4.2.8}
\end{equation*}
$$

It is easy to check that this agrees w ith the conventional form ula for this am plitude

$$
\begin{equation*}
\mathrm{M}\left(1 ; 2 ; 3^{+} ; 4^{+}\right)=\frac{\mathrm{h} 12 i^{8}[12]}{\mathrm{N}(4) \mathrm{h} 34 \mathrm{i}} \tag{4.2.9}
\end{equation*}
$$

where
or, equivalently, w ith the expression from the appropriate K LT relation, Eq. H.0.2).
For the vegraviton scattering case our recursion relation yields a sum of three diagram s. A calculation sim ilar to that ilhustrated previously for the four-point case leads to the result

$$
\begin{equation*}
M\left(1 ; 2 ; 3^{+} ; 4^{+} ; 5^{+}\right)=\frac{h 12 i^{6}[15][34]}{h 15 i h 23 i h 24 i h 34 i h 35 i h 45 i}+P^{c}(3 ; 4 ; 5) ; \tag{4.2.11}
\end{equation*}
$$

where $P^{c}(3 ; 4 ; 5) \mathrm{m}$ eans that we have to sum over cyclic perm utations of the labels

3;4;5. The conventional form ula for the ve graviton M HV scattering am plitude is

$$
\begin{equation*}
\operatorname{M~}\left(1 \quad ; 2 ; 3^{+} ; 4^{+} ; 5^{+}\right)=\frac{h 12 i^{8}}{N(5)}[12][34] 13 i h 24 i \quad[13][24] 12 i h 34 i \quad: \tag{4.2.12}
\end{equation*}
$$

U sing standard spinor identities and m om entum conservation, it is straightforw ard to check that our expression 4.2.11) agrees w ith this (altematively, one can use the K LT relation H.0.3)).

For the six graviton scattering am plitude, our recursion relation yields a sum of four term s ,

$$
\begin{gather*}
\text { M }\left(1 ; 2 ; 3^{+} ; 4^{+} ; 5^{+} ; 6^{+}\right)=\frac{h 12 i^{6}[16]}{h 16 i} \frac{1}{h 26 i h 34 i h 35 i h 45 i} \tag{4.2.13}\\
\frac{[34]}{\mathrm{h} 23 i h 24 i} \frac{h 2 j+4-5]}{h 56 i}+\frac{[45]}{h 24 i h 25 i} \frac{h 2 j 4+5 j]}{h 36 i}+\frac{[53]}{h 23 i h 25 i} \frac{h 25+3 j 4]}{h 46 i} \\
+P^{c}(3 ; 4 ; 5 ; 6):
\end{gather*}
$$

T he known form ula for this am plitude is

$$
\begin{equation*}
M_{\text {M HV }}^{6 \text {-point }}=h 12 i^{8} \frac{[12][45][3 j 4+5 j 6 i}{\text { h15ih16ih12ih23ih26ih34ih36ih45ih46ih56i }}+P(2 ; 3 ; 4) \quad ; \tag{4.2.14}
\end{equation*}
$$

where $P(2 ; 3 ; 4)$ ind icates perm utations of the labels $2 ; 3 ; 4 . W$ e have checked num erically that the form ula 4.2.13) agrees w ith this expression.

4.2.2 G eneral form ula for M HV scattering

Recursion relations of the form given in [48], or the graviton recursion relation given here, naturally produce general form ul for scattering am plitudes. For a suitable choice of reference spinors, these new form ul can often be sim pler than previously known exam ples. For the choice of reference spinors $1 ; 2$; which we have m ade above, the graviton recursion relation is particularly sim ple as it produces only one term at each step. This im mediately suggests that one can use it to generate an explicit expression for the n-point am plitude. This tums out to be the case, and experience w ith the use of our recursion relation leads us to propose the follow ing new general form ula for the n -graviton M HV scattering am plitude. This is (labels $1 ; 2$ carry negative helicity, the rem ainder carry positive helicity)

$$
\begin{align*}
M\left(1 ; 2 ; i_{1} ; \quad n ; i \mathbb{Z}^{i}\right) & =\frac{h 12 i^{6}\left[1 i_{n} \quad 2\right]}{h 1 i_{n} 2 i} G\left(i_{1} ; i_{2} ; i_{3}\right)^{Y Y} \frac{\left.h 2 \ddot{\mu}_{1}+:::+i_{s} 1 \ddot{j}_{s}\right]}{h i_{s} i_{s+1} i h 2 i_{s+1} i} \\
& +P\left(i_{1} ;:: ; i_{n} \quad 2\right) ; \tag{4.2.15}
\end{align*}
$$

where

$$
\begin{equation*}
G\left(i_{1} ; i_{2} ; i_{3}\right)=\frac{1}{2} \frac{\left[i_{1} i_{2}\right]}{h 2 i_{1} i h 2 i_{2} i_{2} i_{1} i_{2} i h i_{2} i_{3} i h i_{1} i_{3} i}: \tag{4.2.16}
\end{equation*}
$$

(For $\mathrm{n}=5$ the product term is dropped from 4.2.15)). It is straightforw ard to check that this am plitude satis es the recursion relation with the choice of reference legs 1 and 2 .

The know n generalM HV am plitude for two negative helicity gravitons, 1 and 2, and the rem aining $n \quad 2 w$ ith positive helicity is given by [218]

M (1;2;3;
where

W e have checked num erically, up to $n=11$, that our form ula 4.2.15) gives the sam e results as 4.2.17).

It is interesting to note that the very existence of this recursion relation in gravity described here and in [50, 51] - has som eth ing to say about the divergences of quantum gravity. A central feature of the recursion relation is that it requires $M(1)=0$, and the behaviour of $M(z)$ as z ! 1 is related to the high-energy behaviour (and hence the renom alisability) of the theory. It is not a priori clear that gravity has this behaviour, though the analyses of 50,51$]$ and m ore recently the com plete analysis of 52] show that indeed M (1) = 0 for any tree-level am plitude in gravity. This m eans that at tree-level, gravity has divergences in the UV that are perhaps better than one m ight expect. T his supports recent argum ents that gravity m ay not be as divergent as previously thought and m ore speci cally that 4-dim ensionaln $=8$ supergravity m ay be nite $55,56,57,58,59,60]$.

4.3 A pplications to other eld theories

O ne of the striking features of the BCFW proof of the BCF recursion relations is that the speci cation of the theory with which one is dealing is alm ost unnecessary. Indeed in [49] the only step where specifying the theory did m atter was in the estim ate of the behaviour of the scattering am plitudes $M(z)$ as $z!1$, which was im portant to assess the possible existence of boundary term s in the recursion relation. This leads us to conjecture that recursion relations could be a m ore generic feature of m assless (or spontaneously broken) eld theories in four dim ensions $\sqrt[4]{ }$ A fter all, the BCF recursion

[^50]relations - as well as the recursion relation for gravity am plitudes discussed in this chapter and in [51] - just reconstruct a tree-levelam plitude (w hich is a rationalfunction) from its poles.

Let us focus on m assless $\left(y^{y}\right)^{2}$ theory in four dim ensions. W e use the spinor helicity form alism, meaning that each m om entum w ill be written as paag $=a^{\sim}{ }_{\underline{a}} \cdot \mathrm{~A}$ scalar propagator $1=P^{2}$ connects states of opposite \helicity", which here just m eans that the propagator is $h(x)^{y}(0) i$, with $h(x)(0) i=h^{y}(x)^{y}(0) i=0$. N ow consider a Feynm an diagram contributing to an n-particle scattering am plitude, and let us shift the m om enta of particles k and l as in 4.1.3). As for the Y ang M ills case discussed in [49]], there is a unique path of propagators going from particle k to particle l. Each of these propagators contributes $1=z$ at large z, whereas vertices are independent of z. W e thus expect Feynm an diagram s contributing to the am plitude to vanish in the large-z lim it.

An exception to the above reasoning is represented by those Feynm an diagram s where the shifted legs belong to the sam e vertex; these diagram s are z-independent, and hence not suppressed as z! 1 . In order to dealw ith this problem atic situation, and ensure that the full am plitude M (z) com puted from Feynm an diagram s vanishes as z! 1 we propose two altematives.

Firstly, if one considers (y$)^{2}$ theory w ithout any group structure, one can rem ove the problem by perform ing multiple shifts. This possibility has already been used in the context of the rational part of one-loop am plitudes in pure Yang-M ills [103]. In our case, it is su cient to shift at least four extemalm om enta.

A ltematively, we can consider (y$)^{2}$ theory with global sym m etry group U (N) and in the adjoint. In this case we can group the am plitude into colour-ordered partial am plitudes, as in the Yang M ills case. T hen, for any colour-ordered am plitude one can always nd a choice of shifts such that the shifted legs do not belong to the sam e Feynm an vertex. T he procedure can be repeated for any colour ordering, and the com plete am plitude is obtained by sum m ing over non-cyclic perm utations of the extemal legs.

In this way, the appearance of a boundary term C_{1} can be avoided, and one can thus derive a recursion relation for scattering am plitudes akin to 4.1.10). A sim ilar analysis can be carried out in other theories, possibly in the presence of spontaneous sym m etry breaking etc. W e expect this to play an im portant role in future studies.

4.4 C SW as BCFW

Finally, we would like to point out the connection between the C SW rules at tree-level 33] and the BCFW recursion relation introduced in [48, 49] and discussed for gravity
in this chapter. This was hinted at in [49] where it was noted that the existence of $B C F W$ recursion (which can construct any ghon am plitude solely from a know ledge of its singularities) provides an indirect proof of the C SW rules since the C SW rules provide results which are L orentz-invariant, gauge-invariant and have the correct singularities. It w as also brie y touched on in 50] w here som e form alobservations w ere m ade regarding the relation betw een the way that the shifts of Eq. 4.1.3) are perform ed - so as to keep the corresponding m om enta on-shell in the BCFW recursion relation - and the way that the intemal legs in the C SW rules are shifted (Eq. 1.7.1)).

H ow ever, R isager show ed that the C SW rules are in fact a special case of the BC FW recursion relation w hen speci c shifts of m om enta are m ade 34]. The m ost natural shifts to m ake when using the recursion relations are those which m inim ise the num ber of term s appearing and thus the work that one has to do. In [34], how ever, a di erent set of shifts was em ployed which a ects every propagator that may appear in a C SW diagram. The propagators are de ned by them om enta that ow through them and thus by a set of consecutive extemal particles. In the case of CSW diagram S , the vertices are M HV vertices and thus this set of consecutive particles (and its com plim ent on the other vertex to-w hich the propagator is attached) m ust contain at least one gluon of negative helicity each. Exactly this set of propagators is a ected if every extemal negative-helicity ghon is shifted, provided that the sum of any subset of the shifts does not vanish. In addition, the shifts m ust all involve the anti-holom orphic spinors so that all 3-point googly am plitudes drop out.

U sing these shifts (see Eq. (5.1) of [34] for an explicit exam ple of the shifts for an NM HV am plitude), R isager used induction to prove the C SW rules directly thus highlighting their connection with the BCFW recursion relation. In 77] these ideas were then used to construct an M HV -vertex form alism for gravity, thus accentuating the rem arkable sim ilarities betw een gauge theory and gravity despite the latter's m ore com plicated structure.

CHAPTER 5

C O N CLUSION S AND OUTLOOK

In the previous chapters we have studied ghon scattering am plitudes in perturbative gauge theory and have seen how they can be stripped of colour and w ritten in term s of spinor variables to ilhum inate their basic structure in a uni ed context. T heir tw istorspace localisation then allow s for an understanding of the unexpected sim plicity ofm any n-point processes. The tree-level M H V am plitudes were seen to lie on sim ple straight lines in tw istor space and it was show n how they could be calculated from a topological string theory as an integral over the m odulispace of holom orphically em bedded, degree 1 , genus 0 curves. T his in tum m otivated a new pertunbative expansion of YangM ills gauge theory where tree-levelM HV am plitudes are taken o -shell and joined with scalar propagators to create tree-level am plitudes w ith successively greater num bers of negative helicity particles. The M HV vertices e ectively com bine many Feynm an diagram s into one and thus provide a great sim pli cation which aids calculation and highlights the underlying geom etrical structure.

W e saw how these techniques could be applied at loop-level to calculate the M HV am plitudes in $N=4$ super $-Y$ ang M ills, which is a slightly surprising result as the duality with the tw istor string theory constructed in [31] (and also that in [112]) fails at looplevel. T hese string theories contain conform alsupergravity states which do not decouple at one-loop and this suggests that the application of the C SW rules to loops m ight fail or sim ply calculate am plitudes in som e theory of Yang M ills coupled to conform al supergravity. Indeed, a recent calculation of various loop am plitudes in B erkovits' tw istor string theory appears to give am plitudes in such a theory [114].

O nem ight also expect that such a surprising result would only apply to m axim ally supersym m etric Y ang M ills. H ow ever in C hapter 2 we saw that $M H V$ vertices can be used to calculate am plitudes at loop-level in theories w ith less supersym m etry such as $N=1$ super-Yang M ills. There we calculated the one-loop M HV am plitudes and found com plete agreem ent w ith the know n results in [42]. The calculation itself is m ore involved than the corresponding one in $N=4$ presented in [37] and review ed in C hapter 1 because the reduction in supersym m etry leads to few er cancellations. H appily though, this does not spoil the technique of using M HV am plitudes as e ective vertices.

In C hapter 3 we applied the loop-level C SW rules to pure Yang-M ills w ith a scalar running in the loop. Pure Yang -M ills is a non-supersym m etric theory and as such the calculation is even m ore involved than before. This still does not invalidate the process,
although it was found that the use ofM HV vertices only calculates the cut-constructible part of the am plitude. T he rational parts, which are intrinsically linked to the cuts for supersym m etric theories, were thus m issed. N onetheless, the results obtained m atch perfectly w ith the known (special) cases [42, 44] and provide the cut-constructible part of the M HV am plitude in pure Yang -M ills w ith arbitrary positions for the negativehelicity gluons for the rst tim e. T he rational part of the am plitude has since been calculated in 45] building on the results described in C hapter 3 .

In Chapter 4 we tumed our attention to gravity and another interesting developm ent stem m ing from tw istor string theory, nam ely that of on-shell recursion relations. Recursion relations have been used before in the construction of am plitudes [171], but it w asn't until recently that they w ere used to recursively tum on-shell am plitudes into am plitudes w ith a larger num ber of extemal legs. T hey were introduced in [48] at treelevel and have since been used in a bootstrap approach to loop am plitudes which was in fact one of the techniques applied in [45].

W e saw that on-shell recursion relations can also be applied at tree-level in gravity and it is a beauty of the proof of these relations in gauge theory [49] which m eans that they can be proved in gravity w ithout too much (!) extra work. The m ain additional ingredient is a proof of the behaviour of tree-leveln-graviton am plitudes as a function of a com plex variable z as z! 1 . In C hapter 4 we argued the case for m any am plitudes of interest, but a recent proof that $\lim _{z!1} M_{n}(z)=0$ establishes that the recursion relation in gravity can construct any tree-level n-graviton am plitude [52].

W e showed how this recursion relation could be used to construct M HV am plitudes w ith successively m ore extemalgravitons and as a by-product constructed a new com pact form for the n-graviton M HV am plitudes which provides an interesting altemative to the previously known form in [218]. W e nished by com menting on the relation betw een the tree-levelCSW rules and on-shell recursion relations both in eld theory and in gravity and also m ade som e observations on the existence of recursion relations in other theories such as scalar ${ }^{4}$ theory.

U nsurprisingly, this is not the end of the story. In the introduction we already m entioned som e of the directions that have been explored follow ing from and related to the m aterial presented here. T his includes the construction of tw istor string theories describing $N=4$ Yang M ills as well as ones describing other eld theories such as a recent description of E instein supergravity [39], the use of on-shell recursion relations at loop level in both gauge theory and gravity [111, 220] and im provem ents to the unitarity m ethod [47]. It m ay be particularly interesting to note that in [39], one of the theories for which a tw istor description is found is $\mathrm{N}=4 \mathrm{Y}$ ang M ills coupled to $\mathrm{N}=4 \mathrm{E}$ instein supergravity. It appears that there exists a decoupling lim it for this theory which gives pure Yang-M ills and thus opens the door to the possibility of understanding loops in Yang -M ills from tw istor strings.

From the point of view of the M HV diagram form ulation of gauge theory there has also been som e considerable progress. T heir use at tree-level is already well-established and a Lagrangian form ulation now exists [35, 80, 203]. In this scenario, a non-local change of variables is m ade to the light-cone Yang -M ills Lagrangian which yields a kinetic term describing a scalar propagator connecting positive and negative helicities and interaction term s consisting of the in nite sequence of $M H V$ am plitudes.

Q uantisation of this Lagrangian, how ever, is still an open problem. O ne of the m ain points here is the fact that - as dem onstrated in C hapter3-the use of M HV diagram s alone is not enough to generate a com plete am plitude at the quantum level in nonsupersym m etric theories and rational term s are m issed. As such, one m ight ask how one could com pute the one-loop all-plus (and + :::+) am plitude in pure Yang -M ills from M HV diagram s. At tree-level this van ishes, but at one-loop it is a purely rational function - see e.g. Equation (3.4) of [84]. C onstruction of a one-loop am plitude from M HV diagram swill always give q negative helicity gluons that satis es q 2, and thus the all-plus am plitude (and also the $+:::+$ am plitude) cannot be constructed from M HV vertices alone. In [73] it was con jectured that perhaps the all-plus am plitude could be elevated to the status of a vertex to generate these m issing am plitudes, but at the tim e an appropriate o shell continuation for this am plitude could not be found.
R ecently, how ever, m ore progress has been m ade in this direction [81, 82, 83]. It appears that the all-plus am plitude is intim ately connected w ith the regularisation procedure needed to evaluate loop diagram s as was initially hinted-at by the fact that the parity con jugate of this am plitude, the all-m inus am plitude, arises from an $1=$ cancellation in dim ensional regularisation [81]. Inspired by this, B randhuber, Spence, T ravagliniand Zoubos show ed in 82] that a certain one-loop tw o-point Lorentz-violating counterterm is the generating function for the in nite sequence of one-loop all-plus am plitudes in pure Y ang -M ills although there m ust be another contribution in this story to correctly explain the origin of the $+:::+$ am plitude. In their approach it was found that a certain four-dim ensional regularisation schem e (rather than dim ensional regularisation) [221, 222, 223] was m ost useful. It m ay be interesting and insightful to see if a light-cone approach and such a regularisation schem e is also helpfulfor com puting the cut-constructible term s of am plitudes using M H V diagram s.

D espite these advances, the M HV diagram technique is still practically-speaking lim ited to tree-levelam plitudes and the cut-constructible part of one-loop M HV am plitudes. This is largely because of the intrinsic com plexity of loop calculations, though there are other com plications. For exam ple, the topologies involved in calculating the cut-constructible part of am plitudes w ith m ore than 2 negative-helicity gluons can include (in the case of the NM HV am plitude say) triangle diagram swhere each vertex is an M H V vertex. In such diagram s one has 3 di erent intemal particles to take 0 -shell and it is not clear whether the m easure can be found in term s of LPPS integrals and
dispersion integrals such as that described in [37, 79] w hich has been so instrum ental in the application of the C SW rules at loop-level so far. Such issues are com m on to one-loop am plitudes which have q > 2 negative helicity gluons and higher loops as well. It would be desirable from both a theoretical and a phenom enological perspective to understand how the M HV rules can be used to calculate such quantities and would also help to give the M HV rules a m ore solid footing.

A nother interesting avenue of exploration is the suggestion that (planar) higher-loop am plitudes in $N=4$ Yang M ills m ay be expressed (essentially) as an exponential of certain one-loop am plitudes [224, 225, 226, 227, 228, 229]. Such expressions are term ed cross-order relations and m ay be rem arkably pow erful ifm ore generally applicable than has been found to date. They could allow the sum m ation of am plitudes in $N=4$ YangM ills to all orders in perturbation theory and so to non-perturbative inform ation which m ay be connected to perturbative string theory via the AdS/CFT correspondence $\sqrt[1]{1}$ It would be interesting to see how the known cross-order relations arise from M HV diagram s. It is possible that the di erent term s in the cross-order relations m ay arise naturally from M HV diagram swhich m ight then provide a fram ew ork for proving their validity m ore generally.
T he situation for gravity is in som eways even m ore exciting, w ith the possibility that there m ay exist $U V$ - nite eld theories of gravity. Such proposals have recently been m ade for $N=8$ supergravity $53,54,55,56,57,58,59,60]$ and it w ould be interesting to m ake contact betw een this and the tw istor approach. O ne such point of contact m ay be the recent proposal of a tw istor string theory describing $N=8$ supergravity [39]. A nother possibility is that of loop am plitudes from M HV vertices in ($\mathrm{N}=8$ super-) gravity. These have not yet been understood and their explication w ould provide a new prescriptive m ethod for the calculation of loop am plitudes in gravity which could shed light on their UV properties ${ }^{2}$

A further possibility that has not been explored so far (in either gauge theory or gravity) is a m ore direct connection betw een recursion relations and loop am plitudes than those already m entioned. R isager 34] show ed that the C SW rules at tree-level are really just a speci c case of the on-shell recursion relations proposed by B ritto, C achazo and Feng [48]. A s we have seen throughout this thesis, the C SW rules can naturally be extended to loop am plitudes which begs the question of w hether the sam e can be done for other cases of the on-shell recursion relation in either Y ang M ills or in gravity.

[^51]In this thesis we have seen som e of the im provem ents that can be m ade to perturbative techniques in eld theory and gravity and the power that they can have. T hese also hint at new underlying structures whose elucidation could prove extrem ely interesting if not revolutionary in our understanding. C ould such structures presage the existence of new sym m etries and will they end up replacing Feynm an diagram s entirely in the future? W hatever the outcom e, these are exciting tim ely developm ents that are sure to aid the discovery of new physics at colliders such as the LHC and deepen our understanding of nature.

APPENDIX A

SP IN OR AND D $\mathbb{R} A C-T R A C E I D E N T I T I S$

In this appendix we present som e useful identities pertaining to the spinor helicity form alism and also to help in dealing w ith D irac traces.

A . $1 \quad$ Spinor identities

W e take them etric to be the usual eld-theory one $=(1 ; 1 ; 1 ; 1)$ and the epsilon tensors w ith which we raise and low er indices to be

$$
=--=i^{2}=\begin{array}{ll}
0 & 1 \tag{A.1.1}\\
1 & 0
\end{array} \text {; }
$$

with $=$) and

$$
\begin{align*}
& 1=\begin{array}{lll}
0 & 1 \\
1 & 0
\end{array} \quad ; \\
& 2=\begin{array}{lll}
0 & i \\
i & 0
\end{array} \quad \text {; } \\
& 3=\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}: \tag{A.1.2}
\end{align*}
$$

W e also have $\quad=(1 ; \sim)\left(\mathrm{w}\right.$ ith $\left.\sim=\left({ }^{1} ;{ }^{2} ;{ }^{3}\right)\right)$, giving

$$
\begin{align*}
& P_{2}=P \\
& =\quad P_{0}^{-}+P_{3} \quad P_{1} \quad i P_{2} \\
& P_{1}+i P_{2} P_{0} P_{3} \\
& =\quad \begin{array}{lll}
P^{0} & P^{3} & P^{1}+i P^{2} \\
P^{1} & i P^{2} & P^{0}+P^{3}
\end{array} ; \tag{A.1.3}
\end{align*}
$$

and
_= (1; ~), gíving

$$
\begin{align*}
\mathrm{P}- & =\mathrm{P} \quad- \\
& = \\
& \mathrm{P}_{0} \\
\mathrm{P}_{1} & \mathrm{P}_{3} \tag{A.1.4}\\
\mathrm{iP}_{2} & \mathrm{P}_{1}+\mathrm{P}_{0}+\mathrm{P}_{2}
\end{align*}!
$$

Som e usefulidentities involving and are:

$$
\begin{array}{rlr}
-\quad & =2 & \\
- & & \tag{A.1.6}\\
-\quad & -;
\end{array}
$$

which m eans that we can interpret as acting as $2 \ldots$ and asacting as -- =2 in spinor space, giving $\quad={ }_{-} \quad=4$ as it should.
W e are concemed w ith m assless particles for w hich $w e$ can w rite

$$
\begin{align*}
& p_{-}=\sim_{-} \text {! } \\
& =\begin{array}{lll}
1 & \sim_{1} & \sim_{2} \\
2
\end{array} \\
& =\begin{array}{ll}
1 \sim_{1} & \sim_{2}{ }_{2} \\
2 \sim_{1} & \sim_{2}{ }_{2}
\end{array} ; \tag{A.1.7}
\end{align*}
$$

which im plies (by raising indices) that

$$
\begin{align*}
& \mathrm{p}-\quad=\quad \sim_{\sim 1} \text { ! } \\
& =\begin{array}{llll}
\sim 1 & & \\
\sim 2 & 1 & 2
\end{array} \\
& =\quad \sim 11 \sim 12^{\text {! }} \\
& \sim 21 \sim 22 \\
& =\begin{array}{lll}
\sim_{2} & \sim_{2} & \sim_{2} \\
\sim_{1} & \sim_{1} &
\end{array} \quad ; \tag{A.1.8}
\end{align*}
$$

 \qquad

For scalar products we take

$=$	1	2	1
			2
$=$	T		

and

$$
\begin{array}{rlrl}
{[\sim \sim]} & =\sim_{-}^{\sim-} & \\
& =\sim_{1} \sim_{2} & \sim_{1}^{1}! \\
& =\sim_{-}^{2} \\
\sim_{-}^{T}- & \tag{A.1.10}
\end{array}
$$

N ote that and ~ - are m ost naturally associated with colum n vectors, while ~ _ and are m ost naturally associated w ith row vectors.

For spinor m anipulations, the Schouten identity is very usefull

$$
\begin{align*}
& \text { hi jihk li }=\text { hikihj li }+ \text { hilihk ji; } \\
& \quad[i j][k l]=[i k][j l]+[i l][k j]: \tag{A.1.11}
\end{align*}
$$

For other introductions to the spinor helicity form alism see e.g. [153, 154].
A. 2 The holom orphic delta function

Consider the x y plane in real coordinates and let $(x ; y)=\left(x^{1} ; x^{2}\right)$. N ow change to com plex coordinates by letting

$$
\begin{align*}
& z=x^{1}+i x^{2} \tag{A2.1}\\
& z=x^{1} \quad i x^{2}: \tag{A.2.2}
\end{align*}
$$

A lso de ne derivatives

$$
\begin{align*}
& @_{z}=\frac{@}{@ z}=\frac{1}{2} \quad \frac{@}{@ x^{1}} \quad i \frac{@}{@ x^{2}}=\frac{1}{2}\left(@_{1} \quad i @_{2}\right) \tag{A.2.3}\\
& @_{z}=\frac{@}{@ z}=\frac{1}{2} \frac{@}{@ x^{1}}+i \frac{@}{@ x^{2}}=\frac{1}{2}\left(@_{1}+i \varrho_{2}\right) ; \tag{A.2.4}
\end{align*}
$$

[^52]which have the properties that
$$
\varrho_{\mathrm{z}} \mathrm{z}=1 ; \varrho_{\mathrm{z}} \mathrm{z}=0 ; \varrho_{\mathrm{z}} \mathrm{z}=1 ; \varrho_{\mathrm{z}} \mathrm{z}=0:
$$
W e take the area elem ent in the $x \quad y$ plane to be $d^{2} x=d x^{1} d x^{2}=j x^{1} \wedge d x^{2} j$, where jj just indicates that one picks a plus sign to de ne the orientation. For the area elem ent in the $z \quad z$ plane we take $d^{2} z=i j d z d z j$ so that we have $d^{2} z=2 d^{2} x$.

W e norm alise delta functions in the x y plane as

$$
{ }^{Z} d^{2} x^{(2)}(x \quad a)=1 ;
$$

where ${ }^{(2)}\left(\begin{array}{ll}x & a\end{array}\right):\left(\begin{array}{ll}x^{1} & a^{1}\end{array}\right)\left(\begin{array}{ll}x^{2} & a^{2}\end{array}\right)$, and after transform ing this to the $z \quad z$ plane (w ith $b=a^{1}+i a^{2}$ and $b=a^{1} \quad i a^{2}$) we have

Z

$$
\begin{equation*}
d^{2} z^{(2)}(z \quad b)=1 ; \tag{A2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& { }^{(2)}\left(\begin{array}{ll}
z & \text { b) }
\end{array}=\left(\begin{array}{lll}
z & \text { b) }
\end{array}\left(\begin{array}{ll}
z & b
\end{array}\right)\right.\right. \\
& =\frac{1}{2}^{(2)}(\mathrm{x} \quad \mathrm{a}): \tag{A2.7}
\end{align*}
$$

W e now de ne a holom orphic delta function as

$$
\left(\begin{array}{ll}
z & b \tag{A2.8}
\end{array}\right)={ }^{(2)}(z \quad b) d z ;
$$

which gives us

$$
\begin{array}{rl}
Z & Z \\
d z \quad\left(\begin{array}{ll}
z & b
\end{array}\right) & =d z^{\wedge} d z{ }^{(2)}\left(\begin{array}{ll}
z & b
\end{array}\right) \\
& =i d^{2} z^{(2)}\left(\begin{array}{ll}
z & b
\end{array}\right) \\
& =i:
\end{array}
$$

A s can be seen the holom orphic delta function is a @-closed (0;1)-form and is de ned for a general holom onphic function f by $\quad(\mathrm{f})={ }^{(2)}(\mathrm{f}) \mathrm{df}$.

A representation of this holom onph ic delta function which w ill be particularly useful for $u s$ is the follow ing

 $\sim^{\sim}=$ in order to ensure that $p=\sim$ is real. Go to coordinates where $=(1 ; z)$ and choose an arbitrary spinor $=(1 ; b)$ w ith b a com plex num ber. T he tilded spinors
are then

$$
\sim_{-=} \begin{aligned}
& 1 \\
& z
\end{aligned} \quad \sim_{-=} l^{!} \begin{aligned}
& \text { b }
\end{aligned}
$$

and we haveh $i=z \quad b$ and $h \quad d \quad i=d z$ ．So，a m ore covariant statem ent of A ．2．9）is
Z Z
h d i（h
i）$F()=d z \quad(z$
b）F（z ）
$=\quad \mathrm{iF}(\mathrm{b})$
$=\quad i F():$
（A．2．10）

A ． 3 D irac traces

Som e basic form ul for converting betw een spinor invariants and D irac traces are

$$
\begin{align*}
& \text { hiji }[j i]=\operatorname{tr}_{+}\left(k_{i} k_{j}\right) \text {; } \tag{A3.1}\\
& \text { hiji[jl]hlmi[mi] }=\operatorname{tr}_{+}\left(k_{i} k_{j} k_{1} k_{m}\right) \text {; } \tag{A.3.2}\\
& \text { hiji }[j 1] h] m i[m n] h n i[p i]=\operatorname{tr}\left(k_{i} k_{j} k_{1} k_{m} k_{n} k_{p}\right) \text {; } \tag{A.3.3}
\end{align*}
$$

for m om enta $k_{i} ; \mathrm{k}_{j} ; \mathrm{k}_{1} ; \mathrm{k}_{\mathrm{m}} ; \mathrm{k}_{\mathrm{n}} ; \mathrm{k}_{\mathrm{p}}$ and w here the + sign indicates the insertion of $(1+5)=2$ ：

$$
\begin{equation*}
\operatorname{tr}_{+}\left(k_{i} k_{j}\right):=\frac{1}{2} \operatorname{tr}_{+}\left((1+5) k_{i} k_{j}\right): \tag{A.3.4}
\end{equation*}
$$

W e also note that

$$
\begin{align*}
& \operatorname{tr}_{+}\left(k_{i} k_{j}\right)=2\left(k_{i} k\right) \tag{A.3.5}\\
& \operatorname{tr}_{+}\left(k_{\mathrm{a}} k_{\mathrm{b}} k_{\mathrm{c}} \mathrm{k}_{\mathrm{d}}\right)=2\left(\mathrm{k}_{\mathrm{a}}\right. \\
& \text { k) (} \mathrm{k}_{\mathrm{C}} \\
& \text { k) } 2\left(\mathrm{k}_{\mathrm{a}}\right. \\
& \text { k) }\left(\mathrm{k}_{\mathrm{b}} \quad \mathrm{k}\right) \\
& +2\left(\mathrm{k}_{\mathrm{a}}\right. \tag{A3.6}\\
& \text { k) }\left(k_{b}\right. \\
& \text { k) } 2 \mathrm{i} "\left(\mathrm{k}_{\mathrm{a}} ; \mathrm{k}_{\mathrm{b}} ; \mathrm{k}_{\mathrm{c}} ; \mathrm{k}_{\mathrm{d}}\right) \text { : }
\end{align*}
$$

T he follow ing identities are additionally useful：

$$
\begin{align*}
& \operatorname{tr}_{+}\left(k_{i} k_{j} k_{1} k_{m}\right)=\operatorname{tr}_{+}\left(k_{m} k_{1} k_{j} k_{i}\right)=\operatorname{tr}_{+}\left(k_{1} k_{m} k_{i} k_{j}\right) ; \tag{A.3.7}
\end{align*}
$$

$$
\begin{align*}
& t r_{+} \text {(住手 } P \text {) tr } r_{+} \text {(住手 } m=\text {) }=0 \text {; } \tag{A.3.9}
\end{align*}
$$

for sim ilarly generic m om enta and w here $w e$ use the shorthand $t r_{+}\left(k_{i} k_{j}\right)=\operatorname{tr} r_{+}\left(\right.$i土 $\left._{j}\right)$ etc. If $k_{i} ; k_{j} ; k_{m_{1}}$ and $k_{m_{2}}$ are m assless, while P_{L} is not necessarily so, then we have the rem arkable identity:

$$
\begin{align*}
& 2\left(k_{m} \quad k_{2}\right) t r_{+}\left(k_{i} k_{j} k_{m_{1}} P_{L}\right) t r_{+}\left(k_{i} k_{j} k_{m_{2}} P_{L}\right) \\
& +P_{L}^{2} \operatorname{tr}_{+}\left(k_{i} k_{j} k_{k_{1}} k_{m_{2}}\right) \operatorname{tr}\left(k_{i} k_{j} k_{m_{2}} k_{m_{1}}\right) \\
& 2\left(k_{m_{1}} \quad P\right) t r_{+}\left(k_{i} k_{j} k_{m_{1}} k_{m_{2}}\right) t r_{+}\left(k_{i} k_{j} k_{m_{2}} \mathrm{E}_{\mathrm{L}}\right) \tag{A.3.11}
\end{align*}
$$

W e also have, for nullm om enta i; j;k;a;b;

APPEND IX B

FEYNMAN RULES IN THE SP \mathbb{N} OR H ELIC IT Y FORMALISM

In this appendix we present the Feynm an rules for m assless $S U\left(N_{C}\right)$ Yang $-M$ ills theory in Feynm an gauge w ritten in the spinor helicity form alism for com parison w ith those laid out at the start of C hapter 1. A s m entioned in a footnote in 1.1 we w ill use the norm alisation $\operatorname{tr}\left(\mathrm{T}^{\mathrm{a}} \mathrm{T}^{\mathrm{b}}\right)={ }^{\mathrm{ab}}$ for the L ie algebra in order to reduce the proliferation of factors of 2 .
B. 1 W avefunctions

E xternal Scalar:

$$
\begin{equation*}
=1 \tag{B.1.1}
\end{equation*}
$$

Externaloutgoing ferm ion i, helicity plus:

$$
\begin{equation*}
{ }_{i}^{+}=\sim_{i}{ }_{i}=[i j \tag{B.1.2}
\end{equation*}
$$

Externaloutgoing ferm ion i, helicity m inus:

$$
\begin{equation*}
i=i=h i j \tag{B.1.3}
\end{equation*}
$$

Externaloutgoing anti-ferm ion j, helicity plus:

$$
\begin{equation*}
\left.{ }_{j}^{+}=\sim_{\bar{j}}=\ddot{j}\right] \tag{B.1.4}
\end{equation*}
$$

Externaloutgoing anti-ferm ion j, helicity m inus:

$$
\begin{equation*}
j=j=\dot{j} i \tag{B.1.5}
\end{equation*}
$$

Externaloutgoing vector $p=\sim$, helicity plus:

$$
\begin{equation*}
{ }_{-}^{+}=p \overline{2} \frac{\sim}{h \quad i}=p \frac{j i[\sim j}{h i} \tag{B.1.6}
\end{equation*}
$$

Externaloutgoing vector $p=\sim$, helicity m inus:

$$
\begin{equation*}
=p \overline{2} \frac{\sim^{\sim}}{\left[\sim_{\sim}^{\sim}\right]}=P \overline{2} \frac{j i[\sim j}{\left[\sim_{\sim}^{\sim}\right]} ; \tag{B.1.7}
\end{equation*}
$$

where $\mathrm{q}=\quad \sim$ is an arbitrary reference spinor that can be chosen independently for each extemal particle. A $1 l$ the above wavefunctions are understood to be m ultiplied by a

B . 2 Propagators

Scalars w ith kinetic term (@ $\mathcal{Y}=2$:

$$
\begin{equation*}
\frac{\mathrm{i}}{\mathrm{p}^{2}} \tag{B.2.1}
\end{equation*}
$$

Ferm ions w ith $p=\sim$ and k inetic term i @ :

$$
\begin{equation*}
\frac{i}{p}=\frac{i p}{2 p^{2}}=\frac{i j i\left[^{\sim} j\right.}{2 p^{2}} \tag{B.2.2}
\end{equation*}
$$

Vectors w ith k inetic term (@A $\mathcal{Y}=4$:

$$
\begin{equation*}
\frac{2 i^{\prime}--}{\mathrm{p}^{2}} \tag{B.2.3}
\end{equation*}
$$

B . 3 V ertices

4-B oson Vertex:

Figure B.1: T he Vertines of the colour-stripped schem e in term s of spinors.

For m ore details on how these arise see for exam ple [153].
B. 4 Examples

4Point M H V gluon scattering
Let us consider how we get the A $\left(1_{g} ; 2_{g} ; 3_{g}^{+} ; 4_{g}^{+}\right)$gluon am plitude. The diagram s contributing to this am plitude are shown in Figure B 2

Figure B.2: The diagram s contributing to the $4-g h h_{\text {in }}$ M H V tree-am plitude. A llexternal m om enta are taken to be outgoing.

In order to calculate the am plitude we need to specify extemal wavefunctions as prescribed by the Feynm an rules and for gluons this includes a choice of reference m om entum. In order to m inim ise the num ber of term s we need to consider we will m ake the choices $q_{1}=q_{2}=p_{4}$ and $q_{3}=q_{4}=p_{1}$. T his m eans that the w avefunctions
are

$$
\begin{aligned}
& 1_{-}=P \overline{2} \frac{1 \sim 4}{[41]} \quad 2_{-}=P \overline{2} \frac{2 \sim 4}{[42]} \\
& { }_{3}^{+}=P \overline{2} \frac{1 \sim 3}{\mathrm{~h} 13 \mathrm{i}} \\
& 4_{-}^{+}=\mathrm{P} \overline{2} \frac{1 \sim 4}{\mathrm{~h} 14 \mathrm{i}} ;
\end{aligned}
$$

while m om entum conservation for the second (going from left to right) two diagram s reads $P_{12}=\left(p_{1}+p_{2}\right)=p_{3}+p_{4}$ and $P_{14}=\left(p_{1}+p_{4}\right)=p_{2}+p_{3}$ where P_{12} and P_{14} are the m om enta of the propagators of the respective diagram s. By writing dow n the Feynm an rules for the di erent diagram s it can quidkly be seen that the contributions of the 1st and the 3rd diagram s both vanish. The 2nd diagram gives:

$$
\begin{align*}
& +=\left(p_{2} P_{12}\right)^{-}+-\left(\begin{array}{ll}
P_{12} & \left.p_{1}\right)^{-} \frac{2 i_{2}}{P_{12}^{2}}
\end{array}\right. \\
& \text { h } \\
& -\left(\begin{array}{ll}
\mathrm{p}_{3} & \left.\mathrm{p}_{4}\right)^{-}+{ }^{-}\left(\mathrm{p}_{4}+\mathrm{P}_{12}\right)^{-}+{ }^{-}{ }^{-}\left(\begin{array}{ll}
\mathrm{P}_{12} & \left.\mathrm{p}_{3}\right)^{-}
\end{array}{ }^{-}{ }^{-} .\right.
\end{array}\right. \\
& =\frac{4 i g^{2}}{\mathrm{~h} 12 \mathrm{i}[21]} \frac{\left(2^{1}\right)\binom{\sim 4 \sim}{\sim_{2}}\left(3^{1}\right)\binom{\sim 4 \sim}{-3}\binom{\sim 3 \sim 4-}{-}\left(\begin{array}{ll}
2
\end{array}\right)}{[41][42] h 14 i h 13 i} \\
& =4 \mathrm{~g}^{2} \frac{\mathrm{hl} 2 i[34]^{2}}{\mathrm{~h} 4 \mathrm{i}[12][41]} \text { : } \tag{B.4.1}
\end{align*}
$$

T his is our answer, though it is in a rather unfam iliar form! W e can convert it into som ething m ore fam iliar by multiplying both top and bottom by h23ih3 4i. We then use m om entum conservation in the num erator in the form $\mathrm{h} 2 \mathrm{3i}[34]=\mathrm{h} 2 \mathrm{il}[14]$ and recognise that $s_{34}:=2\left(\begin{array}{ll}p_{3} & P\end{array}\right)=h 34[43]=s_{12}=h 12 i[21]$ to give

$$
\begin{align*}
A_{4} & =4 i g^{2} \frac{h 12 i(h 23 i[34])(h 34 i[43])}{[12] 23 i h 34 i h 41 i[41]} \\
& =4 i g^{2} \frac{h 12 i^{3}}{h 23 i h 34 h 4 i} ; \tag{B...2}
\end{align*}
$$

which is the usual form for the Parke-T aylor am plitude at 4-point.

M H V qq! gg
A gain we take allm om enta to be outgoing. M om entum conservation is the sam e as for diagram s 2 and 3 of the previous exam ple and for the ghon w avefunctions we take $q_{3}=p_{4}$ and $q_{4}=p_{1} . T$ his gives polarisation vectors

$$
3_{-}=\mathrm{P} \overline{2} \frac{3 \sim 4}{[43]} \quad{ }_{4}^{+}=P^{\mathrm{P}} \overline{2} \frac{1 \sim 4}{\mathrm{~h} 14 \mathrm{i}}:
$$

Figure B .3: T he diagram s for $\mathcal{A}^{\sim}\left(1_{q} ; 2_{q}^{+} ; 3_{g} ; 4_{g}^{+}\right)$.

T he second diagram can be seen to vanish while the rst gives:

$$
\begin{aligned}
& \tilde{A}_{4}^{\sim}=\left({ }^{\sim} \overline{2}^{1}\right)\left({ }^{1}{ }^{\mathrm{p}} \overline{2} \quad{ }^{-}\right) \frac{2 i}{P_{12}^{2}} \quad \frac{p^{9}}{2^{2} \overline{2}}-\quad\left(p_{3} p_{4}\right)^{-} \\
& +-=\left(p_{4}+P_{12}\right)--\left(\begin{array}{ll}
P_{12} & p_{3}
\end{array}\right)^{-}\left(p_{2}\right)^{2} \frac{3 \sim 41 \sim 4}{[43] 14 i}
\end{aligned}
$$

$$
\begin{align*}
& =\quad 4 g^{2} \frac{h 13 i^{2}[42]}{h 12 i[21] 41 i} \\
& =4 g^{2} \frac{h 13 i^{3}}{h 12 i h 34 i h 1 i} \\
& =i \frac{h 23 i}{h 13 i} A\left(1_{g} ; 2_{g}^{+} ; 3_{g} ; 4_{g}^{+}\right) \text {; } \tag{B.4.3}
\end{align*}
$$

thus verifying the relations betw een am plitudes that we derived from supersym m etric W ard identities in 1.4 .

M H V qq! qq
A s a nal exam ple let us consider the am plitude $\hat{A^{\wedge}}\left(1_{q} ; 2_{q}^{+} ; 3_{q} ; 4_{q}^{+}\right)$. This tim e both of the diagram s are non-zero. T he rst one gives

$$
\begin{align*}
& =4 i g^{2} \frac{\left(\sim 2 \sim_{4}^{-}\right)\left(3^{1}\right)}{h 12 i[21]} \\
& =4 \mathrm{ig}^{2} \frac{[24] \mathrm{h} 3 \mathrm{i}}{\mathrm{~h} 12 \mathrm{i}[21]} \\
& =4 i g^{2} \frac{h 13 i^{2}}{h 12 i h 34 i} \text { : } \tag{B.4.4}
\end{align*}
$$

Figure B.4: The diagram s for $\hat{A}^{\wedge}\left(1_{q} ; 2_{q}^{+} ; 3_{q} ; 4_{q}^{+}\right)$.

A sim ilar calculation - or equivalently the realisation that diagram stwo is sim ply the sam e as diagram one with 2 \$ 4 -gives

$$
\begin{equation*}
{\mathrm{A}_{4}^{2}}_{\wedge^{2}}=4 i g^{2} \frac{\mathrm{hl} 3 i^{2}}{\mathrm{~h} 23 \mathrm{~h} 4 \mathrm{i}} \tag{B.4.5}
\end{equation*}
$$

for the second diagram and thus the total is

$$
\begin{align*}
\hat{A}_{4} & =\hat{A}_{4}^{\wedge}+\hat{A}_{4}^{2} \\
& =4 i g^{2} \frac{h 13 i^{2}}{h 12 i h 23 i h 34 i h 41 i}(h 12 i h 34 i+h 23 i h 41 i) \\
& =A\left(1_{g} ; 2_{g}^{+} ; 3_{g} ; 4_{g}^{+}\right) \quad \frac{h 12 i h 34 i+h 23 i h 41 i}{h 13 i^{2}}: \tag{B.4.6}
\end{align*}
$$

APPENDIX C

D-D IM ENSIONAL LORENTZ-INVARIANT PHASE SPACE

In this appendix we expound on the D -dim ensionalm easure for Lorentz-invariant tw obody phase space, ultim ately focussing on the case $D=42$.

C . 1 D -spheres

O ne thing that we will need to consider is the volum e of a D -dim ensional unit sphere $V\left(S^{D}\right)$. We mean this in the sense of a D-sphere regarded as a manifold. Thus the volum e we are talking about is the volum e of that m anifold rather than the volum e enclosed by it when it is regarded as being em bedded in one-dim ension higher. T hus $V\left(S^{1}\right)=2$-the circum ference of a circle - and $V\left(S^{2}\right)=4$, the surface area of a sphere such as the Earth.

In fact we can param etrize a round D -sphere in term sof D angles i. In this case the volum e elem ent of an S^{D} is given by

$$
\begin{equation*}
d V\left(S^{D}\right)=d_{1}::: d_{D}\left(\sin _{1}\right)^{D}{ }^{1}\left(\sin _{2}\right)^{D} \quad 2:::\left(\sin _{D} 1\right)^{1} ; \tag{C.1.1}
\end{equation*}
$$

w ith the result

$$
\begin{align*}
V\left(S^{D}\right) & =\sum_{\substack{i=0 \\
D=2}}^{i j \neq D} d V\left(S^{D}\right) \\
& =\frac{2^{\frac{D+1}{2}}}{\frac{D+1}{2}}:
\end{align*}
$$

C. $2 \mathrm{dL} \mathbb{P}$ S

R ecall from Chapter 1, Equation 1.8.13) that

$$
\begin{equation*}
d^{D} \operatorname{LPS}\left(l_{2} ; l_{1}^{+} ; P\right)=d^{D} l_{1} d^{D} l_{2}^{(+)}\left(I_{1}^{2}\right)^{(}{ }^{\prime}\left(I_{2}^{2}\right)^{(D)}\left(P+l_{2} \quad l_{1}\right) ; \tag{С.2.1}
\end{equation*}
$$

where ${ }^{\prime}\left(I^{2}\right):(\underline{b})(\underline{I})$, is the unit step function and I_{0} the 0 -com ponent (energy) of l. If we also rem em ber that

$$
\mathrm{dx} g(x) \quad(f(x) \quad a)={\frac{g(x)}{\frac{d f}{d x}} \quad x=x_{0} ; f\left(x_{0}\right)=a}
$$

then we can integrate over the 0 -com ponents of l_{1} and l_{2} to get
where I represents the spatial com ponents of the D -vector l. Furtherm ore, going to the center of m ass fram e for the vector $P, P=\left(P_{0} ; 0\right)$ we can use $D \quad 1$ of the rem aining delta functions to localise the integral:

$$
\begin{align*}
& =\frac{1}{2} \frac{d^{D}{ }^{1} \mathfrak{T}}{4 \tilde{T}_{1} \jmath^{2}} \text { 缷j} \frac{P_{0}}{2}: \tag{C.2.4}
\end{align*}
$$

N ow, for d^{n} I we can w rite

$$
\begin{equation*}
d^{\mathrm{n}} \mathcal{I}=\mathrm{d} \tilde{\mathbb{I}} \mathfrak{j} \mathbb{I} \mathfrak{J}^{\mathrm{n}^{1}} \mathrm{dV}\left(\mathrm{~S}^{\mathrm{n}}{ }^{1}\right) ; \tag{C.2.5}
\end{equation*}
$$

so we have

$$
\begin{align*}
& d_{3}::: d_{D}\left(\sin _{3}\right)^{D} \quad 5::\left(\sin _{D} 3\right) \\
& =d \mathfrak{T} j \mathcal{T}_{1} \mathrm{~J}^{2} \mathrm{~d}_{1} \mathrm{~d}_{2}(\sin 1)^{D}{ }^{3}(\sin 2)^{D}{ }^{4} d V\left(S^{D}{ }^{4}\right): \tag{C...6}
\end{align*}
$$

For our case of a 2-particle phase space in 42 dimensions, 2 angles 1 and 2 are su cient and none of the m om enta w illdepend on any of the other angles. W e can thus integrate over them to get

$$
\begin{align*}
& =\frac{2^{\frac{D^{3}}{2}}}{\frac{D^{3}}{2}} d_{\mathfrak{H}} \mathfrak{J}_{4} \mathcal{J}^{2} \mathrm{~d}_{1} \mathrm{~d}_{2}(\sin 1)^{D}{ }^{3}(\sin 2)^{D} \quad 4: \tag{C..2.7}
\end{align*}
$$

[^53]W ith $D=4 \quad 2$ this leads us to
\[

$$
\begin{align*}
d^{4} 2 \operatorname{LPS} & =\frac{1}{2} \frac{d^{3} 2}{4 \tilde{r}_{4} \jmath^{2}} \quad \pi_{1} j \frac{P_{0}}{2} \\
& =\frac{\frac{1}{2}}{4 \frac{1}{2}} \frac{P_{0}^{2}}{4} \quad d_{1} d_{2}(\sin 1)^{1} 2(\sin 2)^{2} \\
& =\frac{\frac{1}{2}}{4 \frac{1}{2}} \frac{P^{2}}{4} \quad d_{1} d_{2}(\sin 1)^{12}\left(\sin _{2}\right)^{2} ; \tag{С.2.8}
\end{align*}
$$
\]

and

$$
d^{4} 2 \operatorname{LPS}=\frac{\frac{1}{2}}{4} \frac{1}{2} \quad \frac{P^{2}}{4} \quad Z \quad Z \quad{ }_{1=0}^{Z} \quad d_{1} d_{2}(\sin 1)^{1} 2(\sin 2)^{2}:(C .2 .9)
$$

C . 3 O verall am plitude norm alisation

In the original papers of [38, 42], the one-loop am plitudes derived are norm alised w ith a factor of $c=r=(4 \quad)^{2} \quad$ where

$$
\begin{equation*}
r=\frac{(1+)^{2}(1}{(12)}: \tag{C.3.1}
\end{equation*}
$$

In [37, 40, 43] and this thesis, how ever, the norm alisation m ost naturally arises as

$$
\begin{equation*}
\frac{1}{\sin } \frac{1}{\frac{1}{2}} \tag{C.3.2}
\end{equation*}
$$

where the gam m a function com es from the L IP S m easure described above and the factor of CSC com es from perform ing the dispersion integral (see e.g. Section 5 of 377]). W e are m ostly interested in the results of these am plitude calculations up to order ${ }^{0}$, and as (C.3.2) $=1={ }^{p}-O$ () we have usually dropped it as an uninteresting overall factor. N onetheless, the all-orders in results can be usefuland we will here show how the two are related.

To start w ith there is the product identity for gam m a functions:

$$
\text { (z) }\left(\begin{array}{ll}
1 & z \tag{C.3.3}
\end{array}\right)=\overline{\sin z} \text {; }
$$

which can be com bined w ith the well-known recurrence relation $z(z)=(z+1)$ to give

$$
\begin{equation*}
\overline{\sin }=(1+)(1 \quad): \tag{C.3.4}
\end{equation*}
$$

T here is also the Legendre duplication form ula:

$$
\begin{equation*}
\text { (z) } \quad(z+1=2)=2^{1} 2 z^{\mathrm{P}}-\quad(2 z) ; \tag{C.3.5}
\end{equation*}
$$

which im plies that

$$
(1=2 \quad)=\frac{\left(\begin{array}{ll}
1 & 2)^{p}-2^{2} \tag{C.3.6}\\
(1
\end{array}\right)}{:}
$$

$T h$ is therefore leads us to

$$
\begin{align*}
\frac{1}{\sin } \frac{1}{\frac{1}{2}} & =\frac{1}{4^{p}}=\frac{(1+)^{2}(1)}{\left(12^{2}\right)} \\
& =\frac{r}{4}=; \tag{C.3.7}
\end{align*}
$$

and we can see that the two are the sam e up to a sim ple factor.

APPEND IX D

U N IT A R IT Y

U nitarity is a well-known and useful tool in quantum eld theory 210, 233, 234, 235, 236, 237] T he unitarity of the S m atrix, $S^{y} S=1$, is the basic starting point and leads to the possibility of being able to reconstruct scattering am plitudes from the know ledge of their properties as functions of com plex m om enta. In certain cases this can lead to a purely algebraic construction of am plitudes.

It can be checked that each Feynm an diagram contributing to an S m atrix elem ent S is purely real unless som e denom inator vanishes, in which case the i" prescription for treating poles becom es relevant. W e thus get an im aginary part for S only when virtual particles in a Feynm an diagram go on-shell.

C onsider now $S(s)$ as an analytic function of a com plex variable $s . s$ is the square of the centre of m ass energy, and while this is physically real we will consider it to be com plex for now. If s_{0} is the m inim um (square of the) energy for production of the lightest m ultiparticle state (i.e. the m in $m u m$ energy for the creation of an interm ediate m ultiparticle state such as when a loop is form ed in a Feynm an diagram), then for real s lying below s_{0}, the interm ediate state cannot go on-shell. $S(s)$ is thus real and we have

$$
\begin{equation*}
S(s)=\bar{S}(s): \tag{D.0.1}
\end{equation*}
$$

H ow ever, as we are regarding $S(s)$ as an analytic function of s, we can analytically continue this equation to anyw here in the com plex plane. If we explicitly split $S(s)$ into its real and im aginary parts, $S(s)=<[S(s)]+i=[S(s)]$, then at a point $s\rangle s_{0}$ that is " aw ay from the real line D.0.1) im plies that

$$
\begin{align*}
& <\left[S\left(s+i^{\prime \prime}\right)\right]=\quad<\left[\begin{array}{ll}
S & \left.\left.i^{\prime \prime}\right)\right] ;
\end{array}\right. \\
& =\left[S\left(s+i^{\prime \prime}\right)\right]=\quad=\left[\begin{array}{ll}
S & \left.\left(\begin{array}{ll}
\text { I }
\end{array}\right)\right]: \\
\text { : }
\end{array}\right. \tag{D..0.2}
\end{align*}
$$

T here is thus a branch cut along the positive realaxis starting at s_{0} and the discontinuity D of $S(s)$ across the cut is

$$
\begin{equation*}
\text { D }[S(s)]=2 i=\left[S\left(s+i^{\prime \prime}\right)\right]: \tag{D.0.3}
\end{equation*}
$$

[^54]It tums out that this discontinuity - which only arises because we have interm ediate m ultiparticle states and thus loop contributions to Feynm an diagram s - can be related to simpler am plitudes which m ay be know n already or m ore easily com puted. This is the content of the optical theorem which we review below.

D. 1 The optical theorem

T he S m atrix is a unitary operator which evolves the initial states k_{a} so that one m ay com pute their overlap w ith the nal states p_{i} in a scattering process:

$$
\begin{equation*}
\text { out } h p_{i} k_{a} i_{\text {in }}=h p_{i} J S k_{a} i: \tag{D.1.1}
\end{equation*}
$$

It is conventional to split S into the part that describes unim peded propagation of the initial particles and a part T due to interactions, $S=1+$ iT. The matrix elem ent D.1.1) taken w ith the interacting part of S is w hat then gives a scattering am plitude. M ore concretely, we can w rite

$$
\begin{equation*}
h \mathrm{p}_{\mathrm{i}} \notint \mathrm{k}_{\mathrm{a}} \mathrm{i}=(2)^{4}{ }^{(4)^{\mathrm{X}}}\left(\mathrm{p}_{\mathrm{i}}+\mathrm{k}_{\mathrm{a}}\right) \quad \mathrm{S}\left(\mathrm{k}_{\mathrm{a}}!\mathrm{p}_{\mathrm{i}}\right) ; \tag{D.1.2}
\end{equation*}
$$

where we have taken all particles to be outgoing.
Unitarity of $S, S^{y} S=1$ im plies

$$
\begin{equation*}
i\left(\mathrm{~T} \quad \mathrm{~T}^{\mathrm{y}}\right)=\mathrm{T}^{\mathrm{y}} \mathrm{~T} ; \tag{D.1.3}
\end{equation*}
$$

and we m ay extract som e useful inform ation by taking the m atrix elem ent of this betw een som e particle states p_{i} and k_{a}. The LH S of (D.1.3) gives

$$
\begin{align*}
& i\left(h p_{i}\left\lceil k_{a} i \quad h p_{i} \Pi^{y} k_{a} i\right)=\quad i h_{i} \uparrow k_{a} i \overline{h k_{a}\left\lceil\dot{p}_{i} i\right.}\right. \\
& =i(2)^{4} \\
& \text { 4) }^{X}\left(p_{i}+k_{a}\right) \quad S\left(k_{a}!p_{i}\right) \quad \bar{S}\left(p_{i}!k_{a}\right) \\
& \text { (4) }{ }^{X}\left(p_{i}+k_{a}\right) D\left[S\left(p_{i} ; k_{a}\right)\right]: \tag{D.1.4}
\end{align*}
$$

On the RHS of D.1.3) we can insert the identity operator as a sum over a com plete set

$$
\begin{aligned}
& \text { of interm ediate states to obtain }
\end{aligned}
$$

where $\operatorname{dL} \operatorname{PP}(n)$ is the $n-b o d y$ Lorentz-invariant phase space m easure. Putting the LH S and RHS of D.1.3) back together again we nd 2

$$
i D\left[S\left(p_{i} ; k_{a}\right)\right]={\underset{n}{\mathrm{X}}}_{\mathrm{Z}}^{\mathrm{Z}} \mathrm{dL} \mathbb{P} S(\mathrm{n}) \bar{S}\left(\mathrm{p}_{\mathrm{i}}!\quad I_{j}\right) S\left(\mathrm{k}_{\mathrm{a}}!l_{j}\right):
$$

Equation (.1.6) says that the discontinuity of a scattering am plitude may be obtained as a sum of integrals over the phase spaces of interm ediate m ultiparticle states of the am plitudes for scattering of the in itialand nalstates into these interm ediate states. In particular, for a one-loop process, the am plitudes arising on the RHS of D.1.6) are tree-level am plitudes and the phase space is a 2 -particle one.

D . 2 Cutting rules

Cutkosky showed that using som e cutting rules, one m ay com pute the physical discontinuity of any Feynm an diagram and prove the optical theorem to all orders in perturbation theory [210]. T he rules are as follow s [2]:

1. C ut through a diagram in all possible ways such that the cut propagators m ay be put on-shell.
2. For each cut (m assive) propagator replace $1=\left(\begin{array}{ll}p^{2} & \left.m^{2}+i "\right) \\ \text { ith }\end{array}\right.$ ith delta function 2 i $\left(\mathrm{p}^{2} \mathrm{~m}^{2}\right)$. This explicitly provides the delta functions which generate the dL IP S m easure in (D.1.5). The o shell vertices that are separated by the cut are thus put on-shell. For m assless m om enta the replacem ent is sim ply $1=\left(p^{2}+i "\right)!$

2 i (f^{2}).

[^55]3. Sum the contributions of all possible cuts.

For exam ple, for a Feynm an diagram in m assless ${ }^{3}$ theory such as Figure D .1, the

Figure D .1: The cut of a bubble diagram in m assless ${ }^{3}$ theory.

Feynm an rules would give

$$
\begin{equation*}
\text { A / }{ }^{(4)}\left(p_{1}+p_{2}\right)^{\mathrm{Z}} \frac{\mathrm{~d}^{4} \beth_{1}}{(2)^{4}} \frac{d^{4} l_{2}}{(2)^{4}} \frac{1}{l_{1}^{2}} \frac{1}{l_{2}^{2}} \quad{ }^{(4)}\left(\mathrm{p}_{1}+l_{1} \quad l_{2}\right): \tag{D.2.1}
\end{equation*}
$$

C utkosky's rules on the other hand would give
D [A] / ${ }^{(4)}\left(p_{1}+p_{2}\right) \frac{d^{4} I_{1}}{\left.d^{2}\right)^{4}} \frac{d^{4} I_{2}}{(2)^{4}} \quad$ (年) (腯)
${ }^{(4)}\left(p_{1}+l_{1} \quad l_{2}\right)$
${ }^{2}{ }^{(4)}\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right) \quad \mathrm{dL} \mathbb{P} S\left(\mathrm{l}_{2} ; \mathrm{h}_{1} ; \mathrm{p}_{1}\right) ;$
which allow s one to calculate the discontinuity of the diagram concemed.

D 2.1 BD D K 's unitarity cuts

In [38, 42] C utkosky's rules were applied at the level of am plitudes to derive one-loop M HV am plitudes in supersym m etric and non-supersym m etric gauge theories. In this case the factors on either side of the cut are not vertices (e.g. the factors of (D.2.2)), but fullam plitudes. In fact for the one-loop M H V am plitudes these factors are tree-level M HV am plitudes.

C onsider for concreteness the n-point one-loop M HV am plitudes for ghon scattering in $N=4$ super-Y ang M ills as reviewed in r1.9. W e would like to see how these can be obtained from 2-particle cuts as in [38].

By analogy w ith the Cutkosky rules, the procedure is to consider 'cuts' in every possible kinem atical channel and then add the contributions w ithout overcounting. W e are then left with LIPS integrals as above (but this timew ith non-trivial kinem atic factors in the integrand) which can in-principle be evaluated to reveal the discontinuities of the am plitude. H ow ever, BDD K recover the am plitude by using an algebraic

Figure D. 2: The cut of a one-loop M HV am plitude in the $\left.t_{\mathrm{m}_{1}}^{\left[\mathrm{m}_{2}\right.} \mathrm{m}_{1}+1\right]$ channel.
procedure which m eans that these dispersion integrals do not actually need to be done. T his involves replacing the delta functions associated w ith the cuts w ith propagators (a procedure that is known as 'reconstruction of the Feynm an integral') which then produces Feynm an integrals rather than LIPS integrals. T hese integrals contain cuts in the channel being considered (as well as cuts in other channels too) and by considering all channels and avoiding over-counting the am plitude can be re-constructed.

W hen we cut the am plitudes, we m ust assign helicities to the particles that were in the loop. Since we use conventions in which all particles are outgoing, the helicities of these intemal particles are reversed. For the one-loop M HV am plitudes there are two distinct cases. C ase (a) is where the negative-helicity extemal particles i and jare on the sam e side of the cut, and case (b) is where they are on opposite sides of the cut. C ase (a), is a priori the sim pler of the two as the tw o intemal particles m ust have the sam e helicities and thus am plitude relations of equations (1.4.9) and 1.4.10) m ean that only gluons can circulate in the loop. This is the situation regardless of the am ount of supersym m etry present. C ase (b) involves the entire m ultiplet circulating in the loop and for m axim ally supersym m etric Y ang $-M$ ills it tums out that this case is the sam e as case (a) after applying identities such as the Schouten identity A.1.11). For the case being considered of $N=4$ Yang -M ills it is thus enough for us to treat case (a) only.

C onsider now a cut in the channelwhere P_{L}, the m om entum on the left of the cut, is given by $P_{L}^{2}=\left(k_{m_{1}}+k_{m_{1}+1}+:::+k_{m_{2}} 1+k_{m_{2}}\right)^{2}=t_{m_{1}}^{\left[m_{2} m_{1}+1\right]}$ and where $k_{i} ; k_{j} 2 P_{L}$.
T his situation is show n in Figure D . 2 and the rules that we have outlined above give

$$
\begin{aligned}
& D\left[A\left(t_{m_{1}}^{\left[m_{2} m_{1}+1\right]}\right)\right]=\frac{Z}{(2)^{4}} \frac{d^{4} l_{1}}{(2)^{4}} A_{\text {tree }}^{\mathrm{MHV}}\left(l_{1}^{+} ; \mathrm{m}_{1}^{+} ;:: ; i \quad ;::: ; j ;::: ; \mathrm{m}_{2}^{+} ; I_{2}^{+}\right)
\end{aligned}
$$

$$
\begin{align*}
& \frac{i}{(2)^{4}} A_{\text {tree }}^{\mathrm{MHV}}(i ; j) \quad \operatorname{dLPS}\left(l_{2} ; l_{1} ; \mathrm{P}_{\mathrm{L}}\right) \hat{R} \quad \text { (D.2.3) } \\
& \text { ! } \frac{i}{(2)^{4}} A_{\text {tree }}^{M H V}(i \quad ; j)^{Z} d^{4} I_{1} d^{4} l_{2} \frac{1}{1_{1}^{2}} \frac{1}{1_{2}^{2}} \hat{R} \text {; } \tag{D.2.4}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{R^{\prime}}:=\frac{m_{1} 1 m_{1} i h_{2} l_{1} i}{m_{1} 1 l_{1} i h l_{1} m_{1} i} \frac{m_{2} m_{2}+1 i h l_{1} l_{2} i}{m_{2} l_{2} i h l_{2} m_{2}+1 i} \tag{D.2.5}
\end{equation*}
$$

as in 1.9.12) and the M HV am plitudes for negative-helicity gluons 1 ; s are de ned as in 1.9.10) :

$$
\begin{equation*}
A_{\text {tree }}^{\mathrm{MHV}}(\mathrm{l} ; \mathrm{S}):=i(2)^{4}(4) \quad{ }_{i}^{\mathrm{X}} \mathrm{k}_{\mathrm{i}} \sum_{\mathrm{r}=1}^{\sum_{\mathrm{n}} \mathrm{hr} r+1 \mathrm{i}} \mathrm{hlsi}^{4} \tag{D.2.6}
\end{equation*}
$$

N ote that Equation (D.2.4) is a Feynm an integral rather than a L P S integral.
N ow recall from $\times 1.9$ and $[38,42]$ that the basis of integral functions at one-loop is known and the Feynm an integrals can be done to give explicit expressions (see e.g. A ppendix I of [42]). TheFeynm an integrals generated in (D.2.4) (and for other channels) can then be com pared w ith the Feynm an integrals for the known integral functions and the am plitude recreated. Since the integral functions are already known one can reconstruct the am plitude in a purely algebraic m anner. A s a strong check of the nal expression, the results can be com pared w ith the know n behaviour (on generalgrounds) for the collinear ($\mathrm{p}_{\mathrm{a}} ; \mathrm{p}_{\mathrm{b}}!\mathrm{p}_{\mathrm{a}} \mathrm{k} \mathrm{p}_{\mathrm{b}}$) and soft (p_{a} ! 0) lim its of such an am plitude.

For supersym m etric theories any term $s w h i d h$ do not contain cuts are uniquely linked to the cut-containing term s and thus the entire am plitude is reconstructed. In particular, the $N=4$ am plitudes discussed above can be com pletely constructed in this way leading to 1.9.1). In non-supersym m etric theories m ore inform ation is needed to get the rational (cut-free) term s and thus only the cut-constructible part m ay be obtained this way.

D . 3 D ispersion relations

Im agine now that we stop at D.2.3) and proceed to do the LIPS integral rather than uplift to Feynm an integrals. If we can actually do this integral we can calculate the discontinuity of the am plitude directly. H ow ever, we would really like to know the whole am plitude rather than just the im aginary part of it and the natural question is whether it is possible to arrive at this from what we have so far. For a function w ith a branch cut, it is in fact possible to reconstruct the real part from the im aginary part and the
relations which allow one to do this are known as dispersion relations (or som etim es K ram ers-K ronig relations).

By considering a function $\mathscr{A}(z)$ which is analytic in the com plex planew ith a branch cut along the positive real axis starting at x_{0}, it is possible to show using com plex analysis that

$$
\begin{equation*}
<[\mathscr{A}(\mathrm{x})]=\frac{1}{-} \mathrm{P}_{\mathrm{x}_{0}}^{\mathrm{Z}_{1}} \frac{\mathrm{dx}^{0}}{\mathrm{x}^{0} \mathrm{x}}=\left[\mathscr{A}\left(\mathrm{x}^{0}\right)\right]+\frac{1}{2 \mathrm{i}^{\mathrm{I}} \quad ; ~} \tag{D.3.1}
\end{equation*}
$$

where $22 R$ in the range3 ($x_{0} ; 1$) and P denotes the C auchy principalvalue prescription (i.e. the value of the integral w ithout consideration of the pole at $x^{0}=x$) $4 I_{1}$ is the contribution from the contour at in nity which represents the am biguity due to possible rational term s (i.e. term swhich are cut-free functions of the kinem atic invariants).
I_{1} vanishes in any supersym m etric gauge theory, and while these do contain rational term s they are $x e d$ uniquely by the supersym m etry once one know s the cut-containing term s 38, 42]. Such theories are said to be cut-constructible (in 4 dim ensions). N onsupersym m etric theories are not cut-constructible in 4 dim ensions, but are in 42 dim ensions w ith $\xi 086,87,213]$. W hile th is is a powerful statem ent, it does m ean that one has to consider the prospect of using am plitudes w ith particles continued to 42 dim ensions which are not sim ple.

In a sense, the one-loop C SW rulesm ake BD D K 's approach prescriptive for the M H V am plitudes. T he im aginary part of the am plitude is constructed as a phase space integral and then the dispersion integral over $P_{L ; z}^{2}$ in (1.8.12) perform s (.3.1) w ith I_{1} absent. For supersym m etric theories this is su cient to construct the full am plitude, while in non-supersym m etric theories w em ust nd other m ethods to calculate the rational part.

[^56]
APPEND IX E
 IN TEGRALS FOR THEN =1AMPLITUDE

In this appendix we give details of the integrals needed to com pute the discontinuities of the $\mathrm{N}=1$ am plitude discussed in C hapter2.

E. $1 \quad$ P assarino-V eltm an reduction

In 2.2 we saw that a typical term in the $\mathrm{N}=1$ am plitude is the dispersion integral of the follow ing phase space integral:

The full am plitude is then obtained by adding the dispersion integrals of three m ore term s sim ilar to E.1.1) but w ith m_{1} replaced by $m_{1} \quad 1$ and/or m_{2} replaced by $m_{2}+1$. T hegoalof this appendix is to perform the Passarino-V eltm an reduction [212] of E.1.1), which will lead us to re express $C\left(m_{1} ; \mathrm{m}_{2}\right)$ in term s of cut-boxes, cut-triangles and cutbubbles.
T he explicit form s for the D irac traces involve L orentz contractions over the various m om enta, so in a short-hand notation we can w rite these as

$$
\begin{equation*}
\mathrm{T}\left(\mathrm{i}_{;} j ; \mathrm{m}_{1}\right) l_{1}:=\operatorname{tr}_{+}\left(\xi_{i} \xi_{j} \xi_{\mathrm{m}_{1}} \exists_{1}\right): \tag{E.1.2}
\end{equation*}
$$

$\mathrm{C}\left(\mathrm{m}_{1} ; \mathrm{m}_{2}\right)$ can then be recast as

$$
\begin{equation*}
\mathrm{C}\left(\mathrm{~m}_{1} ; \mathrm{m}_{2}\right)=\frac{\mathrm{T}\left(\mathrm{i}_{;} j_{;} \mathrm{m}_{1}\right) \mathrm{T}\left(\mathrm{i}_{;} j_{;} \mathrm{m}_{2}\right)}{\left(\mathrm{i} \jmath^{\prime}\right)} \mathrm{I} \quad\left(\mathrm{~m}_{1} ; \mathrm{m}_{2} ; \mathrm{P}_{\mathrm{L} ; z}\right) ; \tag{E..1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
I \quad\left(m_{1} ; m_{2} ; P_{L}\right)=\quad \mathrm{dL} \mathbb{P} S\left(I_{2} ; I_{1} ; P_{L}\right) \frac{l_{1} l_{2}}{\left(m_{1} \quad 1\right)\left(m_{2} \quad{ }^{1}\right)}: \tag{E.1.4}
\end{equation*}
$$

I $\left(m_{1} ; m_{2} ; P_{L}\right)$ contains three independent m om enta m_{1}, m_{2} and P_{L}. On general

[^57]grounds we can therefore decom pose it as
\[

$$
\begin{aligned}
I & =I_{0}+m_{1} m_{1} I_{1}+m_{2} m_{2} I_{2}+P_{L} P_{L} I_{3}+m_{1} m_{2} I_{4} \\
& +m_{2} m_{1} I_{5}+m_{1} P_{L} I_{6}+P_{L} m_{1} I_{7}+m_{2} P_{L} I_{8}+P_{L} m_{2} I_{9} ; \text { (E. .1.5) }
\end{aligned}
$$
\]

for som e coe cients $I_{i} ; i=0 ;::: ; 9$. O ne can then contract w th di erent com binations of the independent m om enta in order to solve for the I_{i}. For instance, two of the integrals that wewillend up having to do are I and $m_{1} m_{1} I$. U sing m om entum conservation $l_{2} \quad l_{1}+P_{L}=0$ and the identity a $b=\left(a+b^{2}\right)=2=(a \quad b)^{2}=2$ for a, b m assless m om enta, we can convert these integrals into ones w hich have the general form

$$
\begin{equation*}
I^{(a ; b)}=\frac{Z}{d L \mathbb{P} S\left(l_{2} ; l_{1} ; P_{L}\right)}\left(l_{1} m_{1}\right)^{a}\left(l_{2} m_{2}\right)^{b} ; \tag{E....6}
\end{equation*}
$$

possibly w ith a kinem atical-invariant coe cient, and with a and b ranging over the values 1;0; 1. T he results of these integrals are collected in 画.2. A s an exam ple, we nd that

$$
m_{1} m_{1} I={ }^{Z} \operatorname{dL\mathbb {P}S(l_{2};l_{1};P_{L})\frac {(l_{1}m_{1})}{(l_{2}m_{2})}\quad (m_{1}\quad P^{Z})^{Z}\frac {\operatorname {dL}\mathbb {P}(l_{2};l_{1};P_{L})}{(l_{2}\quad R)}:(E.1.7)~}
$$

C onsidering the values $(\mathrm{a} ; \mathrm{b})$, the case $(1 ; 1)$ is a cut scalar box, $(1 ; 0)$ and $(0 ; 1)$ are cut scalar triangles, $(1 ; 1)$ and $(1 ; 1)$ are cut vector triangles, whilst $(0 ; 0)$ is a cut scalar bubble.

Because of the structure of $T\left(i ; j ; m_{1}\right)$ and $T\left(i ; j ; m_{2}\right)$, term $s w$ ith coe cients such as $T\left(i ; j ; m_{1}\right) T\left(i ; j ; m_{2}\right) m_{1} m_{2}$ are zero, and thus som e of the I_{i} do not contribute to the nalanswer. The only contributing term s are found to be I_{3}, I_{5}, I_{7} and I_{8}, and we nd that

$$
\begin{align*}
& C\left(m_{1} ; m_{2}\right)=\frac{\operatorname{tr}_{+}\left(k_{i} k_{j} k_{m_{1}} R_{L}\right) \operatorname{tr}_{+}\left(k_{i} k_{j} k_{m_{2}} R_{L}\right)}{\left(i j^{-}\right)} I_{3} \\
& +\frac{\operatorname{tr}_{+}\left(k_{i} k k_{j} k_{m_{1}} k_{m_{2}}\right) t r_{+}\left(k_{i} k_{j} k_{m_{2}} k_{m_{1}}\right)}{\left(i \quad j^{-}\right)} I_{5} \\
& +\frac{\operatorname{tr}_{+}\left(k_{i} k_{j} k_{\mathrm{m}_{1}} R_{\mathrm{L}}\right) \operatorname{tr}_{+}\left(k_{i} k_{j} k_{\mathrm{m}_{2}} k_{\mathrm{m}_{1}}\right)}{\left(\mathrm{i} j^{3}\right)} \mathrm{I}_{7} \\
& +\frac{t r_{+}\left(k_{i} k_{j} k k_{m_{1}} k_{m_{2}}\right) t r_{+}\left(k_{i} k_{j} k_{\mathrm{m}_{2}} \mathrm{E}_{\mathrm{L}}\right)}{\left(i \quad j^{2}\right)} I_{8}: \tag{E..1.8}
\end{align*}
$$

The inversion of (E.1.5) in order to nd the coe cients is tedious and som ew hat lengthy,
so we just present the results for the relevant I_{i} in E.1.8) above:

$$
\begin{align*}
I_{3} & ={\frac{1}{N^{2}}}^{n} 2\left(m_{1} \quad m_{2}\right) P_{L}^{2} \Psi^{(0 ; 0)} N\left(m_{1} \quad P\right) I^{(1 ; 0)}+N\left(m_{2} \quad R\right) I^{(0 ; 1)} \\
& +2\left(m_{2} \quad R\right)^{2} I^{(1 ; 1)}+2\left(m_{1} \quad R\right)^{2} I^{(1 ; 1)} ; \tag{E..1.9}
\end{align*}
$$

$I_{5}=\frac{1}{\left(m_{1} m_{2}\right)^{2} N^{2}} \quad 4\left(m_{1} \quad P\right)^{2}\left(m_{2} \quad E\right)^{2}$
$6\left(m_{1} \quad P_{1}\right)\left(m_{2} \quad P_{1}\right)\left(m_{1} \quad m_{2}\right) P_{L}^{2}+3\left(m_{1} \quad m_{2}\right)^{2} P_{L}^{2}{ }^{2} \quad I^{(0 ; 0)}$
$+\quad 2\left(m_{1} \quad \text { R }\right)^{2}\left(m_{2} \quad\right.$ P $) \quad \frac{3}{2}\left(m_{1} \quad m_{2}\right) P_{L}^{2} N\left(m_{1} \quad\right.$ R $) I^{(1 ; 0)}$
$2\left(m_{1} \quad R\right)^{2}\left(m_{2}\right.$
P) $\frac{3}{2}\left(m_{1} \quad m_{2}\right) P_{L}^{2} \quad N\left(m_{2}\right.$
P) $I^{(0 ; 1)}+\frac{N^{3}}{4} I^{(1 ; 1)}$
$+2\left(m_{1} \quad m_{2}\right) P_{L}^{2} \quad\left(m_{1} \quad B\right)\left(m_{2}\right.$
P) $\left(m_{2} \quad \text { R }\right)^{2} I^{(1 ; 1)}$
$+2\left(m_{1} \quad m_{2}\right) P_{L}^{2} \quad\left(m_{1} \quad E\right)\left(m_{2}\right.$
R) $\left(\mathrm{m}_{1} \mathrm{E}\right)^{2} I^{(1 ; 1)}$;
$I_{7}=\frac{1}{\left(m_{1} \quad R\right)\left(m_{1} \quad m_{2}\right) N^{2}} \quad 2\left(m_{1} \quad E\right)^{2}\left(m_{2} \quad B\right)^{2}$
$3\left(m_{1} \quad E\right)\left(m_{2} \quad E\right)\left(m_{1} \quad m_{2}\right) P_{L}^{2}$

$2\left(m_{1} \quad R\right)\left(m_{2} \quad R\right)^{3} I^{(1 ; 1)} \quad\left(m_{1} \quad m_{2}\right) P_{L}^{2}\left(m_{1} \quad R\right)^{2} I^{(1 ; 1)} ;$
$I_{8}=\frac{1}{\left(m_{2} \quad \mathrm{P}\right)\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right) \mathrm{N}^{2}} \quad 2\left(\mathrm{~m}_{1} \quad \mathrm{P}\right)^{2}\left(\mathrm{~m}_{2} \quad \mathrm{P}\right)^{2}$
$3\left(m_{1} \quad R\right)\left(m_{2} \quad R\right)\left(m_{1} \quad m_{2}\right) P_{L}^{2}$

$\left(m_{1} \quad m_{2}\right) P_{L}^{2}\left(m_{2} \quad E\right)^{2} I^{(1 ; 1)} \quad 2\left(m_{1} \quad \&\right)^{3}\left(m_{2} \quad E\right) I^{(1 ; 1)} ;$
where $N=\left(\begin{array}{llll}m_{1} & m_{2}\end{array}\right) P_{L}^{2} \quad 2\left(m_{1} \quad\right.$ P $)\left(m_{2} \quad\right.$ P $) . T$ he explicit expressions for the relevant $I^{(a ; b)}$ are sum m arised in 王.2.

C ombining E.1.8) and E.1.9-E.1.12) w ith the identity A.3.11) and the explicit expressions for the integrals $\Psi^{(a ; 0)}$ in $\mathbb{E . 2}$, we arrive at the nal result (2.2.12).

E.2 B ox \& triangle discontinuities from phase space integrals

The integrals that arise in the Passarino-Veltm an reduction in E . 1 have the general form :

$$
\begin{equation*}
I^{(a ; b)}=\frac{Z}{d^{4}{ }^{2} L \mathbb{P} S\left(l_{2} ; l_{1} ; P_{L ; z}\right)}\left(m_{1}\right)^{a}\left(l_{2} m_{2}\right)^{b} \quad ; \tag{E2.1}
\end{equation*}
$$

$\begin{array}{lllll}\text { where we have introduced dim ensional regularisation in dim ension } D=4 & 2 & \text { 239] in }\end{array}$ order to dealw ith infrared divergences.

There are six cases to dealw ith: $\Psi^{(0 ; 0)}, \Psi^{(1 ; 0)}, \Psi^{(0 ; 1)}, \Psi^{(1 ; 1)}, \Psi^{(1 ; 1)}, \Psi^{(1 ; 1)}$, though due to sym m etry we can transform $I^{(1 ; 0)}$ into $I^{(0 ; 1)}$, and $I^{(1 ; 1)}$ into $I^{(1 ; 1)}$, so we only need consider four cases overall.

G enerically we w ill evaluate these integrals in convenient special fram es follow ing A ppendix B of [37], w ith a conven ient choice for m_{1} and m_{2}. For instance, in the case of $I^{(1 ; 1)}$ it is conven ient to transform to the centre of m ass fram e of the vector $l_{1} \quad l_{2}$, so that

$$
\begin{equation*}
\mathrm{h}_{1}=\frac{1}{2} \mathrm{P}_{\mathrm{L} ; z} 1 ; \mathcal{F} ; \quad \mathrm{I}_{2}=\frac{1}{2} \mathrm{P}_{\mathrm{L} ; z} \quad 1 ; \mathcal{F} ; \tag{E.2.2}
\end{equation*}
$$

and w rite

$$
\begin{equation*}
\mathcal{W}=(\sin 1 \cos 2 ; \sin 1 \sin 2 ; \cos 1): \tag{E2.3}
\end{equation*}
$$

U sing a further spatial rotation we w rite

$$
\begin{equation*}
m_{1}=\left(m_{1} ; 0 ; 0 ; m_{1}\right) ; \quad m_{2}=(A ; B ; 0 ; C) ; \tag{E.2.4}
\end{equation*}
$$

w ith the m ass-shell condition $A^{2}=B^{2}+C^{2}$.
A fter integrating over all angular coordinates except 1 and 2 , the two-body phase space m easure in 42 dim ensions becom es (see A ppendix C)

$$
\begin{equation*}
d^{4}{ }^{2} \operatorname{LPS}\left(I_{2} ; I_{1} ; P_{L ; z}\right)=\frac{\frac{1}{2}}{4 \frac{1}{2}} \frac{\mathrm{P}_{\mathrm{L} ; z}}{2}{ }^{2} d_{1} d_{2}\left(\sin _{1}\right)^{1} 2(\sin 2)^{2}: \tag{E.2.5}
\end{equation*}
$$

A s a result of this and of our param etrizations of $l_{1} ; l_{2} ; m_{1}$ and m_{2}, the integrals take the form

$$
\begin{equation*}
I^{(a ; b)}=\quad(a ; b) \frac{\frac{1}{2}}{4 \frac{1}{2}} \frac{P_{L ; z}}{2}{ }^{2} J^{(a ; b)} ; \tag{E...6}
\end{equation*}
$$

where

$$
\begin{align*}
(0 ; 0) & =1 ; \tag{E.2.7}\\
(1 ; 0) & =\frac{2}{\mathrm{P}_{\mathrm{L} ; z \mathrm{z}} \mathrm{~m}_{1}} ; \\
(0 ; 1) & =\frac{2}{\mathrm{P}_{\mathrm{L} ; \mathrm{z}} \mathrm{~m}_{2}} ; \\
(1 ; 1) & =\frac{4}{\mathrm{P}_{\mathrm{L} ; z^{2} \mathrm{~m}_{1}}^{2}} ; \\
(1 ; 1) & =\mathrm{m}_{1} ; \\
(1 ; 1) & =\mathrm{m}_{2} ;
\end{align*}
$$

and $J(a ; b)$ is the angular integral

$$
\begin{equation*}
J^{(a ; b)}=\int_{0}^{Z} d_{1}^{Z} d_{2} \frac{(\sin 1)^{1}{ }^{2}\left(\sin _{2}\right)^{2}}{\left(1 \cos _{1}\right)^{a}(A+C \cos 1+B \sin 1 \cos 2)^{b}}: \tag{E2.8}
\end{equation*}
$$

The integrals E 2.8) have been evaluated in [213] for the values of a and b speci ed above, and we borrow the results in a form from [214]:

$$
\begin{align*}
& J^{(0 ; 0)}=\frac{2}{12} \text {; } \tag{E.2.9}\\
& J^{(1 ; 0)}=- \text {; } \\
& J^{(1 ; 1)}=-\frac{1}{A}{ }_{2} F_{1} \quad 1 ; 1 ; 1 \quad \stackrel{A}{i} \frac{C}{2 A} ; \\
& J(1 ; 1)=\frac{2(1,)}{(12)}{ }_{2} \mathrm{~F}_{1} \quad 1 ; 1 ; 1 \quad \underset{2 \mathrm{~A}}{\frac{\mathrm{~A}}{2}}:
\end{align*}
$$

Here, A and C w illdi er depending on which case we are considering and our particular param etrization for it, but in all cases the com binations that arise can be re expressed in term s of L orentz-invariant quantities using suitable identities. In the case of $J^{(1 ; 1)}$ for exam ple, one uses the easily veri ed identities

$$
N\left(P_{L ; z}\right)=P_{L ; z}^{2}(A+C) m_{1} ; \quad m_{1} \quad m_{2}=m_{1}\left(\begin{array}{ll}
(A & C \tag{E.2.10}
\end{array}\right) ;
$$

where $N\left(P_{L, z}\right)$ was de ned in (2.2.14).
Eventually, after re-expressing A and C in this way, and upon application of som e
standard hypergeom etric identities we nd the follow ing:

$$
\begin{align*}
& { }^{1} \Psi^{(0 ; 0)}=\frac{2}{12} ; \tag{E.2.11}\\
& { }^{1} I^{(1 ; 0)}=\frac{1}{m_{1} \mathrm{R} ; \mathrm{z}} \text {; } \\
& { }^{1} \Psi^{(0 ; 1)}=\frac{1}{m_{2} \quad \mathrm{P} ; z_{1}} \text {; } \\
& { }^{1} I^{(1 ; 1)}=\frac{8}{N\left(P_{L ; z}\right)} \frac{1}{-}+\log 1 \frac{\left(m_{1} m_{\mathrm{L}}\right) \mathrm{P}_{\mathrm{L} ; \mathrm{Z}}^{2}}{\mathrm{~N}\left(\mathrm{P}_{\mathrm{L} ; \mathrm{z}}\right)}+\mathrm{O}(\mathrm{r}) ; \\
& { }^{1} I^{(1 ; 1)}=\frac{}{\left(m_{1} \quad \mathrm{E}_{; z}\right)^{2}} \quad \underline{N\left(P_{L ; z}\right)} \\
& +\frac{2}{12}\left(m_{1} \quad \mathrm{P}, \mathrm{z}\right)\left(\mathrm{m}_{2} \quad \mathrm{P}, z\right) \quad\left(\mathrm{m}_{1} \quad m_{2}\right) P_{L ; z}^{2} \quad ; \\
& { }^{1} \Psi^{(1 ; 1)}=\frac{}{\left(m_{2} \quad \mathrm{P} ; \mathrm{z}\right)^{2}} \underline{N\left(\mathrm{P}_{\mathrm{L} ; z}\right)} \\
& +\frac{2}{12}\left(m_{1} \quad P_{; z}\right)\left(m_{2} \quad P_{; z}\right) \quad\left(m_{1} \quad m_{2}\right) P_{L ; z}^{2} \quad ;
\end{align*}
$$

where is the ubiquitous factor

$$
\begin{equation*}
=\frac{\frac{1}{2}}{4 \frac{1}{2}}{\frac{\mathrm{P}_{\mathrm{L} ; z}}{2}}^{2}: \tag{E.2.12}
\end{equation*}
$$

APPENDIX F
 GAUGE-INVARIANTTRIANGLE RECONSTRUCTION

In this appendix we nd a new representation of the triangle function

$$
\begin{equation*}
T(p ; P ; Q)=\frac{\log \left(Q^{2}=\mathrm{P}^{2}\right)}{\mathrm{Q}^{2} \mathrm{P}^{2}} ; \tag{F.0.1}
\end{equation*}
$$

as the dispersion integral of a sum of two cut-triangles 1
A com m ent on gauge (in)dependence is in order here. R ecall from w1.7.1, Equation [1.7.1), that in the approach of [37] to loop diagram s one introduces an arbitrary null vector in order to perform loop integrations. The corresponding gauge dependence should disappear in the expression for scattering am plitudes. In what follow s we w ill work in an arbitrary gauge, and show analytically that gauge-dependent term sdisappear in the nalresult for the triangle function. Perhaps unsunprisingly, this gauge invariance will also hold for the nite- version of $T(p ; P ; Q)$, which we de ne in (2.1.14).

F.1 G auge-invariant dispersion integrals

To begin w ith, recall from 2.2.18) that the basic quantity we have to com pute reads

$$
\begin{equation*}
\mathscr{R}=\frac{\mathrm{Z}}{\mathrm{z}} \frac{\mathrm{dz}}{\left(\mathrm{P}_{\mathrm{z}}^{2}\right)}{\left(\mathrm{P}_{\mathrm{z}} \mathrm{P}\right)}+\frac{\left(\mathrm{Q}_{\mathrm{z}}^{2}\right)}{\left(\mathrm{Q}_{\mathrm{z}} \mathrm{p}\right)} ; \tag{F.1.1}
\end{equation*}
$$

where $P+Q+p=0$. Wew ill work in an anbitrary gauge, where

$$
\begin{equation*}
P_{z}:=P \quad z \quad ; \quad Q_{z}: Q+z \quad: \tag{F.1.2}
\end{equation*}
$$

A short calculation show s that

$$
\begin{align*}
& P_{z} P=\underset{h}{P_{p} 1} \quad \log \left(P^{2} \quad P_{z}^{2}\right)_{i}^{i} ; \tag{F.1.3}\\
& Q_{z} P=Q P 1 \quad b_{Q}\left(Q^{2} Q_{z}^{2}\right) ; \tag{F.1.4}
\end{align*}
$$

[^58]where
\[

$$
\begin{equation*}
b_{p}=\frac{p}{2(P)(p P)} ; \quad b_{Q}:=\frac{p}{2(Q)(p Q)}: \tag{F.1.5}
\end{equation*}
$$

\]

It is also useful to notice the relation

$$
\begin{equation*}
\frac{1}{b_{Q}}=\frac{1}{b_{Q}}+Q^{2} P^{2} ; \tag{F.1.6}
\end{equation*}
$$

as well as $(\mathrm{Pp})=(\mathrm{Q} \mathrm{p})=(1=2)\left(Q^{2} \quad \mathrm{P}^{2}\right)$, which trivially follow from m om entum conservation. W e can then rew rite F.1.1) as

$$
\begin{equation*}
\mathscr{R}=\mathscr{I}_{1} \quad \mathscr{I}_{2} ; \tag{F.1.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathscr{I}_{1}=\frac{1}{(\mathrm{Pp})}^{\mathrm{Z}} \mathrm{ds}^{0}\left(\mathrm{~s}^{0}\right) \frac{1}{\left(\mathrm{~s}^{0} \mathrm{P}^{2}\right) 1 \quad \mathrm{~b}_{\mathrm{p}}\left(\mathrm{P}^{2} \quad \mathrm{~s}^{0}\right)} \tag{F.1.8}\\
& =\frac{\left.\csc ()^{2}\right)}{(P \mathrm{p})}\left(\mathrm{P}^{2}\right) \quad \frac{\mathrm{b}_{\mathrm{p}}}{\operatorname{lop}^{2} \mathrm{P}^{2}} \text {; } \\
& \mathscr{I}_{2}=\frac{1}{(P p)}^{Z} \mathrm{ds}^{0}\left(s^{0}\right) \frac{1}{\left(s^{0} Q^{2}\right) 1} \quad \mathrm{~b}_{\mathrm{Q}}\left(\mathrm{Q}^{2} \quad s^{0}\right) \tag{F.1.9}\\
& =\frac{\left.\csc ()^{2}\right)}{(P p)}\left(Q^{2}\right) \quad \frac{b_{Q}}{b_{Q} Q^{2} 1}:
\end{align*}
$$

But (F.1.6) im plies

$$
\begin{equation*}
\frac{b_{p}}{b_{p} P^{2} 1}=\frac{b_{Q}}{b_{Q} Q^{2} 1} ; \tag{F...10}
\end{equation*}
$$

so that we can nally recast (F.1.1) as:

$$
\begin{equation*}
\mathscr{R}=2 \csc (\quad) \frac{1\left(\mathrm{P}^{2}\right)\left(\mathrm{Q}^{2}\right)}{\mathrm{Q}^{2} \mathrm{P}^{2}}=2 \quad \csc (\quad) \mathrm{T}(\mathrm{p} ; \mathrm{P} ; Q) ; \tag{F.1.11}
\end{equation*}
$$

where the -dependent triangle function is $_{6}$

$$
\begin{equation*}
T(p ; P ; Q):=\frac{1\left(P^{2}\right)\left(Q^{2}\right)}{Q^{2} P^{2}}: \tag{F.1.12}
\end{equation*}
$$

T his is the result we were after. N otice that all the gauge dependence, i.e. any dependence on the anbitrary null vector , has com pletely cancelled out in (\mathbb{E}.11).

W enow discuss the ! 0 lm it of the nalexpression (1.11). A s already discussed in 2.1 (see 2.1.15) and 2.1.16)), in studying the ! 0 lim it of \mathscr{R} (and hence of $T(p ; P ; Q)$) we need to distinguish the case where P^{2} and Q^{2} are both nonvanishing

[^59]from the case where one of the two, say Q^{2}, van ishes. In the form er case, w e get precisely the triangle function $T(p ; P ; Q)$ de ned in (F.0.1) :
\[

$$
\begin{equation*}
\lim _{!} \mathscr{R}=2 T(\mathrm{p} ; \mathrm{P} ; \mathrm{Q}) ; \quad \mathrm{P}^{2} \in 0 ; \mathrm{Q}^{2} \in 0: \tag{F.1.13}
\end{equation*}
$$

\]

In the latter case, where $Q^{2}=0$, we have in stead

$$
\begin{equation*}
\lim _{!} \mathscr{R}=\frac{2}{-} \frac{\left(\mathrm{P}^{2}\right)}{\mathrm{P}^{2}} ; \quad \mathrm{P}^{2} \in 0 ; \mathrm{Q}^{2}=0 ; \tag{F.1.14}
\end{equation*}
$$

which corresponds to a degenerate triangle.
T he nal issue is that of the gauge invariance of the contributions to the am plitude from the box functions B (this is also relevant to the issue of gauge invariance in the $\mathrm{N}=4$ calculation of [37], and in that paper a general argum ent for gauge invariance w as also given - further evidence can be found in 79]). W e expect that an explicit analytic proof of the gauge invariance of the box function contribution to the am plitude could be constructed using identities such as those in A ppendix B of [37]. In the m eantim e, num erical tests have show n that gauge invariance is present [209]. Indeed, it would be surprising if this were not the case given that the correct, gauge-invariant, am plitudes are derived with the choices of gauge we have m ade here and in [37]. W e have also carried out the M HV diagram analysis of th is paper using the altemative gauge choice $=k_{\mathrm{fn}}^{2}$; one obtains 2.1.19).

APPEND IX G

IN TEGRALS FOR THE NON-SUPERSYM M ETRIC AMPLITUDE

In this appendix we give details of the integrals needed to com pute the discontinuities of the non-supersym m etric am plitude discussed in C hapter 3 .

G . 1 P assarino-V eltm an reduction

In 3.3 we saw that a typical term in the cut-constructible part of the Yang M ills am plitude is the dispersion integral of the follow ing phase space integral:

Thegoalof this appendix is to perform the Passarino-V eltm an reduction [212] of (G.1.1). To th is end, we rew rite $\mathscr{C}(\mathrm{m})$ as

$$
\mathscr{C}(m)=\frac{\operatorname{tr}_{+}\left(\xi_{1} k_{2} P_{L ; z}\right) \operatorname{tr}_{+}\left(k_{1} k_{2} P_{L ; z}\right) \operatorname{tr}_{+}\left(k_{1} k_{2} k_{m}\right)}{\left(k_{1} k_{2}\right)^{3}\left(P_{L ; z}^{2}\right)^{2}} I \quad\left(m ; P_{L ; z}\right) ;(G .1 .2)
$$ where ${ }^{11}$

$$
\begin{equation*}
\mathrm{I} \quad\left(\mathrm{~m} ; \mathrm{P}_{\mathrm{L}}\right)=\mathrm{Z} \mathrm{dLPS}\left(\mathrm{l}_{2} ; \mathrm{l}_{1} ; \mathrm{P}_{\mathrm{L}}\right) \frac{l_{2} l_{2} l_{2}}{\left(l_{2} \mathrm{~m}\right)} \text { : } \tag{G.1.3}
\end{equation*}
$$

O n generalgrounds, I ($\mathrm{m} ; \mathrm{P}_{\mathrm{L}}$) can be decom posed as

$$
\begin{aligned}
I \quad & =m m m \mathscr{J}_{1}+\left(m m P_{L}+m P_{L} m+P_{L} m m\right) \mathscr{J}_{2} \\
& +\left(m P_{L} P_{L}+P_{L} m P_{L}+P_{L} P_{L} m\right) \mathscr{J}_{3}+P_{L} P_{L} P_{L} \mathscr{J}_{4} \\
& +\left(m+m+P_{L}+\left(P_{L}+P_{L}+P_{L}\right) \mathscr{J}_{6}(G .1 .4)\right.
\end{aligned}
$$

[^60]for som e coe cients $\mathscr{J}_{i} ; i=0 ;::: ; 6.0$ ne can then contract w ith di erent com binations of the independent m om enta in order to solve for the \mathscr{J}_{i}. Introducing the quantities

the result for the Passarino-Veltm an reduction of $f \mathscr{J}_{1} ;::: ; \mathscr{J}_{6} \mathrm{~g}$ in the basis $\mathrm{fA} ;::: ; \mathrm{D} \mathrm{g}$ is:
\[

$$
\begin{align*}
& \mathscr{J}_{3}=\quad 2 \mathrm{P}_{\mathrm{L}}^{2}=\left(\begin{array}{ll}
\mathrm{m} & \mathrm{R})^{4} ; 3=(\mathrm{m} \quad \mathrm{P})^{3} ; 0 ; 0 ;
\end{array}\right. \\
& \mathscr{J}_{4}=1=(\mathrm{m} \quad \mathrm{P})^{3} ; 0 ; 0 ; 0 \\
& \mathscr{J}_{5}=\quad\left(\mathrm{P}_{\mathrm{L}}^{2}\right)^{2}=2(\mathrm{~m} \quad \mathrm{P})^{4} ; 3 \mathrm{P}_{\mathrm{L}}^{2}=2(\mathrm{~m} \quad \mathrm{~B})^{3} ; 1=(\mathrm{m} \quad \mathrm{E})^{2} ; 0 ; \\
& \mathscr{J}_{6}=P_{L}^{2}=2\left(\begin{array}{ll}
\mathrm{m} & \left.\mathrm{P})^{3}\right) ; \quad 1=\left(\begin{array}{ll}
\mathrm{m} & \mathrm{E})^{2} ; 0 ; 0 \quad: \\
0
\end{array}\right)
\end{array}\right. \tag{G.1.6}
\end{align*}
$$
\]

W e om it the decom position for \mathscr{J}_{1} as the corresponding term in G.1.4) drops out of all future expressions due to $k_{m}^{2}=0$.

Finally, using the m ethods of [40] and the results of $G .3$, the integrals in (G.1.5) are found to be, keeping only term s to $O\left({ }^{0}\right)$,

$$
\begin{align*}
& A=(m \quad \mathrm{P})^{2} \frac{4}{3} \wedge \tag{G.1.7}\\
& B=P_{L}^{2}\left(m \quad P^{\wedge}\right)^{\wedge} ; \tag{G.1.8}\\
& C=\left(P_{L}^{2}\right)^{2} \wedge ; \tag{G.1.9}\\
& D=\frac{\left(P_{L}^{2}\right)^{3}}{8(m \quad R)} \frac{4}{\wedge} ; \tag{G.1.10}
\end{align*}
$$

where

$$
\begin{equation*}
\wedge:=\frac{\frac{1}{2}}{4^{1} \frac{1}{2}}: \tag{G.1.11}
\end{equation*}
$$

G.2 Evaluating the integral of \mathscr{C} (a;b)

The basic expression which arises in the M HV diagram construction in this paper is

$$
\begin{equation*}
\mathscr{C}(a ; b)=\frac{h i l_{1} i h j l_{1} i^{2} h i l_{2} i^{2} h j l_{2} i}{h i j i^{4} h l_{1} l_{2} i^{2}} \frac{\text { hiaihj bi }}{h l_{1} \text { aihl } l_{2} \text { bi }}: \tag{G2.1}
\end{equation*}
$$

W e w ish to integrate this expression over the Lorentz-invariant phase space. W e begin by sim plifying it, using m ultiple applications of the Schouten identity. First note that using this identity tw ice, one deduces that

$$
\begin{align*}
\frac{\text { hil } l_{2} i h j l_{1} i}{h_{1} \text { aihl } l_{2}} \text { ha bi }^{2} & =\text { hiaihb ji }+ \text { hiaiha ji } \frac{h l_{1} \text { bi }}{h a l_{1} i}+\text { hb jihibi } \frac{h l_{2} \text { ai }}{h b l_{2} i} \tag{G.2.2}\\
& + \text { ha jihibi ha jihibi } \frac{h l_{1} l_{2} i h a ~ b i}{h a l_{1} i h b l_{2} i}:
\end{align*}
$$

Now use this identity in $\mathscr{C}(a ; b)$. This generates ve term s, which we will label (in correspondence w ith the ordering arising from the order of term s in G 2.2) above) as $T_{i} ; i=1 ;::: ; 4$, and $U . T$ he T_{i} have dependence on the loop m om enta such that we m ay use the phase space integrals of G to calculate them. The term U is m ore com plicated; how ever, one m ay again use the identity G 2.2), generating another ve term s , which we w ill label $\mathrm{T}_{5} ;::: ; \mathrm{T}_{8}$, and V. A gain, the expressions in $\mathrm{T}_{\mathrm{i}} ; \mathrm{i}=5 ;::: ; 8$ m ay be calculated using the integrals of $G .3$. Finally, the term $V m$ ay be simpli ed, here using the identity (G2.2) with i and j interchanged. This generates a further ve term S , which we label $\mathrm{T}_{9} ;::: ; \mathrm{T}_{13}$. The explicit form S of these term S follow :
and
and

The expression $\mathscr{C}(a ; b)$ is then the sum of the term $s T_{i} ; i=1 ;::: ; 13$.
Before perform ing the phase space integrals, it proves convenient to collect the resulting expressions in pairs as $\mathrm{T}_{1}+\mathrm{T}_{2}, \mathrm{~T}_{3}+\mathrm{T}_{4}, \mathrm{~T}_{5}+\mathrm{T}_{6}, \mathrm{~T}_{7}+\mathrm{T}_{8}, \mathrm{~T}_{9}+\mathrm{T}_{11}$ and $\mathrm{T}_{10}+\mathrm{T}_{12}$. T his leads us to the follow ing decom position :

$$
\begin{align*}
& =\frac{1}{2^{8}\left(i \quad j^{7}\right)}\left(\mathrm{H}_{1}+\quad \quad+_{4} \mathrm{H}\right. \text {; } \tag{G.2.16}
\end{align*}
$$

where

Finally, we perform the phase space integrals of the above expressions, using the
form ul in x $G .3$ below. O ne quidkly nds that the divergent (as ! 0) part of the total expression is zero. The nite part, after further spinor m anipulations, becom es the expression we have given in 3.3.3).

G . 3 P hase space integrals

T he basic m ethod which we use for evaluating Lorentz-invariant phase space integrals has been outlined in [37, 40] and also discussed in $\times 1.9$ and A ppendix E. Here we will just quote the results which we need. In the follow ing we will use a shorthand notation where ${ }^{R} d^{4}{ }^{2} \operatorname{LPS}\left(l_{2} ; l_{1} ; P_{L ; z}\right)$, and a common factor of $4{ }^{\wedge}\left(P_{L ; z}\right)^{2}$ is understood to multiply all expressions, where ${ }^{\wedge}$ is the ubiquitous factor of (G.1.11). W e also de ne $=\left(\begin{array}{ll}a & P\end{array}\right), \quad=\left(\begin{array}{ll}b & P\end{array}\right), N(P)=\left(\begin{array}{ll}a & B\end{array}\right) P 2\left(\begin{array}{ll}a & P\end{array}\right)(b \quad P)$ and drop the $L ; z$ subscripts from $P_{L} ; z$ for clarity.

Firstly we quote the results from A ppendix B of 40] up to term sof $O\left({ }^{\circ}\right)$:

$$
\begin{aligned}
& 1=1 ; \quad \frac{\mathrm{Z}}{\left(\mathrm{a}_{1} 1\right)}=\quad 1 ; \quad \frac{\mathrm{Z}}{\left(\mathrm{~B} \mathrm{~B}_{2}\right)}=1 \text {; }
\end{aligned}
$$

where

$$
\mathrm{L}=\log 1 \frac{(\mathrm{a} \mathrm{~b})^{2}}{\mathrm{~N}} \mathrm{P}^{2}:
$$

From this, we can recursively derive the follow ing integrals (up to $\mathrm{O}\left({ }^{0}\right)$):

$$
\begin{align*}
& \mathrm{Z} \\
& I_{1}=\frac{1}{2} \mathrm{P} ; \quad \mathrm{Z} \tag{G.3.2}\\
& \mathrm{Z} \\
& \mathrm{l}_{1} l_{1}=\frac{1}{2} \mathrm{P} ; \\
& \mathrm{Z} \\
& \frac{l_{1}}{\left(\mathrm{a} 1_{2} \mathrm{l}\right)}=\frac{\mathrm{P}^{2}}{2^{2}} \mathrm{a}+\frac{1}{3} \mathrm{P} \quad \frac{\mathrm{P}^{2}}{2} \mathrm{a} ; \\
& \mathrm{Z} \frac{l_{2}}{\left(\mathrm{~b} \mathrm{I}_{2} \mathrm{l}\right)}=\frac{\mathrm{P}^{2}}{2^{2}} \mathrm{~b}+\frac{1}{-} \mathrm{P} \quad \frac{\mathrm{P}^{2}}{2} \mathrm{~b} ;
\end{align*}
$$

and

$$
\begin{aligned}
& \left.\frac{Z}{\left(a l_{1}\right)}=\frac{P^{4}}{43^{3}} a+\frac{1}{2} P P+\frac{P^{2}}{2^{2}} P^{(} a\right) \quad \frac{3 P^{4}}{4^{3}} a a \quad \frac{P^{2}}{4} ; \\
& \left.\frac{Z}{\left(\mathrm{~b} \quad \mathrm{l}_{2} l_{2}\right)}=\frac{\mathrm{P}^{4}}{43^{3}} \mathrm{~b} b \quad \frac{1}{2} \mathrm{P} P \quad \frac{\mathrm{P}^{2}}{2^{2}} \mathrm{P}^{(} \mathrm{b}\right)^{)}+\frac{3 \mathrm{P}^{4}}{4^{3}} \mathrm{~b} b+\frac{\mathrm{P}^{2}}{4} \quad \text {; } \\
& \text { Z }
\end{aligned}
$$

Finally, there are integrals involving cubic pow ers of loop m om enta in the num erator. The rst is

$$
\begin{align*}
\left.\frac{Z}{\left(a \quad l_{1} l_{1}\right.}=\frac{P^{4}}{43^{3}} P^{(a} a\right)+ & \frac{P^{2}}{4{ }^{2}} P^{(} P a a^{\prime}+ \\
& \frac{1}{3} P P P \tag{G3.4}\\
& \frac{P^{4}}{8^{2}}(a) \frac{P^{2}}{4}(P)^{\prime}
\end{align*}
$$

where we have suppressed term s cubic in a as they prove not to contribute when this integral is contracted into the products of D irac traces w hich appear in the expressions in G .2 . The second cubic integral required is

$$
\begin{align*}
&\left.\frac{\mathrm{Z}}{\frac{I_{2} I_{2} I_{2}}{\left(\mathrm{~b} 2^{1}\right)}=}=\frac{\mathrm{P}^{4}}{4^{3}} \mathrm{P}^{(} \mathrm{b} . \mathrm{b}\right)+\left.\frac{\mathrm{P}^{2}}{4^{2}} \mathrm{P}^{(} \mathrm{P} \quad \mathrm{~b}\right)+ \\
& \frac{1}{3} \mathrm{P} P \mathrm{P} \tag{G3.5}\\
& \frac{\mathrm{P}^{4}}{8^{2}}(\mathrm{~b}) \quad \frac{\mathrm{P}^{2}}{4}(\mathrm{P}) ;
\end{align*}
$$

again suppressing term scubic in bwhich will not contribute.

APPEND IX H

K LT RELATION S

For com pleteness, in this appendix we w rite the eld theory lim it of the K LT relations [219] for the cases of four, ve and six points:

$$
\begin{align*}
& M(1 ; 2 ; 3)=\quad \text { A }(1 ; 2 ; 3) A(1 ; 2 ; 3) ; \\
& \text { M }(1 ; 2 ; 3 ; 4)=\quad \text { is } 12 \text { A }(1 ; 2 ; 3 ; 4) A(1 ; 2 ; 4 ; 3) \text {; } \\
& \text { M }(1 ; 2 ; 3 ; 4 ; 5)=\quad \text { S }_{12} \text { S }_{34} A(1 ; 2 ; 3 ; 4 ; 5) \mathrm{A}(2 ; 1 ; 4 ; 3 ; 5) \\
& +\quad \text { is }{ }_{13} \mathrm{~S}_{24} \mathrm{~A}(1 ; 3 ; 2 ; 4 ; 5) \mathrm{A}(3 ; 1 ; 4 ; 2 ; 5) \text {; } \tag{H.0.3}\\
& \text { M }(1 ; 2 ; 3 ; 4 ; 5 ; 6)=\quad \text { is }_{12} S_{45} A(1 ; 2 ; 3 ; 4 ; 5 ; 6) S_{35} A(2 ; 1 ; 5 ; 3 ; 4 ; 6) \\
& +\left(S_{34}+s_{35}\right) \text { A }(2 ; 1 ; 5 ; 4 ; 3 ; 6) \tag{H..0.4}\\
& +\quad \mathrm{P}(2 ; 3 ; 4) \text { : }
\end{align*}
$$

In these form ul, M (i) (A (i)) denotes a tree-level gravity (Y ang M ills colour-ordered) am plitude, $s_{i j}:=\left(p_{i}+p_{j}\right)^{2}$, and $P(2 ; 3 ; 4)$ stands for perm utations of $(2 ; 3 ; 4)$. T he relation for a generic num ber of particles can be found in A ppendix A of [240].

R eferences

[1] W . N. C ottingham and D.A. G reenw ood, A n introduction to the standard model of particle physics. C am bridge, UK : U niv. Pr., 2007.
[2] M.E.Peskin and D.V.Schroeder, An introduction to quantum eld theory. R eading, U SA : Addison-W esley, 1995.
[3] S.W einberg, The quantum theory of elds. Vol 1: Foundations. C am bridge, UK : Univ. Pr., 1995.
[4] S.W einberg, The quantum theory of elds. Vol 2: M odem applications. C am bridge, UK : U niv. Pr., 1996.
[5] S.W einberg, The quantum theory of elds. Vol 3: Supersym m etry. C am bridge, UK : Unív. Pr., 2000.
[6] P article D ata G roup C ollaboration, W . M . Y ao et al, R eview of particle physics, J. Phys. G 33 (2006) 1\{1232.
[7] L. Susskind, D ynam ics of spontaneous sym m etry breaking in the W einberg-Salam theory, Phys. Rev. D 20 (1979) 2619\{2625.
[8] E. Farhiand L. Susskind, A technicolored G .U.T.,Phys. Rev. D 20 (1979) 3404\{3411.
[9] J.W ess and J. B agger, Supersym m etry and supergravity. P rinceton, U SA : U nìv. Pr., 1992.
[10] M . F. Sohnius, Introducing supersym m etry, Phys. Rept. 128 (1985) 39\{204.
[11] J. M . Figueroa-O Farrill, B U SST EPP lectures on supersym m etry, hep-th/0109172.
[12] L. A lvarez-G aum e and S.F.H assan, Introduction to S-duality in $\mathrm{N}=2$ supersym m etric gauge theories: A pedagogical review of the work of Seiberg and W itten, Fortsch. Phys. 45 (1997) 159\{236, hep-th/9701069].
[13] J. R osiek, C om plete set of F eynm an rules for the m in im al supersym m etric extension of the standard m odel, Phys. Rev. D 41 (1990) 3464.
[14] J. R osiek, C om plete set of F eynm an rules for the M SSM \{ erratum, hep-ph/9511250.
[15] L . B om belli, J.H . Lee, D . M eyer, and R . Sorkin , Space-tim e as a causal set, Phys. Rev. Lett. 59 (1987) 521.
[16] J. H enson, T he causal set approach to quantum gravity, gr-qc/0601121.
[17] A. A shtekar, N ew variables for classical and quantum gravity, Phys. Rev. Lett. 57 (1986) 2244\{2247.
[18] A. A shtekar and J. Lew andow ski, B ackground independent quantum gravity: A status report, C lass. Q uant. G rav. 21 (2004) R 53, [gr-qc/0404018].
[19] M.B.G reen, J. H. Schwarz, and E.W itten, Superstring theory. Vol 1: Introduction. C am bridge, UK : U niv. Pr., 1987.
[20] M . B . G reen, J. H . Schwarz, and E.W itten, Superstring theory. Vol 2: Loop am plitudes, anom alies and phenom enology. C am bridge, U K : Univ. Pr., 1987.
[21] J. Polchinski, String theory. Vol 1: An introduction to the bosonic string. C am bridge, UK : U nìv. Pr., 1998.
[22] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. C am bridge, UK : Univ. Pr., 1998.
[23] E. W itten, String theory dynam ics in various dim ensions, N ucl. Phys. B 443 (1995) 85\{126, hep-th/9503124].
[24] J. Polchinski, D irichlet-branes and R am ond R am ond charges, Phys. Rev. Lett. 75 (1995) 4724\{4727, hep-th/9510017].
[25] G. 't H ooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461.
[26] J.M . M aldacena, The large N lim it of superconform al eld theories and supergravity, Adv. Theor. M ath. Phys. 2 (1998) $231\{252$, hep-th/9711200].
[27] G. 't H ooft, D im ensional reduction in quantum gravity, In: Salam fest (1993) 284\{296, [gr-qc/9310026].
[28] R . B ousso, T he holographic principle, Rev. M od. Phys. 74 (2002) $825\{874$, hep-th/0203101].
[29] D . J. G ross and F.W ilczek, U leraviolet behavior of non-A belian gauge theories, Phys. Rev. Lett. 30 (1973) 1343\{1346.
[30] H . D . Politzer, R eliable perturbative results for strong interactions? , Phys. R ev. Lett. 30 (1973) 1346\{1349.
[31] E . W itten, P erturbative gauge theory as a string theory in tw istor space, C om m un. M ath. Phys. 252 (2004) 189\{258, hep-th/0312171].
[32] R . Penrose, T w istor algebra, J. M ath. Phys. 8 (1967) 345.
[33] F. C achazo, P. Svrcek, and E.W itten , M H V vertices and tree am plitudes in gauge theory, JHEP 09 (2004) 006, hep-th/0403047].
[34] K . R isager, A direct proof of the C SW rules, JH EP 12 (2005) 003, hep-th/0508206].
[35] P. M ans eld, The Lagrangian origin of M HV rules, JH EP 03 (2006) 037, hep-th/0511264].
[36] N. B erkovits and E.W itten, C onform al supergravity in tw istor-string theory, JHEP 08 (2004) 009, hep-th/0406051].
[37] A. B randhuber, B . J. Spence, and G . Travaglini, O ne-loop gauge theory am plitudes in $N=4$ super Y ang-M ills from M HV vertices, N ucl. Phys. B 706 (2005) 150 \{180, hep-th/0407214].
[38] Z. Bem, L.J.D ixon, D. C . D unbar, and D.A. K osow er, O ne-loop n-point gauge theory am plitudes, unitarity and collinear lim its, N ucl. Phys. B 425 (1994) 217\{260, hep-ph/9403226].
[39] M . Abou-Zeid, C.M.Hull, and L.J.M ason, E instein supergravity and new tw istor string theories, hep-th/0606272.
[40] J. Bedford, A . B randhuber, B . J. Spence, and G. Travaglini, A tw istor approach to one-loop am plitudes in $N=1$ supersym m etric Y ang-M ills theory, N ucl. Phys. B 706 (2005) $100\{126$, hep-th/0410280].
[41] C. Q uigley and M. R ozali, O ne-loop M HV am plitudes in supersym m etric gauge theories, JH EP 01 (2005) 053, hep-th/0410278].
[42] Z. Bem, L. J. D ixon, D. C . D unbar, and D. A. K osow er, Fusing gauge theory tree am plitudes into loop am plitudes, N ucl. Phys. B 435 (1995) 59\{101, hep-ph/9409265].
[43] J. B edford, A . B randhuber, B . J. Spence, and G . Travaglini, N on-supersym m etric loop am plitudes and M H V vertioes, N ucl. P hys. B 712 (2005) 59 \{85, hep-th/0412108].
[44] Z. Bem, L. J. D ixon, and D. A. K osow er, O ne-loop corrections to ve ghon am plitudes, Phys. Rev. Lett. 70 (1993) 2677\{2680, hep-ph/9302280].
[45] C.F.B erger, Z . Bem, L. J. D ixon, D. Forde, and D. A . K osow er, A ll one-loop m axim ally helicity violating gluonic am plitudes in Q CD ,Phys. Rev. D 75 (2007) 016006, hep-ph/0607014].
[46] R . R oiban, M . Spradlin, and A. Volovich, D issolving N = 4 loop am plitudes into Q C D tree am plitudes, Phys. Rev. Lett. 94 (2005) 102002, hep-th/0412265].
[47] R . B ritto, F. C achazo, and B. Feng, G eneralized unitarity and one-loop am plitudes in $N=4$ super-Y ang-M ills, N ucl. Phys. B 725 (2005) 275\{305, [hep-th/0412103].
[48] R . B ritto , F . C achazo, and B. Feng, N ew recursion relations for tree am plitudes of ghons, N ucl. Phys. B 715 (2005) 499\{522, hep-th/0412308].
[49] R . B ritto , F . C achazo , B . Feng, and E . W itten, D irect proof of tree-level recursion relation in Y ang-M ills theory, Phys. Rev. Lett. 94 (2005) 181602, hep-th/0501052].
[50] J. B edford, A . B randhuber, B . J. Spence, and G. Travaglini, A recursion relation for gravity am plitudes, N ucl. Phys. B 721 (2005) 98\{110, hep-th/0502146].
[51] F . C achazo and P. Svrcek, Tree level recursion relations in general relativity, hep-th/0502160.
[52] P. Benincasa, C . B oucher-V eronneau, and F. C achazo, Tam ing tree am plitudes in general relativity, hep-th/0702032.
[53] Z . B em, N . E. J. B jerrum -B ohr, and D. C . D unbar, Inherited tw istor-space structure of gravity loop am plitudes, JH EP 05 (2005) 056, hep-th/0501137].
[54] N.E.J.B jerrum Bohr, D.C.D unbar, and H. Ita, Six-point one-loop N $=8$ supergravity NM HV am plitudes and their \mathbb{R} behaviour, Phys. Lett. B 621 (2005) 183\{194, hep-th/0503102].
[55] N . E. J. B jerrum -B ohr, D. C . D unbar, and H. Ita, P erturbative gravity and tw istor space, Nucl. Phys. P roc. Suppl 160 (2006) 215\{219, hep-th/0606268].
[56] N.E.J.B jerrum B ohr, D.C.D unbar, H. Ita, W . B . Perkins, and K . R isager, The no-triangle hypothesis for $\mathrm{N}=8$ supergravity, JH EP 12 (2006) 072, hep-th/0610043].
[57] Z. Bem, L. J.D ixon, and R.Roiban, Is $N=8$ supergravity ultraviolet nite?, Phys. Lett. B 644 (2007) 265\{271, [hep-th/0611086].
[58] Z. Bem et al., Three-loop super niteness of $N=8$ supergravity, Phys. Rev. Lett. 98 (2007) 161303, hep-th/0702112].
[59] M.B.G reen, J.G.R usso, and P.Vanhove, N on-renorm alisation conditions in type II string theory and m axim al supergravity, JH EP 02 (2007) 099, hep-th/0610299].
[60] M . B . G reen , J. G . R usso, and P . Vanhove, U ltraviolet properties of m axim al supergravity, Phys. Rev. Lett. 98 (2007) 131602, hep-th/0611273].
[61] C.J. Zhu, T he googly am plitudes in gauge theory, JH EP 04 (2004) 032, hep-th/0403115].
[62] G. G eorgiou and V.V.K hoze, Tree am plitudes in gauge theory as scalar M H V diagram s, JHEP 05 (2004) 070, [hep-th/0404072].
[63] J.B.W u and C.J. Zhu, M HV vertices and scattering am plitudes in gauge theory, JH EP 07 (2004) 032, hep-th/0406085].
[64] J.B.W u and C.J. Zhu, M HV vertices and ferm ionic scattering am plitudes in gauge theory w ith quarks and ghuinos, JHEP 09 (2004) 063, hep-th/0406146].
[65] D . A . K osow er, N ext-to-m axim al helicity violating am plitudes in gauge theory, Phys. Rev. D 71 (2005) 045007, hep-th/0406175].
[66] G.G eorgiou, E. W . N . G lover, and V . V . K hoze, N on -M H V tree am plitudes in gauge theory, JH EP 07 (2004) 048, hep-th/0407027].
[67] Y.A.be, V.P.N air, and M.-I. Park, M ultigluon am plitudes, N = 4 constraints and the W ZW m odel, Phys. Rev. D 71 (2005) 025002, hep-th/0408191].
[68] L. J. D ixon, E.W . N. G lover, and V.V.K hoze, M HV rules for H iggs plus m ulti-ghon am plitudes, JHEP 12 (2004) 015, hep-th/0411092].
[69] Z. Bem, D . Forde, D . A . K osow er, and P . M astrolia, T w istor-inspired construction of electrow eak vector boson currents, Phys. Rev. D 72 (2005) 025006, hep-ph/0412167].
[70] T.G.B irthw right, E.W .N.G lover, V.V.K hoze, and P.M arquard, M ulti-gluon collinear lim its from M H V diagram s, JHEP 05 (2005) 013, hep-ph/0503063].
[71] T.G.B irthw right, E.W . N . G lover, V . V . K hoze, and P.M arquard, C ollinear lim its in QCD from M HV rules, JHEP 07 (2005) 068, hep-ph/0505219].
[72] F. C achazo, P . Svrcek, and E.W itten, G auge theory am plitudes in tw istor space and holom orphic anom aly, JH EP 10 (2004) 077, hep-th/0409245].
[73] F . C achazo, P . Svrcek, and E . W itten, T w istor space structure of one-bop am plitudes in gauge theory, JH EP 10 (2004) 074, hep-th/0406177].
[74] F. C achazo, H olom onphic anom aly of unitarity cuts and one-loop gauge theory am plitudes, hep-th/0410077.
[75] R . B ritto, F. C achazo, and B. Feng, C om puting one-loop am plitudes from the holom orphic anom aly of unitarity cuts, Phys. Rev. D 71 (2005) 025012, hep-th/0410179].
[76] S.J.B idder, N.E.J.B jerrum B ohr, L.J.D ixon, and D.C.D unbar, N = 1 supersym m etric one-loop am plitudes and the holom onphic anom aly of unitarity cuts, Phys. Lett. B 606 (2005) 189\{201, hep-th/0410296].
[77] N . E. J. B jerrum B ohr, D . C . D unbar, H . Ita, W . B . Perkins, and K . R isager, M H V -vertices for gravity am plitudes, JH EP 01 (2006) 009, hep-th/0509016].
[78] S. G iom bi, R . R icci, D. R obles-L lana, and D. Trancanelli, A note on tw istor gravity am plitudes, JH EP 07 (2004) 059, hep-th/0405086].
[79] A. B randhuber, B . Spence, and G. Travaglini, From trees to loops and back, JHEP 01 (2006) 142, hep-th/0510253].
[80] J. H . Ettle and T . R . M orris, Structure of the M H V -rules Lagrangian, JH EP 08 (2006) 003, hep-th/0605121].
[81] A. B randhuber, B. Spence, and G. Travaglini, Am plitudes in pure Y ang-M ills and M HV diagram s, JHEP 02 (2007) 088, hep-th/0612007].
[82] A. B randhuber, B . Spence, G . Travaglini, and K. Zoubos, O ne-loop M H V rules and pure Y ang-M ills, JH EP 07 (2007) 002, [arXiv:0704.0245 [hep-th]].
[83] J. H.Ettle, C.H.Fu, J.P.Fudger, P.R.W .M ans eld, and T.R.M orris, S-m atrix equivalence theorem evasion and dim ensional regularisation with the canonicalM HV Lagrangian, hep-th/0703286.
[84] A. B randhuber, S.M CN am ara, B . J. Spence, and G. Travaglini, Loop am plitudes in pure Y ang -M ills from generalised unitarity, JH EP 10 (2005) 011, hep-th/0506068].
[85] E. I. Buchbinder and F. C achazo, T wo-loop am plitudes of ghons and octa-cuts in $N=4$ super Y ang $-M$ ills, JHEP 11 (2005) 036, hep-th/0506126].
[86] Z. Bem and A. G . M organ, M assive loop am plitudes from unitarity, N ucl. Phys. B 467 (1996) 479\{509, hep-ph/9511336].
[87] Z. Bem, L. J.D ixon, D.C.D unbar, and D.A. K osow er, O ne-loop self-dual and $\mathrm{N}=4$ super-Y ang-M ills, Phys. Lett. B 394 (1997) 105\{115, hep-th/9611127].
[88] Z. Bem, L. J. D ixon, and D.A.K osower, P rogress in one-loop Q C D com putations, A nn. Rev. N ucl. Part. Sci. 46 (1996) 109\{148, hep-ph/9602280].
[89] Z. Bem, L.J.D ixon, and D.A.K osower, A two-loop four-ghon helicity am plitude in QCD ,JHEP 01 (2000) 027, hep-ph/0001001].
[90] Z. Bem, A . D e Freitas, and L. J. D ixon, Two-loop helicity am plitudes for ghon-ghon scattering in QCD and supersymmetric Y ang-M ills theory, JH EP 03 (2002) 018, hep-ph/0201161].
[91] S.J.B idder, N.E.J.B jerrum - B ohr, D. C.D unbar, and W . B . Perkins, O ne-loop ghon scattering am plitudes in theories with $N<4$ supersym m etries, P hys. Lett. B 612 (2005) 75\{88, hep-th/0502028].
[92] R . B ritto, E . B uchbinder, F. C achazo, and B. Feng, O ne-loop am plitudes of ghons in SQ CD , Phys. Rev. D 72 (2005) 065012, hep-ph/0503132].
[93] R . B ritto, B . Feng, and P.M astrolia, T he cut-constructible part of Q C D am plitudes, Phys. Rev. D 73 (2006) 105004, hep-ph/0602178].
[94] C. A nastasiou , R . B ritto , B . Feng, Z . K unszt, and P. M astrolia, D -dim ensional unitarity cutm ethod, Phys. Lett. B 645 (2007) 213\{216, [hep-ph/0609191].
[95] R . B ritto and B. Feng, U nitarity cuts w ith m assive propagators and algebraic expressions for coe cients, Phys. Rev. D 75 (2007) 105006, [hep-ph/0612089].
[96] C.A nastasiou , R . B ritto, B. Feng, Z . K unszt, and P.M astrolia, U nitarity cuts and reduction to m aster integrals in D dim ensions for one-loop am plitudes, JHEP 03 (2007) 111, hep-ph/0612277].
[97] R . B ritto, B . Feng, R . R oiban , M . Spradlin, and A . V olovich , A ll split helicity tree-level ghon am plitudes, Phys. Rev. D 71 (2005) 105017, hep-th/0503198].
[98] M.x. Luo and C.ł.W en, Recursion relations for tree am plitudes in super gauge theories, JH EP 03 (2005) 004, hep-th/0501121].
[99] M.-x. Luo and C.k.W en , C om pact form ulas for all tree am plitudes of six partons, Phys. Rev. D 71 (2005) 091501, hep-th/0502009].
[100] A. P. H odges, T w istor diagram recursion for all gauge-theoretic tree am plitudes, hep-th/0503060.
[101] A. P. H odges, T w istor diagram s for all tree am plitudes in gauge theory: A helicity-independent form alism, hep-th/0512336.
[102] A. P. H odges, Scattering am plitudes for eight gauge elds, hep-th/0603101.
[103] Z. Bem, L. J. D ixon, and D.A.K osow er, O n-shell recurrence relations for one-loop Q C D am plitudes, Phys. Rev. D 71 (2005) 105013, hep-th/0501240].
[104] Z. Bem, L. J. D ixon, and D.A. K osower, The last of the nite loop am plitudes in Q CD , Phys. Rev. D 72 (2005) 125003, hep-ph/0505055].
[105] Z. Bem, L. J.D ixon, and D. A. K osow er, B ootstrapping m ulti-parton loop am plitudes in Q CD ,Phys. Rev. D 73 (2006) 065013, hep-ph/0507005].
[106] Z.Bem, N.E.J.B jerrum B ohr, D.C.D unbar, and H. Ita, Recursive calculation of one-loop Q C D integral ooe cients, JH EP 11 (2005) 027, [hep-ph/0507019].
[107] D. Forde and D. A . K osow er, A ll-m ultiplicity one-loop corrections to M H V am plitudes in Q CD , Phys. Rev. D 73 (2006) 061701, hep-ph/0509358].
[108] C . F. B erger, Z . Bem, L. J. D ixon, D . Forde, and D . A . K osow er, B ootstrapping one-loop Q C D am plitudes with general helicities, Phys. Rev. D 74 (2006) 036009, hep-ph/0604195].
[109] C.F.Berger, V . D el D uca, and L. J. D ixon, Recursive construction of H iggs+ m ultiparton loop am plitudes: T he last of the -nite loop am plitudes, Phys. Rev. D 74 (2006) 094021, hep-ph/0608180].
[110] S.D.Badger, E.W . N. G lover, and K . R isager, O ne-loop - M H V am plitudes using the unitarity bootstrap, JHEP 07 (2007) 066, [arXiv:0704.3914 [hep-ph]].
[111] A. B randhuber, S.M CN am ara, B . Spence, and G . T ravaglini, Recursion relations for one-loop gravity am plitudes, JH EP 03 (2007) 029, hep-th/0701187].
[112] N . Berkovits, A n alternative string theory in twistor space for $\mathrm{N}=4$ super-Y ang-M ills, Phys. Rev. Lett. 93 (2004) 011601, hep-th/0402045].
[113] N. Berkovits and L.M otl, C ubic tw istorial string eld theory, JHEP 04 (2004) 056, hep-th/0403187].
[114] L. D olan and P. G oddard, T ree and loop am plitudes in open tw istor string theory, JHEP 06 (2007) 005, hep-th/0703054].
[115] W . S iegel, U ntw isting the tw istor superstring, hep-th/0404255.
[116] A. N eitzke and C.Vafa, $N=2$ strings and the tw istorial C ababi-Y au, hep-th/0402128.
[117] M . A ganagic and C.Vafa, M irror sym m etry and superm anifolds, hep-th/0403192.
[118] I. Bars, T w istor superstring in 2t-physics, Phys. Rev. D 70 (2004) 104022, hep-th/0407239].
[119] M . K ulaxiziand K . Zoubos, M arginaldeform ations of $N=4$ SYM from open/closed tw istor strings, N ucl. Phys. B 738 (2006) 317\{349, hep-th/0410122].
[120] P. G ao and J.B. W u, (N on)-supersym m etric m arginal deform ations from tw istor string theory, hep-th/0611128.
[121] J. Park and S.J. R ey, Supertw istor orbifolds: G auge theory am plitudes and topological strings, JH EP 12 (2004) 017, hep-th/0411123].
[122] S . G iom bi, M . K ulaxizi, R . R icci, D . R obles-L lana, D . Trancanelli, and K . Zoubos, O rbifolling the tw istor string, N ucl. Phys. B 719 (2005) 234\{252, hep-th/0411171].
[123] C.h. A hn, $N=1$ conform al supergravity and tw istor string theory, J. H igh Energy Phys. 10 (2004) 064, hep-th/0409195].
[124] C.h. A hn, $N=2$ conform al supergravity from tw istor-string theory, Int. J. M od. Phys. A 21 (2006) 3733\{3760, hep-th/0412202].
[125] M . Abou-Zeid and C.M.Hull, A chiral perturbation expansion for gravity, JHEP 02 (2006) 057, hep-th/0511189].
[126] V.P. Nair, A note on M HV am plitudes for gravitons, P hys. Rev. D 71 (2005) 121701, hep-th/0501143].
[127] A. D . Popov and M . W olf, Topological B -m odel on weighted projective spaces and self- dualm odels in four dim ensions, JH EP 09 (2004) 007, hep-th/0406224].
[128] D.W . Chiou, O . J. G anor, Y.P.H ong, B.S.K im, and I. M itra, M assless and m assive three dim ensional super Y ang $-M$ ills theory and m ini-tw istor string theory, Phys. Rev. D 71 (2005) 125016, hep-th/0502076].
[129] A. D. Popov, C . Sam ann, and M.W olf, T he topological B \{m odel on a m ini\{supertw istor space and supersym m etric Bogom olny m onopole equations, J. H igh Energy Phys. 0510 (2005) 058, hep-th/0505161].
[130] C.Sam ann, O n the m ini-superam bitw istor space and $N=8$ super Y ang $\{M$ ills theory, hep-th/0508137.
[131] O . Lechtenfeld and C.Sam ann, M atrix m odels and D -branes in tw istor string theory, J. H igh Energy Phys. 0603 (2006) 002, hep-th/0511130].
[132] A. D. Popov, Sigm a m odels with $N=8$ supersym m etries in $2+1$ and $1+1$ dim ensions, Phys. Lett. B 647 (2007) 509\{514, hep-th/0702106].
[133] D.W . Chiou, O . J. G anor, and B.S.K im , A deform ation of twistor space and a chiralm ass term in $N=4$ super Yang\{M ills theory, J. H igh E nergy P hys. 0603 (2006) 027, hep-th/0512242].
[134] R . R oiban , M . Spradlin, and A. Volovich, A googly am plitude from the B m odel in tw istor space, JH EP 04 (2004) 012, hep-th/0402016].
[135] R . R oiban and A. V olovich, A ll googly am plitudes from the B -m odel in tw istor space, Phys. Rev. Lett. 93 (2004) 131602, hep-th/0402121].
[136] R . R oiban , M . Spradlin, and A . Volovich, O n the tree-level S-m atrix of Y ang-M ills theory, Phys. Rev. D 70 (2004) 026009, hep-th/0403190].
[137] R . B oels, L . M ason, and D. Skinner, Supersym m etric gauge theories in tw istor space, JH EP 02 (2007) 014, hep-th/0604040].
[138] R . B oels, L.M ason, and D. Skinner, From tw istor actions to M HV diagram s, Phys. Lett. B 648 (2007) $90\{96$, hep-th/0702035].
[139] R . B oels, A quantization of tw istor Y ang-M ills theory through the background eld m ethod, hep-th/0703080.
[140] L. J.M ason, Twistor actions for non-self-dual elds: A derivation of tw istor-string theory, JH EP 10 (2005) 009, hep-th/0507269].
[141] L. J.M ason and D. Skinner, A n am bitw istor Y ang-M ills Lagrangian, Phys. Lett. B 636 (2006) $60\{67$, hep-th/0510262].
[142] M .W olf, Self-dual supergravity and tw istor theory, arXiv:0705.1422 [hep-th].
[143] L. J.M ason and M .W olf, A tw istor action for $N=8$ self-dual supergravity, arXiv:0706.1941 [hep-th].
[144] M . W olf, O n hidden sym m etries of a super gauge theory and tw istor string theory, JH EP 02 (2005) 018, hep-th/0412163].
[145] A. D. P opov and M . W olf, H idden sym m etries and integrable hierarchy of the $N=4$ supersym m etric Y ang-M ills equations, C om m un. M ath. Phys. 275 (2007) 685\{708, hep-th/0608225].
[146] O . Lechtenfeld and A. D. Popov, Supertw istors and cubic string eld theory for open $N=2$ strings, Phys. Lett. B 598 (2004) 113, hep-th/0406179].
[147] C . Sam ann, T he topological B m odel on fattened com plex manifolds and subsectors of $N=4$ self-dual Y ang-M ills theory., J. H igh E nergy Phys. 0501 (2005) 042, hep-th/0410292].
[148] P. A . G rassi and G . P olicastro, Super C hem-Sim ons theory as superstring theory, hep-th/0412272.
[149] T. Tokunaga, String theories on at superm anifolds, hep-th/0509198.
[150] R . R icci, Super C alabi-Y au's and special Lagrangians, JH EP 03 (2007) 048, hep-th/0511284].
[151] C.N. Yang and R.L.M ills, C onservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954) 191\{195.
[152] R . K leiss and H.K uiff, M ulti-ghon cross-sections and ve jet production at hadron colliders, N ucl. Phys. B 312 (1989) 616.
[153] M . L. M angano and S.J. Parke, M ultiparton am plitudes in gauge theories, Phys. Rept. 200 (1991) 301\{367, hep-th/0509223].
[154] L. J.D ixon, C alculating scattering am plitudes e ciently, hep-ph/9601359.
[155] M .L.M angano, S.J.Parke, and Z.Xu,D uality and m ulti-ghon scattering, N ucl. Phys. B 298 (1988) 653.
[156] Z. Bem and D. A. K osow er, C olor decom position of one-loop am plitudes in gauge theories, N ucl. Phys. B 362 (1991) $389\{448$.
[157] J. E. Paton and H.M. C han, G eneralized V eneziano m odelwith isospin, N ucl. Phys. B 10 (1969) 516\{520.
[158] Z. K oba and H.B.N ielsen, M anifestly crossing-invariant param etrization of n-m eson am plitude, N ucl. Phys. B 12 (1969) 517\{536.
[159] E.W itten, \O nassis Lectures on Strings and Fields, 5-9 July 2004, Foundation for R esearch and Technology - H ellas, H eraklion, http://www.forth.gr/onassis/lectures/2004-07-05/programme.html."
[160] M . Jacob and G . C . W ick, O n the general theory of collisions for particles with spin, A nn. Phys. 7 (1959) $404\{428$.
[161] F. C achazo and P. Svrcek, Lectures on tw istor strings and perturbative Y ang-M ills theory, PoS R T N 2005 (2005) 004, hep-th/0504194].
[162] V . V . K hoze, G auge theory am plitudes, scalar graphs and tw istor space, hep-th/0408233.
[163] Z. Xu, D.H. Zhang, and L. Chang, Helicity am plitudes for m ultiple brem sstrahlung in m assless non-A belian gauge theories, Nucl. Phys. B 291 (1987) 392.
[164] S.J.Parke and T.R.Taylor, P erturbative Q CD utilizing extended supersym m etry, P hys. Lett. B 157 (1985) 81.
[165] B.S.D eW itt, Q uantum theory of gravity III: A pplications of the covariant theory, Phys. Rev. 162 (1967) 1239\{1256.
[166] M . T. G risaru , H . N. Pendleton, and P . van N ieuw enhuizen, Supergravity and the S m atrix, Phys. Rev. D 15 (1977) 996.
[167] M . T . G risaru and H . N . Pendleton, Som e properties of scattering am plitudes in supersym m etric theories, N ucl. Phys. B 124 (1977) 81.
[168] S.J.B idder, D. C . D unbar, and W . B. Perkins, Supersym m etric W ard identities and NM HV am plitudes involving gluinos, JHEP 08 (2005) 055, hep-th/0505249].
[169] M . L. M angano and S.J. Parke, Q uark-ghoon am plitudes in the dual expansion, N ucl. Phys. B 299 (1988) 673.
[170] S. J. Parke and T.R.Taylor, A n am plitude for n-ghon scattering, Phys. Rev. Lett. 56 (1986) 2459.
[171] F. A. Berends and W .T.G iele, Recursive calculations for processes w ith n gluons, N ucl. Phys. B 306 (1988) 759.
[172] R. Penrose and M . A. H . M acC allum , Twistor theory: An approach to the quantization of elds and space-tim e, Phys. Rept. 6 (1972) $241\{316$.
[173] R . Penrose, Tw istor quantization and curved space-tim e, Int. J. T heor. Phys. 1 (1968) 61\{99.
[174] R. Penrose, \Talk given at: Twistor String T heory, T he M athem atical Institute, U niversity of O xford, 10-14 January 2005, http://www.maths.ox.ac.uk/ lmason/Tws/Penrose1.pdf."
[175] V . P. N air, A current algebra for som e gauge theory am plitudes, P hys. Lett. B 214 (1988) 215.
[176] R. Penrose and W . R indler, Spinors and space-tim e. Vol 1: Two-spinor calculus and relativistic elds. C am bridge, UK : Univ. Pr., 1984.
[177] R. Penrose and W . R indler, Spinors and space-tim e. Vol. 2: Spinor and tw istor m ethods in space-tim e geom etry. C am bridge, UK : U nìv. Pr., 1986.
[178] S.A. H uggett and K.P. Tod, A n introduction to tw istor theory. C am bridge, UK : Univ. Pr., 1985.
[179] I. Bena, Z . Bem, and D. A. K osow er, Twistor-space recursive form ulation of gauge theory am plitudes, Phys. Rev. D 71 (2005) 045008, hep-th/0406133].
[180] Z.Bem, L.J.D ixon, and D.A. K osow er, A ll next-to-m axim ally-helicity-violating one-loop ghon am plitudes in $N=4$ super-Y ang-M ills theory, Phys. Rev. D 72 (2005) 045014, hep-th/0412210].
[181] Z. Bem, V. D el D uca, L. J. D ixon, and D. A. K osow er, A 17 non-m axim ally-helicity-violating one-loop seven-gluon am plitudes in $N=4$ super-Y ang-M ills theory, Phys. Rev. D 71 (2005) 045006, hep-th/0410224].
[182] R . B ritto, F. C achazo, and B. Feng, C oplanarity in tw istor space of $N=4$ next-to-M H V one-loop am plitude coe cients, Phys. Lett. B 611 (2005) 167\{172, [hep-th/0411107].
[183] I. Bena, Z . Bem, D . A . K osower, and R . R oiban, Loops in tw istor space, P hys. Rev. D 71 (2005) 106010, hep-th/0410054].
[184] S. J. B idder, N . E. J. B jerrum B ohr, D. C.D unbar, and W . B . Perkins, T wistor space structure of the box coe cients of $\mathrm{N}=1$ one-loop am plitudes, Phys. Lett. B 608 (2005) 151\{163, hep-th/0412023].
[185] E. W itten, T opological sigm a m odels, C om m un. M ath. Phys. 118 (1988) 411.
[186] E.W itten, O n the structure of the topological phase of two-dim ensional gravity, Nucl. Phys. B 340 (1990) $281\{332$.
[187] M . Vonk, A m ini-course on topological strings, hep-th/0504147.
[188] M . N akahara, G eom etry, topology and physics. B ristol, U K : H ilger, 1990.
[189] P. C andelas, Lectures on com plex m anifolds, In: T rieste 1987, P roceedings, Superstrings '87 (1987) 1 \{88.
[190] G. T . H orow itz, W hat is a C alabi-Y au space?, In: Proc. of W orkshop on U ni ed String Theories, Santa B arbara, CA, Jul 29 - A ug 16, 1985.
[191] V . B ouchard, Lectures on com plex geom etry, C alabi-Y au m anifolds and toric geom etry, In: P roccedings of the M odave Sum m er School in M athem atical Physics (2005) hep-th/0702063].
[192] W . Lerche, C.Vafa, and N.P.W amer, C hiral rings in $N=2$ superconform al theories, N ucl. Phys. B 324 (1989) 427.
[193] L. J.D ixon, \Som e world-sheet properties of superstring com pacti cations, on onbifolds and otherw ise: Lectures given at the 1987 IC TP Sum m er W orkshop in H igh Energy Physics and C osm ology, Trieste, Italy, Jun 29 - A ug 7, 1987."
[194] K. H oriet al, M irror sym m etry. P rovidence, U SA : AM S, 2003.
[195] E.W itten, C hem-Sim ons gauge theory as a string theory, Prog. M ath. 133 (1995) 637\{678, hep-th/9207094].
[196] E. W itten, N oncom m utative geom etry and string eld theory, N ucl. Phys. B 268 (1986) 253.
[197] A. D. Popov and C. Sam ann, On supertw istors, the PenroseW ard transform, and $N=4$ super Y ang -M ills theory, Adv. Theor. M ath. Phys. 9 (2005) 931, hep-th/0405123].
[198] W . Siegel, $N=2(4)$ string theory is self\{dual $N=4 Y$ ang -M ills theory, Phys. Rev. D 46 (1992) R 3235, hep-th/9205075].
[199] S . G ukov, L.M otl, and A. N eitzke, Equivalence of tw istor prescriptions for super Y ang-M ills, hep-th/0404085.
[200] E. S. Fradkin and A . A . T seytlin, C onform al supergravity, Phys. Rept. 119 (1985) $233\{362$.
[201] D . L . Bennett, H . B . N ielsen, and R . P.W oodard, T he initial value problem for m axim ally non-local actions, Phys. Rev. D 57 (1998) 1167\{1170, (hep-th/9707088].
[202] R . R oiban , \Talk given at: From Twistors to Am plitudes, Q ueen M ary, U niversity of London, 3-5 N ovem ber 2005, http://www.strings.ph.qmul.ac.uk/ andreas/FTTA/RRoiban.pdf."
[203] A . G orsky and A . R osly, From Y ang-M ills Lagrangian to M HV diagram s, JH EP 01 (2006) 101, hep-th/0510111].
[204] H . Feng and Y .t. H uang, M HV Lagrangian for N = 4 super Yang-M ills, hep-th/0611164.
[205] M . B. G reen, J. H . Schw arz, and L. Brink, N $=4 \mathrm{Y}$ ang -M ills and $\mathrm{N}=8$ supergravity as lim its of string theories, N ucl. Phys. B 198 (1982) $474\{492$.
[206] R . P. Feynm an, Q uantum theory of gravitation, A cta Phys. Polon. 24 (1963) 697\{722.
[207] R . P. Feynm an , C losed loop and tree diagram s, In: J R K lauder, M agic W ithout M agic, San Francisco 1972 (1972) 355\{375.
[208] R . P. Feynm an, Problem s in quantizing the gravitational eld, and the m assless Y ang-M ills eld, In: J R K lauder, M agic W ithout M agic, San Francisco 1972 (1972) 377\{408.
[209] L . J. D ixon, \P rivate com m unication (2004)."
[210] R . E. C utkosky, Singularities and discontinuities of F eynm an am plitudes, J. M ath. Phys. 1 (1960) 429\{433.
[211] J. C. C ollins, D.E.Soper, and G. Sterm an , Factorization of hard processes in Q CD , Adv. Ser. D irect. H igh Energy Phys. 5 (1988) 1\{91, hep-ph/0409313].
[212] G. Passarino and M .J.G .Veltm an, O ne-loop corrections for $e^{+} e$ annihilation into + in the W einberg m odel, N ucl. Phys. B 160 (1979) 151.
[213] W . L . van N eerven, D im ensional regularization of m ass and infrared singularities in two loop on-shell vertex functions, N ucl. P hys. B 268 (1986) 453.
[214] W . Beenakker, H . K uifí, W . L . van Neerven, and J. Sm ith, Q CD corrections to heavy quark production in pp collisions, Phys. Rev. D 40 (1989) $54\{82$.
[215] G . D uplancic and B.N izic, D im ensionally regulated one-bop box scalar integrals with m assless internal lines, Eur. Phys. J. C 20 (2001) 357\{370, hep-ph/0006249].
[216] T . B inoth , J.P.G uillet, and G.H einrich, Reduction form alism for dim ensionally regulated one-loop n-point integrals, N ucl. Phys. B 572 (2000) $361\{386$, hep-ph/9911342].
[217] Z. Bem, Perturbative quantum gravity and its relation to gauge theory, Living Rev.Rel. 5 (2002) 5, [gr-qc/0206071].
[218] F.A. Berends, W . T . G iele, and H. K uijf, O n relations between m ulti-ghon and m ulti-graviton scattering, Phys. Lett. B 211 (1988) 91.
[219] H . K awai, D . C . Lew ellen, and S.H.H.T ye, A relation betw een tree am plitudes of closed and open strings, N ucl. P hys. B 269 (1986) 1.
[220] C . F . B erger, Z . Bem, L. J. D ixon, D . Forde, and D . A . K osow er, O n-shell unitarity bootstrap for Q C D am plitudes, N ucl. Phys. Proc. Suppl 160 (2006) 261\{270, hep-ph/0610089].
[221] C . B . Thom, N otes on one-loop calculations in light-cone gauge, hep-th/0507213.
[222] D. Chakrabarti, J. Q iu, and C.B.Thom, Scattering of glue by ghe on the light-cone w orldsheet, I: H elicity non-conserving am plitudes, Phys. Rev. D 72 (2005) 065022, hep-th/0507280].
[223] D. Chakrabarti, J. Q iu, and C.B.Thom, Scattering of glue by ghe on the light-cone w orldshet, II: H elicity conserving am plitudes, Phys. Rev. D 74 (2006) 045018, hep-th/0602026].
[224] C. A nastasiou, Z. B em , L. J. D ixon, and D. A . K osow er, P lanar am plitudes in m axim ally supersym m etric Y ang-M ills theory, Phys. Rev. Lett. 91 (2003) 251602, hep-th/0309040].
[225] Z. Bem, L. J. D ixon, and V.A.Sm imov, Iteration of planar am plitudes in m axim ally supersym m etric Y ang $-M$ ills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001, hep-th/0505205].
[226] Z. Bem, M . C zakon, L. J. D ixon, D. A . K osow er, and V. A. Sm imov, T he four-loop planar am plitude and cusp anom alous dim ension in maxim ally supersym m etric Y ang-M ills theory, Phys. Rev. D 75 (2007) 085010, hep-th/0610248].
[227] F. C achazo, M . Spradlin, and A . V olovich, H idden beauty in m ultiloop am plitudes, JH EP 07 (2006) 007, hep-th/0601031].
[228] F. C achazo, M . Spradlin, and A . Volovich, Iterative structure within the ve-particle two-loop am plitude, Phys. Rev. D 74 (2006) 045020, hep-th/0602228].
[229] F . C achazo, M . Spradlin, and A . Volovich, Four-loop cusp anom alous dim ension from obstructions, Phys. Rev. D 75 (2007) 105011, hep-th/0612309].
[230] L. F. A lday and J. M . M aldacena, G hoon scattering am plitudes at strong coupling, JH EP 06 (2007) 064, [arXiv:0705.0303 [hep-th]].
[231] S . A bel, S . Forste, and V . V . K hoze, Scattering am plitudes in strongly coupled $N=4$ SYM from sem iclassical strings in AdS, arXiv:0705.2113 [hep-th].
[232] A. N asti and G. Travaglini, O ne-loop $N=8$ supergravity am plitudes from M HV diagram s, arXiv:0706.0976 [hep-th].
[233] M . G ell-M ann, M . L . G oldberger, and W . E. Thirring, U se of causality conditions in quantum theory, Phys. Rev. 95 (1954) $1612\{1627$.
[234] L.D. Landau, On analytic properties of vertex parts in quantum eld theory, Nucl. Phys. 13 (1959) 181\{192.
[235] S.M andelstam, D eterm ination of the pion-nucleon scattering am plitude from dispersion relations and unitarity. G eneral theory, Phys. Rev. 112 (1958) 1344\{1360.
[236] S . M andelstam , A nalytic properties of transition am plitudes in perturbation theory, Phys. Rev. 115 (1959) 1741\{1751.
[237] R . J.Eden, P. V . Landsho , D . I. O live, and J. C . Polkinghome, The analytic S-m atrix. C am bridge, U K : U niv. Pr., 1966.
[238] G . B . A rfken and H . J.W eber, M athem aticalm ethods for physicists. H arcourt, U SA : A cadem ic Pr., 1966.
[239] G.'t H ooft and M .J.G.Veltm an, Regularization and renorm alization of gauge elds, N ucl Phys. B 44 (1972) 189\{213.
[240] Z. Bem, L. J. D ixon, M . Perelstein, and J. S. R ozow sky, M ulti-leg one-loop gravity am plitudes from gauge theory, Nucl. Phys. B 546 (1999) 423\{479, hep-th/9811140].

[^0]: ${ }^{1} \mathrm{PhD}$ thesis presented in June 2007.

[^1]: ${ }^{2}$ See e.g. [1] for an introductory text on the standard m odel and e.g. [2, 3, 4, 5] for treatises on quantum eld theory in general.

[^2]: ${ }^{3}$ See [13, 14] for an overview containing the action and Feynm an rules.
 ${ }^{4}$ A ctually $e()$ is an einbein.

[^3]: ${ }^{5} \mathrm{~N}$ ote that the string tension is usually written as $T=1=\left(2{ }^{0}\right)$ where ${ }^{0}=l_{s}^{2} w$ ith l_{s} the string length.

[^4]: ${ }^{6} \mathrm{~N}$ ote that in order to treat the strings pertunbatively we m ust actually take N ! 1 .
 ${ }^{7}$ The sam e applies to Q CD at tree-level due to an e ective supersym m etry - see x 1.3 .

[^5]: ${ }^{8}$ A n interesting possibility has recently arisen in [39] where a num ber of new dualities were constructed betw een eld theories involving gravity and tw istor string theory, O ne of which is a duality betw een $N=4 Y$ ang M ills coupled to E instein supergravity and a tw istor string theory. A n interesting feature of this appears to be the existence of a decoupling lim it giving pure Yang-M ills which m ight open the prospect of a tw istor string form ulation of Y ang -M ills at loop-level.

[^6]: ${ }^{9}$ i.e. the am plitudes which are M HV am plitudes when the helicities of all particles are reversed. They thus describe the scattering of 2 gluons of positive helicity w ith $n \quad 2$ gluons of negative helicity.

[^7]: ${ }^{1} N$ ote that the follow ing num bers are relevant for the case where one is considering a single colour structure only. T he total num ber of diagram s after sum m ing over all possible colour structures is even greater still. For m ore on this see 1.1

[^8]: ${ }^{2} T$ h is is di erent from the m ore fam iliar $\operatorname{tr}\left(T^{a} T^{b}\right)={ }^{a b}=2$, but is purely a convention used to avoid the proliferation of factors of 2 . N ote that the Feynm an rules written down at the beginning of the chapter use $\operatorname{tr}\left(T^{a} T^{b}\right)={ }^{a b}=2$. To rew rite the diagram s in a way that is consistent w ith these_ m ore natural' colour ordering conventions one sim ply has to replace $T^{a}!T^{a}=\overline{2}$ and $f^{a b c}!f^{a b c}=\overline{2}$. See also A ppendix B.

[^9]: ${ }^{3} \mathrm{~N}$ ote that Eq. 1.1.5) is appropriate for the case where we have just one qq pair. w ith m ore pairs there w ill be products of strings w ith each string term inated by fundam ental and anti-fundam ental indices giving term S like $\left(T^{a}::: T^{b}\right)_{i}{ }^{\prime}:::\left(T^{c}::: T^{d}\right)_{k}{ }^{l}$. In the nalexpression, each generatorw illappear only once in any given term of course.

[^10]: ${ }^{4} \mathrm{~N}$ ote that this section is based largely on the spinor helicity review s of [31, 159, 161]. See also A ppendix 因 for m ore details and identities and [162] for another good review covering m any aspects of this chapter.

[^11]: ${ }^{5} \mathrm{~W}$ e will often use the term schirality and helicity interchangeably.

[^12]: ${ }^{6}$ The full expression $A_{n}\left(i ; \sim_{i} ; h_{i}\right) \quad{ }^{(4)}\left(\sum_{i=1}^{n} \quad i^{\sim_{i}}\right)$ also obeys [1.2.15) (31].

[^13]: ${ }^{7}$ T he ghon am plitudes at tree-level are invariant under the full conform algroup rather than just the Poincare group. This is because of the classical conform al invariance of both m assless $Q C D$ and any of the other supersym m etric eld theories that we have been considering. Am plitudes in som e of these supersym m etric theories (especially $N=4 Y$ ang -M ills) also have quantum conform al invariance.

[^14]: ${ }^{8} \mathrm{H}$ ere we follow 31] and w rite $C P^{3^{0}}$ instead of $C P^{3}$ because $\mathrm{H}^{(0 ; 2)}\left(\mathrm{CP}^{3} ; \mathrm{O}(2 \mathrm{~h} 2)\right)=0$ and we should really work w ith a suitable open set of CP (which we denote with a prim e) rather then all of tw istor space.

[^15]: ${ }^{9} \mathrm{~T}$ his factor of ${ }^{I}$ is precisely what converts the wavefunctions from being of degree 2 h 2 to being of degree 0 . O ne m ight also wonder why the power of $=$ is only $2 \mathrm{~h} \quad 1$ and not 2 h 2 given that the w avefunctions on $C P^{3}$ (i.e. w ith the factor of g_{h} om itted) are of degree $2 h \quad 2 . T$ is is because the holom onphic delta function is of degree 1 and thus gives the correct scaling properties overall.

[^16]: ${ }^{10}$ Tech incally the space is really n copies of tw istor space.
 ${ }^{11}$ R ecall that $S^{2}=C P^{1}$.

[^17]: ${ }^{12} \mathrm{SO}(3 ; 3)=\mathrm{SL}(4 ; \mathrm{R})$ is the conform al group in signature $++\quad$.

[^18]: ${ }^{13}$ In fact $C P^{3 \mathrm{~N}}$ is C alabi-Y au i $\mathrm{N}=4$.

[^19]: ${ }^{14}$ To be m ore precise it is the tw istor transform of the $\mathrm{N}=4 \mathrm{~m}$ ultiplet [32, [197].
 ${ }^{15}$ Recall that for G rassm an variables, $\int \mathrm{d} \quad @=@$ with $\int \mathrm{d}^{\mathrm{I}}{ }^{\mathrm{J}}={ }^{\mathrm{IJ}}$ and ()$=$.
 ${ }^{16} \mathrm{~N}$ ote that the I indices on the com ponent elds in (1.6.12) are fundam ental indices of th is $\mathrm{SU}(4)_{\mathrm{R}}$.

[^20]: ${ }^{17} \mathrm{~N}$ ote that form ally we can w rite the self-dual and anti-self-dual parts of F^{0} as $\mathrm{F}_{\mathrm{SD}}^{0}=\left(\mathrm{F}^{0}+\quad \mathrm{F}^{0}\right)=2$ and $F_{A S D}^{0}=\left(F^{0} \quad F^{0}\right)=2$. H ere we have taken $\quad \mathrm{F}=\mathrm{F}^{0}$.
 ${ }^{18} \mathrm{~W}$ e refer to the tree-level M H V am plitudes as being the 'classical' case as it tums out that we can re-form ulate perturbation theory in term s of $\mathbb{M} H V$-vertices' - see 1.7 - and they are thus appropriate for consideration of S-charge violation at the level of the action.

[^21]: ${ }^{19} \mathrm{~W}$ e use subscripts s_{i} etc. to denote the ith particle for the rest of this section in order to avoid confusion w ith the gauge indices.

[^22]: ${ }^{20} \mathrm{R}$ ecall that the delta functions of (1.6.26) have set $\mathrm{s}_{\mathrm{k}}=\mathrm{s}_{\mathrm{k}}$.

[^23]: ${ }^{21}$ For a review see e.g. [200].

[^24]: ${ }^{22}$ W e w ill say m ore about loop am plitudes shortly.
 ${ }^{23}$ It tums out that the C SW approach at loop-level only calculates the cut-containing term s, thus m irroring the cut-constructibility approach of BDDK. The rational term s are inextricably linked to these in supersym m etric theories but m ust be obtained in other ways in non-supersym m etric ones. See also A ppendix D.

[^25]: ${ }^{24}$ The i" prescription in the left-and right-hand sides of [1.8.1) was understood in [37], and, as stressed in [79, 179, 209] it is essential in order to correctly perform loop integrations.

[^26]: ${ }^{25} \mathrm{~W}$ e thank the authors of 79] for allow ing the re-production of F igure 17 of that paper.
 ${ }^{26}$ In our conventions all extemalm om enta are outgoing.

[^27]: ${ }^{27} \mathrm{~N}$ ote that 1 m ass and zerom ass bubbles are usually taken to vanish in dim ensional regularization which is interpreted as a cancellation of infrared and ultraviolet divergences [42, 211].

[^28]: ${ }^{28}$ Be careful to note that in the follow ing expression i and j refer to the di erent possibilities $\mathrm{m}_{1}, \mathrm{~m}_{2}$, $m_{2}+1$ and $m_{1} \quad 1$, and not to the negative-helicity particles of the overall am plitude which now only arise in the factor of $A_{n}^{\text {tree }}$.

[^29]: ${ }^{29}$ See A ppendix Cor details.

[^30]: ${ }^{30}$ See also A ppendix 国 for an analytic proof of the sam e statem ent for triangle functions.

[^31]: ${ }^{1}$ The kinem atical invariant $s=(P+p)^{2}$ should not be confused w ith the labels which is also used to label an extemal leg (as in Figure 2.1 for exam ple). The correct m eaning w ill be clear from the context.

[^32]: ${ }^{2} \mathrm{M}$ ore precisely, this agreem ent holds only in certain kinem atical regim es e.g. in the Euclidean region where all kinem atical invariants are negative. M ore care is needed when analytically continuing the am plitude to the physical region. T he usual prescription of replacing a kinem atical invariant s by $s+i "$ and continuing s from negative to positive values gives the correct result only for our form of the box function 2.1.9), whereas 2.1.11) has to be am ended by correction term s [216].

[^33]: ${ }^{3} T$ he function $T(p ; P ; Q)$ de ned in 2.1.14) arises naturally in the tw istor-inspired approach which w ill be developed in 2.2.

[^34]: ${ }^{4} \mathrm{~W}$ e can also obtain the $\mathrm{N}=2 \mathrm{am}$ plitude in a com pletely sim ilar way.

[^35]: ${ }^{5}$ In 2.2.12) we om it an overall, nite num erical factor that depends on. This factor, which can be read o from E.2.12), is irrelevant for our discussion.

[^36]: ${ }^{6}$ A rem ark is in order here. In our procedure the m om entum appearing in each of the possible cuts is always shifted by an am ount proportional to z; the triangle is then reproduced by perform ing the appropriate dispersion integrals. B ecause of the above m entioned shift, we produce a non-vanishing cut (w ith shifted m om entum) even when the cut includes only one extemal (m assless) leg, say \widetilde{K}, as the m om entum ow ing in the cut is e ectively $\widetilde{\mathrm{K}}_{\mathrm{z}}=\widetilde{\mathrm{K}} \quad \mathrm{z}$, so that $\widetilde{\mathrm{K}}_{\mathrm{z}}^{2} \in 0$.

[^37]: ${ }^{7}$ In writing 2.2.22), we m ake also use of the fact that $S\left(i ; j ; q_{n} \quad 1 ; a ; p_{m}\right)=S\left(i ; j ; q_{m} ; a ; p_{m}\right)$.

[^38]: ${ }^{1}$ For scalar elds, the \helicity" sim ply distinguishes particles from antiparticles (see, for exam ple, [154]).

[^39]: ${ }^{2}$ For m ore details about cut-constructibility, see the detailed analysis in Sections 3-5 of 42] and A ppendix of th is thesis for a brief review .
 ${ }^{3} \mathrm{~A} n$ exam ple of an integral violating the power-counting criterion of [42] is provided by G .1.3).

[^40]: ${ }^{4}$ For $\mathrm{r}=1 \mathrm{wew}$ ill om it the superscript (1) in $\mathrm{T}^{(1)}$.

[^41]: ${ }^{5} \mathrm{~A}$ factor of $4{ }^{\wedge} \mathrm{w}$ ill be understood on the right hand sides of Eqs. (3.2.19), 3.2.21) and 3.2.23), where ${ }^{\wedge}$ is de ned in (G.1.11).

[^42]: ${ }^{6}$ In our notation L_{2} corresponds to $T{ }^{(3)}$, which, how ever, lacks a rational term .

[^43]: ${ }^{7}$ W e drop the factor of $i A_{n}^{\text {tree }}$ from now on and reinstate it at the end of the calculation.

[^44]: ${ }^{8} \mathrm{~W}$ e m ultiply our nal results by a factor of 2 , which takes into account the tw o possible helicity assignm ents for the scalars in the loop.
 ${ }^{9}$ In 3.2 we have ilhustrated in detail how this sum is perform ed for the sim pler case of adjacent negative-helicity gluons.

[^45]: ${ }^{10} \mathrm{~T}$ he infrared-divergent term s w ill be described below and used to check that our result has the correct infrared pole structure.

[^46]: ${ }^{11} c=r=(4)^{2} \quad$ is given in tem s of Eq. C 3.1).
 ${ }^{12}$ The derivation in [44] used string-based m ethods which a ect the coe cient of the pole term. In Eq. 3.4.2) we have w ritten the pole coe cient which m atches the ad jacent case.

[^47]: ${ }^{1}$ H ere we m ean gravity as a eld theory (rather than as a string theory).

[^48]: ${ }^{2} W$ e have checked that $M(z) O\left(1=z^{2}\right)$ as $z!1$, analytically for $n \quad 7$ legs and num erically for n 11 legs.

[^49]: ${ }^{3}$ See A ppendix H for explicit exam ples of K LT relations for four, ve and six legs.

[^50]: ${ }^{4}$ This was also suggested in [103].

[^51]: ${ }^{1}$ A very recent paper [230] by A Iday and M aldacena appears to have taken a step in this direction. They show how to calculate gluon scattering am plitudes at strong coupling from a classical string con guration via the AdS/CFT correspondence. As a result the full nite form of the four-ghon scattering am plitude in $N=4$ super $-Y$ ang $-M$ ills is presented. See also [231] which addresses the $n-p o i n t$ case.
 ${ }^{2}$ Shortly after the com pletion of this w ork [232] appeared which deals w ith precisely this point.

[^52]: ${ }^{1}$ Recall that we have the shorthand notation h i $j i=$ hi ji etc.

[^53]: ${ }^{1} \mathrm{~N}$ ot to be confused w ith the angles i of (C.1.1) and C.1.2).

[^54]: ${ }^{1} \mathrm{~N}$ ote that som e of this appendix is based on Section 7.3 of [2].

[^55]: ${ }^{2}$ In fact the optical theorem is usually stated in term s of the forw ard scattering am plitude, in which case we have $k_{a}=p_{i}$. The theorem is m ore general than this though and can be applied to generic asym ptotic states.

[^56]: ${ }^{3}$ For purely m assless theories, $\mathrm{x}_{0}=0$.
 ${ }^{4}$ See e.g. [238] for a fuller explanation of these ideas.

[^57]: ${ }^{1}$ For the rest of this appendix we drop the subscript z in $P_{L} ; z$ for the sake of brevity.

[^58]: ${ }^{1}$ For a review of dispersion relations see 237] and A ppendix D.

[^59]: ${ }^{2}$ The -dependent triangle function already appeared in (2.1.14).

[^60]: ${ }^{1}$ For the rest of this appendix we will generally drop the subscript z in $P_{L ; z}$ for the sake of brevity.

