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Abstract 
The characteristics of the synchrotron radiation generated by an electron 
beam in bending magnets, planar undulators and wiggler magnets are 
derived, with emphasis on the spectral flux, brilliance, and power densities. 
The interaction of the electron beam with the insertion device field is 
discussed in terms of closed orbit distortion, tune shift and non-linear effect. 
The technology of permanent magnet insertion devices is presented. A brief 
mention is made of the insertion devices used to generate circularly 
polarized radiation as well as undulators for free electron lasers. 

1 Introduction 
In the 1970s it was known that the large flux of VUV and X-ray synchrotron radiation available from 
the bending magnets of the first generation of storage rings dedicated to research in high-energy 
physics could have a large impact on many other domains of science. This radiation is indeed the most 
intense and powerful available at wavelengths shorter than those attainable by laser technology. The 
effort made to optimize the source of such radiation naturally lead to the idea of wigglers and 
undulators, generally called insertion devices. An insertion device can be viewed as a sequence of 
bending magnets of opposite polarity driving the beam in an oscillatory motion. The radiation from 
each bend therefore accumulates in a preferential direction producing very high spectral flux. It was 
very quickly recognized that the radiation from each pole interferes with the other resulting in 
emission spectra made of narrow peaks and peak intensity growing like the square of the number of 
periods. Insertion devices which are optimized to make use of the enhanced spectral flux due to the 
interference are now called undulators. They are built with short periods and medium fields as 
opposed to wigglers, which are usually optimized for large magnetic fields resulting in longer periods 
with negligible enhancement by interference. A review article covering the early phase of 
development is given in [1]. Nowadays, insertion devices are not only used to provide higher flux 
compared to bending magnet sources, but also to produce radiation with different polarization 
characteristics.  

Section 2 defines the formalism used to compute synchrotron radiation properties. Sections 3, 4 
and 5 apply this formalism to the cases of bending magnet radiation, undulator radiation and wiggler 
radiation. Section 6 deals with the perturbations induced by the magnetic field of an insertion device 
on the electron beam dynamics in a storage ring. Section 7 presents a short review of the engineering 
issues encountered with permanent magnet undulators and wigglers. Section 8 introduces two special 
cases of exotic undulators built either for generating an arbitrary type of polarization or for a free 
electron laser experiment.  

This lecture is largely inspired from a multi-author book edited by the author [2]. The reader 
must consider this lecture as a basic introduction and should refer to [2] for a more complete and 
detailed presentation. One should also mention another lecture on the same topics made by R.P. 
Walker in a previous CERN Accelerator School [3]. The content of the present lecture has been 
organized to be a complement of this lecture rather than a duplication. Another detailed presentation 
of the characteristics of synchrotron radiation has been given by K.J. Kim [4]. 
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2 Generalities on synchrotron radiation 
Synchrotron radiation is emitted by ultra-relativistic electrons as they propagate in a magnetic field. 
The analytical derivation of its electric and magnetic field can be made by means of the so-called 
retarded potentials. The derivation is rather lengthy and technical, it can be found in text books [5]. 
We shall not reproduce it in this lecture but rather emphasize some important results. We assume an 
ultra-relativistic electron of energy 2mcγ  with 1γ >> . We also assume the so-called far field 
approximation for which the electron emitting the radiation is far away enough from the observer so 
that the unit vector n̂  directing between the electron and the observer is a constant during the electron 
motion. This approximation is largely justified in the large majority of cases of interest. We shall 
further assume for the moment that the radiation is produced by a filament and mono-energetic 
electron beam of current I. 

Let ˆ ˆ( , , )
/

d n u
d d

ω
ω ω
Φ

Ω
 be the number of photons emitted per second in a direction defined by 

n̂ , at the frequency ω  with a polarization described by the complex unit vector û . In the following, 

we shall commonly call 
/

d
d dω ω

Φ
Ω

 the angular spectral flux. It can be expressed as: 

 
2*ˆ ˆ ˆ ˆ( , , ) ( , )

/
d In u H n u

d d e
ω α ω

ω ω
Φ =

Ω
G

 (1) 

where 2
04 1/137e hcα πε= =  is the fine structure constant, *û  is the complex conjugate of û  and 

ˆ( , )H n ω
G

is a dimensionless field vector which is expressed as [6]: 

 
ˆˆ ˆ ˆ( , ) ( ) exp ( )

2
nRH n n n i d
c

ωω ϑ ω τ τ
π

∞

−∞

⎛ ⎞
= × × −⎜ ⎟

⎝ ⎠
∫

GGG
 (2) 

where R
G

and ϑ
G

 are the position and electron velocity of an electron at time .τ  ˆ( , )H n ω
G

 is a two 
dimensional vector  always  perpendicular to n̂ . The expressions of R

G
and ϑ

G
 are obtained by solving 

the Lorentz Force equation in the magnetic field B
G

: 

 ,d dRm e B
d d
ϑγ ϑ ϑ
τ τ

= × =
G GG GG

 (3) 

where e  and m  are the charge and mass of an electron and 2 21 1 cγ ϑ= −
G

is the relativistic 

factor. The vector ˆ( , )H n ω
G

 encapsulates the information on the magnetic field producing the 
radiation. It is computed through (2). All spectral properties of the radiation such as the near field and 
far field spectral flux, and spectral brilliance, are derived from ˆ( , )H n ω

G
 [6]. The two-dimensional 

complex unit vector û  describing the polarization is expressed in the space orthogonal to n̂ , it is 
equal to (1,0)  for a polarization corresponding to a horizontal electric field and (0,1)  for a vertical 
electric field. A planar polarization with electric field inclined by the angle a with respect to the 
horizontal is described by the vector (cos( ),sin( ))a a . Finally the right and left circular polarizations 

are described by the vectors (1, ) / 2i  and (1, ) / 2i− . In the following we shall derive close 

expressions of  ˆ( , )H n ω
G

 for the particular magnetic field geometries of a bending magnet, undulator 

and wiggler. For ultrarelativistic electrons ( 1γ � ), the expression of ˆ( , )H n ω
G

 is only appreciable for 
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a direction of emission n̂  making a small angle with the electron veolicity. Then n̂  can be 
approximated as: 

 
2 2

ˆ ( , ,1 )
2

x z
x zn θ θθ θ += −  (4) 

and (1) can be rewritten as  

 
2*ˆ ˆ( , , , ) ( , , )

/ x z x z
d Iu H u

d d e
θ θ ω α θ θ ω

ω ω
Φ =

Ω
G

 . (5) 

A thick electron beam  is described by a density ( , )x zρ θ θ  of electron travelling in the direction 
( , )x zθ θ . The angular spectral flux generated by a thick electron beam is the angular convolution of 

2*ˆ( , , )x z
I H u
e

α θ θ ω
G

 (angular spectral flux from a filament electron beam) with the electron 

distribution ( , )x zρ θ θ .  

In synchrotron sources, another important quantity is the spectral brilliance or simply brilliance 
(some people use brightness instead of brilliance). It can be assimilated with the number of photons 
with transverse position ( , )y x z=G  propagating in the direction ' ( , )x zy θ θ=G with frequency ω  and 
polarization û . Such brilliance is observed at a longitudinal position s from the source. The brilliance 
B  generated by a filament electron beam  is expressed as a function of the dimensionless field vector 
H
G

 by means of the so-called Wigner distribution function [4,6]: 

 

2 * *

2

ˆ ˆ ˆ( , , , , ) ( ) ( ( 2, ) )( ( 2, ) )
2

exp( ( ) )

∞ ∞

−∞ −∞

′ ′ ′ ′ ′= + −

′ ′ ′× − −

∫ ∫
IB y y s u H y u H y u

c e

i y sy d
c

G GG GG G G G

G GG G

ωω α ξ ω ξ ω
π

ω ξ ξ
 (6) 

For a thick electron beam described by a 4-dimensional density ( , )′y yG Gρ , the brilliance is a 4 
dimensional convolution (in yG and ′yG  ) of the electron density ( , )′y yGρ  with the brilliance generated 
by a filament beam expressed by (6).  

3 Radiation from bending magnets 
In a uniform magnetic field, the electron trajectory follows a helix. Neglecting the axial velocity 
parallel to the magnetic field, the motion becomes a circle with a radius of curvature eB mcρ γ= . 
Let θ  be the angle between the direction of observation and the plane of the circle. The unit vector n̂ , 
the velocity ( )ϑ τ

G
 and the position ( )R τ

G
are described by: 

 

2

2 2
0

0

2 2 3 3 2

ˆ (0, ,1 )
2

( ) ( ,0,1 )
2

( ) ( / 2 ,0, / 6 )

n

R c c c

θθ

ω τϑ τ β ω τ

τ τ ρ β τ τ ρ

= −

= − −

= − −

G

G
 (7) 

where 0 eB mω γ=  is the angular frequency of the circular motion. Replacing (7) in (2), one obtains: 
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2 2
2/ 3

2 2
1/3

3 (1 ) ( )
2

3 (1 ) ( )
2

x
c

z
c

H i K

H K

ω γ γ θ ξ
ω π

ω γ γθ γ θ ξ
ω π

= +

= +
 (8) 

with  

 
3/ 2 3

2
2

1 3,
3 2c

c
c

ωρ γξ θ ω
γ ρ
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠

 . (9) 

Replacing (8) in (1), one obtains in practical units [photons/s/mrad2/0.1% bandwidth]: 

 ( )
2 2 2213 2 2 2 2 2

2/3 1/32 21.327 10 [GeV] [A] 1 ( ) ( )
/ 1c

d E I K K
d d

ω γ θγ θ ξ ξ
ω ω ω γ θ

⎛ ⎞ ⎡ ⎤Φ = × + +⎜ ⎟ ⎢ ⎥Ω +⎣ ⎦⎝ ⎠
 . (10) 

The critical wavelength cλ  and critical photon energy cε  associated to cω  are given in practical 
units: 

 2
2

18.6[A] , [keV] 0.665 [T] [GeV]
[T] [GeV]c c B E

B E
λ ε= =  . (11) 

The vertical angular divergence of both horizontal and vertical field components depends on the 
photon energy (Fig. 1). At a photon energy close to the critical energy, the horizontal component 2

xH  
is reasonably well approximated by a Gaussian distribution with a standard deviation '

Rσ  given by [7]: 

 
0.425

' 0.565
R

c

ωσ
γ ω

−
⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

. (12) 

 

Fig. 1: Angular distribution of 2
xH , (solid line), and 2

zH , (dashed lines), the horizontal and vertical polarized 
radiation as a function of the normalized vertical angle for various photon energies. The dotted line is the 
expression given by Eq. (12). For each photon energy an identical normalization has been applied to both 2

xH  

and 2
zH  in such a way that 2

x .H θ = 1) = 1(  Illustration from Ref. [7]. 
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On axis 0θ = , only the horizontal polarization exists and (10) is rewritten as: 
 

 13 2
2

0

1.327 10 [GeV] [A] ( )
/ c

d E I H
d d θ

ω
ω ω ω=

Φ = ×
Ω

 (13) 

with 2 2
2 2/3( ) ( )

2
yH y y K= . Figure 2 shows the function 2 ( )H y , which peaks at 0.83

c c

ω ε
ω ε

= = . 

 
Fig. 2: The functions 2 ( )H y  and 1( ).G y  Illustration from Ref. [7]. 

It results from (8) that zH  is real while xH  is imaginary; as a result the polarization is elliptical out of 
the orbit plane. At large angles both components have similar amplitude and the polarization is fully 
circularly polarized right (left) handedly above (below) the orbit plane respectively.  

Integrating the flux 
/

d
d dω ω

Φ
Ω

 over the vertical angle θ , one obtains the photon flux per 

relative bandwidth per unit horizontal angle: 

 13
12.457 10 [GeV] [ ] ( )

/
Φ = ×

Ω c

d E I A G
d d

ω
ω ω ω

 (14) 

where the function 1 5/3( ) ( )
∞

′ ′= ∫
y

G y y K y dy  is presented in Fig. 2. Integrating (10) over all 

frequencies, one derives the power density in practical units: 

 
( ) ( )

2 2
2 4

5/ 2 2 22 2

1 5[W/mrad ] 5.42 [GeV] [T] [A] 1
7 11

dP E B I
d

γ θ
γ θγ θ

⎡ ⎤
⎢ ⎥= +

Ω +⎢ ⎥+ ⎣ ⎦
 (15) 

The first (second) term in the brackets corresponds to horizontally (vertically) polarized radiation. 
This distribution is well approximated by a Gaussian with standard angular deviation σ  [7]: 
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0.608σ

γ
=  . (16) 

Integrating (15) over the vertical angle, one obtains the Power per unit horizontal angle: 

 3[W/mrad] 4.221 [GeV] [T] [A]
x

dP E B I
dθ

=  . (17) 

One can show that half of the angular power given by (17) corresponds to photon energies below and 
above the critical energy cε . The total power generated in all bending magnets is obtained by 
multiplying (17) by 2000 .π  It is clear from the previous results that the power and power densities 
are a steep function of the electron energy. As an illustration, Table 1 presents the power and power 
densities from three very different electron storage rings with energies ranging from 0.8 to 6 GeV.  

Table 1: Main parameters of synchrotron radiation facilities of three typical energies. The power is the total 
power generated in all bending magnets along the circumference. Both the power and power density are 
strongly dependent on the electron energy.  

Ring Energy 
[GeV] 

Field 
[T] 

cε  
[keV] 

Current 
[A] 

Power 
[kW] 

dP dΩ  
[W/mrad2] 

SuperACO 0.8 1.57 0.67 0.4 8.5 1.4 
ELETTRA 2 1.2 3.2 0.3 76 31.2 
ESRF 6 0.85 20.3 0.2 974 1194 

4 Radiation from planar undulators 
In the following we shall use the following notation: 

 ( , , )x z sA A A A=
G

 (18) 

where xA , zA  and sA  are respectively the horizontal, vertical and longitudinal components of the 
field vector A

G
. An undulator field will be described as a vertical field with sinusoidal dependence on 

the longitudinal coordinate s:  

 
0

ˆ0, sin(2 ),0sB B π
λ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

G
 . (19) 

Let us consider an electron propagating along the s axis and injected inside the undulator with no 
initial velocity, then integrating the Lorentz force equation (3) gives the velocity ϑ

G
 and position :R

G
 

 0

0

0

1cos(2 ),0,1 ( )

1sin(2 ),0, ( )
2

K s o

K sR s o

ϑ π
γ λ γ

λ π
πγ λ γ

⎛ ⎞
= +⎜ ⎟
⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

G

G
 (20) 

where s cτ≈ is the longitudinal coordinate of the electron. 
1( )o
γ

 is a quantity of an order smaller 

than 
1
γ

. K is the deflection parameter expressed as: 
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 0
0

ˆ ˆ0.0934 [T] [mm]  .
2
eBK B

mc
λ λ

π
= =  (21) 

The periodicity of the trajectory allows the rewriting of the field vector (2) as:  

 
( 1) / 2

1

( 1) / 2 1

1

sin( )
( , , ) ( , , ) exp(2 ) ( , , )

sin( )

N

x z x z x z
q N

N
H h i q Nh

N

ωπ
ωωθ θ ω θ θ ω π θ θ ω ωω π
ω

−

=− −

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑

G GG
 (22) 

where ( , , )x zh θ θ ω
G

 is formally identical to the function ( , , )x zH θ θ ω
G

 but the time integration in (2) is 
limited to the motion over a single undulator period and N  is the number of undulator periods. The 
frequency 1ω  and its associated wavelength 1λ  are expressed as: 
 

 
2 2

2 2 2 20
1 1 22

2 2 2 2 1
0

4 2, 1
2 2

1
2

x z

x z

c c K
K

λπ γ πω λ γ θ γ θ
ω γλ γ θ γ θ

⎛ ⎞
= = = + + +⎜ ⎟⎛ ⎞ ⎝ ⎠+ + +⎜ ⎟

⎝ ⎠

  . (23) 

The associated photon energy 1E  can be expressed in dimensionless units: 

 
2

1
1 2

0

[GeV][keV] 0.95
2 [cm](1 )

2

= =
+

h EE
K

ω
π λ

  . (24) 

Figure 3 presents the variation of 1

1

sin( )
sin( )

N
N

π ω ω
π ω ω

 as a function 1ω ω . Since the spectral flux scales 

like the modulus square of ( , , )x zH θ θ ω
G

, it clearly appears that the radiation spectrum is concentrated 
on the frequency 1ω  and its harmonics.  

 

Fig. 3: Function 1

1

sin( )
sin( )

N
N

π ω ω
π ω ω

 as a function of 1ω ω in the particular case of 40N =  periods  
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In the limit of a large number of periods ,N  one can approximate: 

 ( 1)1 1

1,2...1 1

sin( ) sin( )( 1)
sin( ) sin( )

n N

n

N N n
N N n

π ω ω π ω ω
π ω ω π ω ω

∞
−

=

−≈ −
−∑  (25) 

and one approximates the field vector ( , , )x zH θ θ ω
G

 as: 

 ( 1) 1

1 1

sin( )( , , ) ( 1) ( , )
sin( )

n N
x z n x z

n

N nH N h
N n

π ω ωθ θ ω θ θ
π ω ω

∞
−

=

−≈ −
−∑

GG
 (26) 

where 1( , ) ( , , )n x z x zh h nθ θ θ θ ω=
G G

. Replacing (20) into (2) and performing an integration over a single 

period, one derives the following expression for ( , ):n x zh θ θ
G

 

 

0
0

1 0

2
0 0

2 2 2 2 2
0

cos(2 )
( , )

2 sin(2 ) ( 4)sin(4 ))exp 2 (
2 (1 2 )

⎡ ⎤−⎢ ⎥= ×⎢ ⎥
−⎢ ⎥⎣ ⎦

⎛ ⎞− +× +⎜ ⎟+ + +⎝ ⎠

∫ x
n x z

z

x

x z

K snh

K s K ssi n
K

G λ π λ θ
γθ θ

λ θ

γθ π λ π λπ
λ π γ θ γ θ

 (27) 

Replacing (26) into (1), one derives the angular spectral flux ˆ ˆ( , , )
/

d n u
d d

ω
ω ω
Φ

Ω
: 

 
2

22 * 1

1 1

sin( )ˆ ˆ( , , , ) ( , )
/ sin( )x z n x z

n

N nd Iu N h u
d d e N n

π ω ωθ θ ω α θ θ
ω ω π ω ω

∞

=

−Φ ≈
Ω −∑

G
 . (28) 

Figure 4 presents the variation of ˆ ˆ( , , )
/

d n u
d d

ω
ω ω
Φ

Ω
 versus 1ω ω  computed for a 20N =  period 

undulator. The spectrum is made up of a series of harmonics. The angular spectral flux 
/

nd
d dω ω

Φ
Ω

 at 

the top of the nth peak is given by: 

 
22 *ˆ( , )

/
n

n x z
d I N h u

d d e
α θ θ

ω ω
Φ ≈

Ω

G
 .  (29) 
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Fig. 4: Angular spectral flux 
/

Φ
Ω

d
d dω ω

 as a function of 1ω ω  for N = 20 a periods undulator  

The height of each harmonic is therefore proportional to 
2*ˆnh u

G
. The harmonics have a relative 

narrow spectral width 1 1 nNω ωΔ ∼ . The shape of the harmonic n is determined by the function 
2

1

1

sin( )
sin( )

N n
N n

π ω ω
π ω ω

−
−

. The fact that the spectrum is made up of a series of harmonics is a consequence 

of the periodicity of the undulator field. The details of the undulator field over one period enters in the 
expression of the resonant frequency 1ω  and in the relative emission on each harmonic by means of 

the quantity 
2*ˆnh u

G
. Figure 5 presents a plot of 

2*ˆnh u
G

 as a function of the normalized horizontal and 

vertical angle of observation xγθ and zγθ . The computation is made on the first three harmonics n = 
1, 2 and 3 and for a K = 2 undulator. The plain contour lines correspond to the horizontal polarization 

2*ˆn xh u
G

while the dash contour corresponds to the vertical polarization 
2*ˆn zh u

G
. The intensity in the 

vertical polarization is typically 5–10 times weaker than in the horizontal polarization. Harmonics 1 
and 3 (and all odd harmonics) have a peak of emission on axis [ ( , ) (0,0)x zθ θ = ]. In this direction, the 
radiation is fully linearly polarized with a horizontal electric field. Harmonics 2 (and all even 
harmonics) have a minimum of emission on axis. Using the expression (27) of ( , ),n x zh θ θ

G
 one can 

also show that the higher the harmonic number, the higher the number of lobes in 
2*ˆn xh u

G
and 

2*ˆn zh u
G

. 
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Fig. 5: Contour plot of 
2*ˆn xh u

G
 (plain) and 

2*ˆn zh u
G

 (dashed) as a function of xγθ and zγθ  for K = 2.  
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The expression of (0,0)nh
G

on axis of the undulator is of great importance since it corresponds 
to the maximum in the angular spectral flux. It is derived from (27) and, for an odd harmonic n, it can 
be expressed as: 

 
2 2

( 1) 2 ( 1) 22 2 2ˆ(0,0) ( ) ( )
1 2 4 2 4 2n x n n

nK nK nKh u J J
K K K

γ + −
⎡ ⎤

= −⎢ ⎥+ + +⎣ ⎦

G
 (30) 

while (0,0) 0nh =
G

 for an even harmonic n.  Replacing (30) in (29), one obtains the angular spectral 
flux on axis on harmonics n  

 

2 2 ( ) , with 1,3,5...
/

0 , with 2,4,6...
/

n
n

n

d I N F K
d d e

d
d d

α γ
ω ω

ω ω

Φ ≈ =
Ω

Φ ≈ =
Ω

 (31) 

or in dimensionless units for an odd harmonic: 

 2 14 2 2[Photons / s / 0.1% / mrad ] 1.744 10 [GeV] [A] ( )
/

Φ ≈ ×
Ω

n
n

d N E I F K
d dω ω

 (32) 

The dimensionless quantity ( )nF K  is given by  

 
( )

22 2 2 2

( 1) 2 ( 1) 22 2 22
( ) ( ) ( )

4 2 4 21 2
n n n

n K nK nKF K J J
K KK

+ −
⎡ ⎤

= −⎢ ⎥+ +⎣ ⎦+
 (33) 

where ( )nJ x  is the usual Bessel function of order n. Figure 6 presents a plot of ( )nF K  as a function 
of K for n = 1,3,5 and 7.  

 
Fig. 6: Plot of ( )nF K  as a function of K for n = 1,3,5 and 7  
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Assuming a small angle ( , 1x zγθ γθ << ), and a large number of periods ( 1N >> ), and a not too high 

harmonic number n, the dependence of 1

1

sin( )
sin( )

N n
N n

π ω ω
π ω ω

−
−

 versus xθ , zθ  ω  is much more rapid than 

that of ( , )n x zh θ θ
G

 and (26) can be rewritten neglecting the variations of ( , )n x zh θ θ
G

: 

 ( 1)

1

sin( )( , , ) ( 1) ( , )n N
x z n x z

n
H N hθ θ ω θ θ

∞
−

=

Γ≈ −
Γ∑

GG
 (34) 

with  

 
2 2

1

1

(0)( )
2 (0)

x z Ln N nθ θ λπ π
λ λ

+Γ = + −  (35) 

where the on-axis wavelength 1(0)λ  is: 

 
2

0
1 2(0) 1

2 2
Kλλ

γ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

  . (36) 

The angular width of an harmonic peak around the axis can be derived from (35)and (36) to be 

 
21 1 2K

nN
θ

γ
+Δ ∼   . (37) 

In other words, when observed at the wavelength 1(0)λ  given by (36),  the peaks observed on axis of 
the undulator are not only narrow in frequency but they are also generated over a narrow cone of 

emission. The angular width of the peaks of undulator emission is typically 
21 2K

nN
+

narrower than 

the angular divergence of bending magnet radiation. Let us define the angle integrated spectral 

flux /
d

dω ω
Φ

 as: 

 ˆ ˆ( , ) ( , , , )
/ / x z x z

d du u d d
d d d

ω θ θ ω θ θ
ω ω ω ω

+∞ +∞

−∞ −∞

Φ Φ=
Ω∫ ∫  . (38) 

In general, its detailed expression is rather involved. If one restricts the frequency ω  to the most 
interesting case of the on-axis frequency 1(0,0)n nω ω= , assuming N >> 1, one can make use of (34) 
and (35) to obtain: 

 
2*ˆ ˆ( , ) ( )

/ /
n

n n x
d d Iu N Q K u u

d d e
ω πα

ω ω ω ω
Φ Φ= ≈  (39) 

It is linearly polarized in the horizontal plane. It can be written in dimensionless units: 

 14[Photons / s / 0.1%] 1.431 10 [A] ( )
/

Φ ≈ ×n
n

d NI Q K
dω ω

 (40) 

where the dimensionless quantity ( )nQ K  is expressed as  
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 . (41) 

Figure 7 presents a plot of ( )nQ K  versus K for several odd harmonic numbers n. 

 
Fig. 7: Plot of ( )nQ K  vs. K  

So far we have assumed a filament mono-energetic electron beam. In view of the very narrow 
peaks of the undulator emission (in both energy and angle), one can expect that the shape and width of 
the peaks can be strongly affected by the electron energy spread and the angular divergence of the 
electron beam. In addition, in a real experiment, an observer integrates the spectral flux over a finite 
aperture and the size of the aperture defines a spread in the direction in which the radiation is 
collected. For similar reasons, the electron beam sizes contribute to the broadening of the radiation. 
The precise computation of the undulator peaks broadened by the electron energy spread, angular 
divergence and beam sizes is best carried out using numerical tools. Figure 8 presents such a spectrum 
computed for an ESRF undulator observed through a slit: 

 
Fig. 8: Spectrum through a slit produced by an undulator of the ESRF  
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It is clear from Fig. 8 that the broadening affects each peak in a non-symmetrical fashion. The 
tails are longer on the low energy side. This can be traced to the dependence of 1ω  on 

12
2 2 2 21

2 x z
K γ θ γ θ

−
⎛ ⎞

+ + +⎜ ⎟
⎝ ⎠

which shifts 1ω  toward lower values whenever xθ  and zθ deviates from 0. 

The shape of the profile of the high-energy side of the peak is determined by the electron energy 
spread and the undulator field errors. Since the energy of the peak of the undulator emission scales 
proportionally to the square of the electron energy, it appears that even a filament electron beam, but 
with a non-zero energy spread, introduces a broadening of the peaks. The undulator magnetic field 
contains a number of errors which also broaden the spectrum. Since high harmonic numbers are 
naturally narrow ( 1 nN∼ ), the higher the harmonics the more sensitive they are to the energy spread, 
electron beam emittance and field errors.  

We have seen that one of the main features of the undulator emission is its small divergence and 
spectral width. A typical figure of merit of undulator radiation is the spectral brightness or spectral 
brilliance. The brilliance was introduced in Section 2, it is the number of photons emitted per unit 
spectral bandwidth, per unit solid angle and per unit source size. Of most importance is the brilliance 
on axis on odd harmonics which can be approximated as: 

 
( )2

' '

/
2

n

n
x x z z

d
dB ω ω

π

Φ

≈
Σ Σ Σ Σ

 (42) 

where 
/

nd
dω ω

Φ
 is the angle integrated spectral flux expressed by (39) and xΣ  and 'xΣ ( zΣ  and 'zΣ ) 

are the horizontal (vertical) r.m.s. photon beam size and divergence. Their expression is the 
convolution of a contribution from the electron beam as well as a so-called diffractive contribution 
which comes from the wave nature of the radiation. Their expressions are: 

 
2 2 2 2

' ' ' '
2 2 2 2 2 2

2 , 2

8 , 8
x x z z

x x z z

L L

L L

σ λ σ λ
σ λ π σ λ π

Σ ≈ + Σ ≈ +

Σ ≈ + Σ ≈ +
 (43) 

in which xσ  and 'xσ ( zσ  and 'zσ ) are the horizontal (vertical) electron beam size and divergence. By 
changing the peak magnetic field of an undulator, one modifies the K values and therefore the energy 
of the harmonics. A classical way to summarize the undulator performance on a particular machine is 
to plot the on-axis brilliance nB  as a function of the photon energy for each harmonic. Figure 9 
presents such a plot. According to the photon energy of interest, a user would select one or the other 
harmonics. For some beamlines it is important to cover a wide photon energy range continuously. 
This can be done if one uses an undulator with maximum K value larger than 2.2.  
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Fig. 9: Brilliance produced by a 5 m long undulator having a period of 42 mm and a maximum K of 2.4 
installed on a high-beta straight section of the ESRF ring  

We have given expressions for the angular flux, angle integrated flux and brilliance of the 
undulator emission. For reasons of completeness, one must mention the expression of the power 
density of the radiation. Such quantities are also of prime importance in the design of the absorbers 
and beamlines optical components. We shall simply give its expression. For a filament electron beam, 

the power density 
dP
dΩ

 emitted in a direction ( , )x zθ θ  is given by [8]: 

0

0

2 22 4 2
2 20

02 3 5
0 0 2

( cos(2 ))2 4 1( , ) 4 sin (2 )
4

x
x z

K sdP e I NK s ds
d e d d

λ

λ

γθ π λγ πθ θ π λ
πε π λ −

⎛ ⎞−= −⎜ ⎟Ω ⎝ ⎠
∫  (44) 

where d is expressed as: 

 ( ) ( )2 2
01 cos(2 )x zd K sγθ π λ γθ= + − +  . (45) 

Integrating ( , )x z
dP
d

θ θ
Ω

over all angles ( , )x zθ θ , one obtains the total power P: 

 
2

2
0

0

2
6
NKP ecZ Iπ γ

λ
=  (46) 

with 0 377Z = ohm. In practical units: 

 2 2ˆ[kW] 0.633 [GeV] [T] [m] [A]P E B L I=  (47) 

the on-axis power density can be expressed as  

 
221(0,0) ( )

16
dP P G K
d K

γ
π

=
Ω

 (48) 

or in practical units 

 2 4ˆ(0,0)[W mrad ] 10.84 [T] [GeV] [A] ( )dP B E I NG K
d

=
Ω

 (49) 
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with ( )G K  defined as: 

 
6 4 2

2 7 2

24 7 4 16 7( )
(1 )

K K KG K K
K

+ + +=
+

  . (50) 

In this section we have described in some detail the various steps of the analytical derivation of 
the spectral characteristics of undulator radiation. A number of people have been addressing the 
question for many years both analytically and numerically. As a result there exists several computer 
codes available for accurately computing undulator radiation. Here are some of them: B2E [9], 
SPECTRA [10], SRW [11], URGENT [12], XOP [13]. 

5 Radiation from wigglers 
In the previous section we described the characteristics of the radiation generated by an electron beam 
travelling in the periodic magnetic field of an undulator. For large field and/or large period undulators, 
K  is large and the energy of the fundamental drops to a low value. The radiation spectrum from such 
a device presents a large number of harmonics. The number n  of harmonics can be estimated by 
comparing the equation for the wavelength of the harmonics (24) with that of the critical wavelength 

cλ  associated with the peak magnetic field (11). This gives rise to the following expression for the 
harmonic number n  corresponding to a wavelength :λ  

 
23 1 2

4 c

Kn K
λ λ
+=   . (51) 

The radiation generated by a 5K = (10) undulator observed at the wavelength cλ  corresponds to an 
harmonic number 50 (383). As discussed in the previous section, the line width of each harmonic is 
degraded by the electron energy spread, the emittance and the volume of phase space over which the 
radiation is integrated. At a sufficiently high harmonic number, the spectrum of an harmonic n  
overlaps with that of the harmonic 1n −  and 1n + . This is illustrated in Fig. 10 for a K = 5 device.  

 
Fig. 10: Spectral flux of a K = 5 device calculated using the undulator radiation method and with the wiggler 
method (smooth curve). The electron energy is 2 GeV, the number of periods is 10N =  and the period 
100 mm. The radiation is integrated over a total acceptance angle of +/- 0.2 mrad. Illustration from Ref. [7]. 
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The low-energy part of the spectrum presents an undulator-type spectrum with well-defined 
harmonics while at high energy the harmonic peaks overlap each other to produce a continuous 
spectrum. The higher the energy, the smoother the spectrum. Superimposed to the exact computation, 
Fig. 10 presents an approximation called the wiggler approximation. The wiggler approximation 
consists in approximating the spectrum by that of a bending magnet, the field of which is equal to the 
peak field B̂  multiplied by 2 ,N  where N  is the number of periods. In other words, in the wiggler 
model the device is approximated as a series of 2N  source points. There are two source points per 
period. Each source point takes place at a longitudinal position s such that the electron velocity is 
pointing towards the observer. We have seen [see (19) and (20)] that if the vertical field is a sine 
function of the longitudinal coordinate s, the horizontal velocity is a cosine function. As a result the 
electron trajectory can be represented in a field versus velocity diagram as a circle. This is illustrated 
in Fig. 11.  

 
Fig. 11: Diagram of vertical field versus electron horizontal angle. In this representation, an electron makes one 
circle every period. The electron velocity points towards an observer in a direction 0θ  twice per period. This 

takes place at longitudinal coordinates such that the magnetic field is equal to 0B and 0B−  as shown.  

The maximum angle is equal to K γ  and is reached for a zero magnetic field. On the other 

hand, the maximum field is B̂  and is reached when the angle is zero. If one observes the radiation at 
some non-zero angle 0θ , one sees an electron twice per period at places where the magnetic fields are 

0B and 0B−  (see Fig. 11). Using (19) and (20), the field of the source point 0B  can be expressed as a 
function of the horizontal angle 0θ : 

 
2

0 01ˆ
B

KB
γθ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 . (52) 

To conclude, a wiggler spectrum is computed as the one produced by 2N bending magnets but with a 
critical energy that varies with the angle of observation in the horizontal plane according to (52). The 
polarization of the wiggler radiation can also be deduced from the polarization of bending magnet 
radiation. There is nevertheless one important particularity. Since there are two source points per 
period with equal and opposite fields, the left handed and right handed circular polarization generated 
above and below the orbit planes cancel each other to the point that no circularly polarized radiation is 
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generated from a wiggler. Indeed the polarization of the radiation is evolving from nearly 100% 
linearly polarized when observed in the orbit plane to fully depolarized when observed far above or 
below the orbit plane. In an arbitrary direction the radiation is partially linearly polarized and partially 
depolarized.  

The detailed computation of the brilliance generated by a wiggler is out of the scope of this 
lecture. We summarize the main results here, namely the on-axis brilliance of wiggler radiation can be 
approximated [7] as: 

 
'

'2 '2 2 2 2 '2 2 2 '2
0/ 2 12 12z

R

z R x x z z

NdB
d d a L Lθ

σ
ω ω π σ σ σ σ σ σ=

Φ≈
Ω + + + +

 (53) 

where: 

0/
z

d
d d θω ω =

Φ
Ω

 is the angular spectral flux produced in the orbit plane generated by a filament 

electron beam in a bending magnet with field B̂ . It is given by Eq. (13).  

'
Rσ  is the r.m.s. standard deviation of the bending magnet radiation approximated by (12); 

0L Nλ=  is the wiggler length; 

' ', , ( , )x x z zσ σ σ σ  are the horizontal (vertical) r.m.s. electron beam size and divergence;  

0

2
Ka λ

π γ
=  is the amplitude of the sinusoidal motion of the electron in the horizontal plane. 

Note that this expression only applies on axis and assumes ' '4 , 2 , , 2z x x z RL L aβ β σ σ σ≤ ≤ ≤ ≤ . If 
one observes the radiation off axis in the horizontal plane, the 2N source points appear laterally 
displaced. More precisely, if one tries to refocus some bending magnet radiation generated off axis in 
a direction xθ , one observes a spread of all 2N source points horizontally over a distance equal to 

xLθ .  

6 Effects on the beam 

6.1 Perturbation to the lattice, synchrotron radiation integrals 
There is a particular difficulty with insertion devices in a storage ring. Contrary to the other lattice 
magnets (dipoles, quadrupoles, sextupoles), it is of prime importance for the users to vary the field in 
order to tune the spectral characteristics of the radiation to their particular need. It is therefore 
necessary for a synchrotron light source to operate with a large number of insertion devices the fields 
of which are changed randomly under the full control of the users. This change in field generates 
perturbations to the stored beam which may affect the other users. In this section we shall discuss 
these perturbations.  

Many global characteristics of the electron beam dynamics can be deduced from the so-called 
synchrotron radiation integrals [14] : 
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where xβ is the horizontal betatron function, 
1
2

x
x

d
ds
βα = −  and 

21 x
x

x

αγ
β
+= .  η  is the dispersion 

function and ' d
ds
ηη = . The integrals are computed over the ring circumference. ρ  is the radius of 

curvature which is deduced from the magnetic field B by means of the Lorentz force equation (3): 

 
1 eB

mcρ γ
=  . (55) 

A very important physical quantity derived from the 2I  integral is the energy loss per turn 0U : 

 4 2
0 2

2
3 eU r mc Iγ=  . (56) 

The damping partition numbers iJ which enter in the damping times and in the electron beam sizes, 
are given by: 

 4 4

2 2

1 1 2x z
I IJ J J
I Iε= − = = +  . (57) 

The damping times iτ  which also enter in the electron beam sizes, are given by: 

 0
3

2

3 , ,i
i e

T i x z
J r I

τ δ
γ

= =  . (58) 

The horizontal r.m.s. emittance xε  and the relative r.m.s. energy spread δσ : 

 
2 2

25 3

2 2
x q q

x

I IC C
J I J Iδ

δ

γ γε σ= =  (59) 

where 0T  is the revolution time of an electron, 15 m2.82 10−= ×er is the classical radius of an electron 

and 133.84 10qC −= × m. 

In general, the contribution of the insertion device magnetic field to these is a small 
perturbation compared to those produced by the storage ring bending magnets. On a ring like the 
ESRF, all insertion devices contribute less than 10% to the energy loss per turn 0U ; the remaining 
90% is generated in the dipole magnets. On the contrary, high field superconducting wigglers installed 
on a low-energy ring may dramatically affect the lattice and bring modifications to the synchrotron 
radiation integrals. A particular sort of wiggler, called damping wiggler, is sometimes installed on a 
straight section of a ring in the aim of strongly modifying the synchrotron radiation integrals. To be 
efficient such wigglers must increase 2I  by, say, more than a factor 2 over the contributions from all 
bending magnets. As a result, damping wigglers must have a high field and/or be very long and/or the 
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bending magnet must have a low field. Damping wigglers increase the energy loss per turn and shrink 
the damping time, thereby reducing the sensitivity to instabilities. If they are placed in a straight 
section with no dispersion, they contribute to a reduction of the emittance, which is of prime interest 
to the users. Nevertheless, damping wigglers are rarely implemented because of a lack of space. The 
practical interest of damping wigglers is mainly linked with large circumference rings originally 
designed for high-energy physics having a low magnetic field in the bending magnets such as the LEP 
ring at CERN, or the PETRA ring at DESY in view of its re-conversion as a synchrotron source.  

6.2 Beam deflection and focusing 
Another important class of effects come from the deflection and focusing induced by the field of an 
insertion device. In a fixed orthogonal reference frame Ox, Oz, Os, the electron trajectory can be 
described by the functions ( )x s  and ( )z s  describing the horizontal and vertical position as a function 
of the longitudinal coordinate .s   ( )x s  and ( )z s  satisfy the following equation that can be derived 
from the Lorentz force (3): 

 

2 2 2

2 2 2

'' 1 ' ' ' (1 ' ) ' '

'' 1 ' ' ' (1 ' ) ' '

s z x

s x z

ex x z z B x B x z B
mc

ez x z x B z B x z B
mc

γ

γ

⎡ ⎤= − + + − + +⎣ ⎦

⎡ ⎤= + + − + +⎣ ⎦

 (60) 

where ' dxx
ds

=  and 
2

2" d xx
ds

=  and , ,x z sB B B  are the horizontal, vertical and longitudinal 

components of the magnetic field. Integrating (60) over the length L  of the insertion device to the 
second order in the inverse of the electron energy 1 γ , and making use of the fact that the magnetic 

field satisfies the Maxwell Equations in free space ( 0B∇ =
G G

, 0B∇× =
G G

) gives [14]: 
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 (61) 

where the insertion device magnetic field extends in a domain of s going from 0 to L and 2

1( )o
γ

 is a 

function of order 31 γ  or higher and the function ( , , )x z sΦ  is given by: 

 
2 2

0 0

( , , ) ( , , ') ' ( , , ') '
s s

x zx z s B x z s ds B x z s ds
⎛ ⎞ ⎛ ⎞

Φ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫  . (62) 

Let xθ , zθ  be the horizontal and vertical deflecting angles experienced by an electron when passing 
through an insertion device. It is clear from (61) that at first order in 1 γ , xθ , zθ  are expressed as: 

 
0 0

L L

x z z x
e eB ds B ds
mc mc

θ θ
γ γ

= = −∫ ∫  . (63)  
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In a storage ring, an electron passes through the same insertion device every turn. Each turn its 
trajectory is bent by the angles xθ , zθ . The overall result is a distortion of the closed orbit over the 
whole ring circumference, which in the horizontal plane can be expressed as [14]: 

 
cos( ( ) )

( ) ( )
2sin( )

ID
x x xID

x x x
x

s
x s s

πυ φ φ
δ θ β β

πυ
− −

=  (64) 

where ( ),x sδ  ( )x sβ , ( )x sφ  are the orbit displacement, horizontal beta function and betatron phase at 

the position s along the circumference. ID
xβ , ID

xφ  are the horizontal beta function and betatron phase 
at the location of the insertion device. xυ  is the horizontal betatron tune. Similarly the vertical 
deflecting angle zθ  is responsible for a vertical closed orbit distortion which is given by (64) 
replacing the horizontal betatron function and tune by the vertical ones. In a synchrotron light source, 
the orbit stability is of prime importance. Any deviation with time of the position of the closed orbit 
generates mismatching in the beamlines and therefore undesirable discontinuities in the recorded data. 
A common specification is to maintain the r.m.s. closed orbit distortion within 1/10th of the r.m.s. 
beam size. Taking the example of the ESRF, this results in a specification for the vertical (horizontal) 
field integral of ~ 40 (20) Gcm. This is usually sufficient for most beamline users. Nevertheless, 
several facilities report a few experiments that can be disturbed by an electron beam motion of the 
order of 1/100th of the r.m.s. beam size. It is therefore of prime importance to correct the variation of 
field integrals generated when the user varies the peak field B̂ .  

Differentiating xθ , zθ  with respect to x and z, one derives the focusing induced by an insertion 
device which involves two independent focal lengths F  and cF : 
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∫ ∫

∫ ∫
 (65) 

The focal lengths F  and cF  are associated with a conventional normal and skew focusing component 
identical in nature to those generated by a quadrupole. Higher order derivatives of xθ , zθ  in x and z 
give sextupolar, octupolar, ect. field components. 

The focusing elements of the transport (quadrupole, bending magnet with gradient, etc.) 
maintain a so-called betatron oscillation in both the horizontal and vertical planes. In a storage ring, 
this oscillation is characterized by the horizontal and vertical betatron tunes xν  and zν  which are 
defined as the number of oscillations taking place over the circumference. The additional focusing 
induced by an insertion device generate at first order a  betatron tune shifts xδν  and zδν  given by 
[14]: 
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where xβ  and zβ  are the unperturbed horizontal and vertical beta functions averaged over the length 
of the insertion device. The skew focal length cF  is responsible for a coupling of the horizontal and 
vertical betatron oscillation characterized by the coupling tune cδν . A detailed analysis of this tune 
shift can be traced to the occurrence of a small oscillation of the beta functions (beta beat) over the 

whole circumference which relative amplitude x

x

β
β

Δ
, z

z

β
β

Δ
 is expressed as: 

 
2 2

sin(2 ) sin(2 )
x x z z

x x z z

β πδυ β πδυ
β πυ β πυ

Δ Δ= =  . (67) 

Such tune shifts are undesirable. It may bring the tune closer to some resonance where the beam 
becomes excited. The variation of the beta function also generates an undesirable change of the beam 
sizes and divergences on each beamline. Higher derivatives of the field integrals vs. x  and z  may 
result in increased chromaticity or additional non-linearities in the betatron motion. In the worst case 
such additional non-linearities may reduce the dynamic aperture and reduce the lifetime of the stored 
beam. The magnet lattice of modern low emittance third generation sources has a precise 
compensation for the non-linearities induced by the sextupole magnets. A small modification of the 
beta functions produced by a single insertion device may break this compensation and again reduce 
the dynamic aperture and the lifetime.   

For the reasons developed above, it is important to eliminate such field integrals and their 
derivatives vs. x  and z . Indeed, almost all insertion devices can be designed with zero field integrals. 
It is a matter of properly designing the field terminations and of correcting the field errors induced by 
magnetic imperfections in the permanent magnet blocks or those due to positioning errors of the 
individual blocks in the full assembly. This is done by carefully measuring and tuning the field either 
by displacing blocks or by adding iron sheets at the surface of the assembly. The process is called 
multipole shimming. Ultimately, when performed with sufficient care, the multipole shimming 
removes most the variations of the deflections xθ , zθ  vs. x and z, leaving a residual constant offset 
which can be corrected using small coils located at each extremity of the device. Unfortunately, this is 
not the end of the story. So far we have discussed the contributions linear to 1 γ  in (61). Closed orbit 
distortions, focusing and beta beat are also induced at second order in 1 γ . Such effects are 
numerically computed through the function ( , , )x z sΦ  by means of equations (61) and (62). The 
deflecting angles at second order in 1 γ  are deduced from (61): 
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 (68) 

The derivatives of the deflective angle determine the focusing effects characterized by the three focal 
lengths xF , zF and cF : 
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 (69) 

The numerical computation of xθ , zθ  and its derivatives with respect to x  and z  largely depend on 
the nature of the function ,Φ  which is itself a function of the transverse components of the magnetic 
field expressed by (62). At this stage, we will limit the discussion to the conventional planar insertion 
which presents a symmetry axis (the normal beam axis) such that: 
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 . (70) 

Replacing (70) into (61), one derives: 
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In the particular case where 
2

2 0zB
x

∂ =
∂

, one then obtains 
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In other words, a conventional planar undulator essentially produces a vertical focusing proportional 
to the integral of the square of the field and inversely proportional to the electron energy. In real 
undulators and wigglers, the vertical field is at its maximum on axis of the device and decays slowly 
in the medium plane away from the axis. As a result, there is a small horizontal defocusing effect on 
axis expressed by (71). The deflection and focusing properties described above have been derived in a 
somewhat abstract way by means of solving the differential equation (60) . One can understand the 
focusing produced by an undulator as follows. At first order in 1 γ , the vertical field create a 
sinusoidal horizontal velocity and trajectory. Applying again the Lorentz force equation and making 
the vector product of the 1 γ  horizontal velocity with the longitudinal component of the field 
generates a vertical force and therefore an angular deflection linear in 21 γ . In the median plane, the 
longitudinal component of the field is zero, and there is no vertical deflection in 21 γ . The 
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longitudinal component of the field appears only away from the median plane linearly in z. As a result 
the vertical deflection is linear to z which makes a vertical focusing.  Contrary to the focusing 
proportional to 1 γ  that can be locally corrected, such types of focusing cannot be removed without 
removing the main magnetic field. Note also that it cannot be simply compensated locally by means of 
a quadrupole-type lens placed at the extremity because such a lens would only remove the vertical 
focusing by adding some horizontal defocusing. Most synchrotron light sources operate at a 
sufficiently high electron energy meaning that such focusing is usually small and simply requires a 
global adjustment of the tunes.   

7 Insertion device technology 

7.1 2D analytical field computation 
There are only two sources of magnetic field available to magnet engineers, namely currents and 
permanent magnet materials. Embedding them into an iron yoke allows the generation of a higher 
magnetic field and/or a better control of the field pattern. The simplest type of undulator that one can 
imagine is an array of current carrying elements with current flowing alternatively in opposite 
directions. This is schematized in Fig. 12: 

 
Fig. 12: Array of current carrying elements generating an undulator type magnetic field. The beam passes in the 
median plane along Os  

Assuming infinitely long conductors, the vertical field experienced not, by an electron travelling in the 
median plane along Os at equal distance between the upper and lower conductor arrays is a periodic 
function of the period 0λ  expressed by [16]: 

 0 0 0

1,3,5 0 0 0 0 0

4 sin( ) sinh( )( ) exp( ) sin(2 ) ,
=

+= −∑ s zz
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n s z

I n t n tg t sB s n n
n t n t

μ π λ π λπ π
λ λ π λ π λ λ
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where I  is the total current in each conductor, g is the magnetic gap between the upper and lower 
arrays of conductors and zt  and st  are the conductor dimensions as defined in Fig. 12. In most cases 
of interest, the harmonic n = 1 dominates and the field is nearly sinusoidal. Similarly, a common and 
straightforward method of generating a periodic field using permanent magnets is to assemble them as 
shown in Fig. 13. 
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Fig. 13: Array of permanent magnets generating an undulator type magnetic field. The electron beam passes in 
the median plane along Os. The arrow defines the direction of the magnetization.  
Assuming infinitely long permanent magnets in the direction perpendicular to the figure, one derives 
the vertical field seen by the beam in the median plane [17]: 
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where M  is the magnetization of the permanent magnet material, g  is the gap between the upper and 
lower magnet array, 0λ  is the period and t ,δ  are defined in Fig. 13. Again for practical values for 
the gap and period, the field is dominated by the fundamental n = 1 component. In the typical case 
where 0δ =  and 0 2t λ= , the field of the first harmonic reduces to  

 0
0 0

( ) 1.72 exp( )sin(2 )z
g sB s Mμ π π
λ λ

= −   . (75) 

Increasing the thickness t  of the magnet beyond 0 2λ  to infinity only gives 4% more field on the 
fundamental. A typical permanent magnet material needed to build an undulator requires a high 
remanent field rB  as well as a high coercivite field. These properties are achieved by the NdFeB 
alloys which present a typical rB  of 1.2–1.3 T. The Sm2Co17 alloy is also used sometimes. It has a 
lower rB  around 1.05 T, but presents a higher Curie temperature resulting in a remanent field less 
sensitive to temperature variations. Sm2Co17 is also less sensitive to radiation damage. Both materials, 
when magnetized, have a small relative permeability around their operating point resulting in 

rM B� .  
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Let ˆ
IB  be the peak field created by a current undulator (as in Fig. 12) and ˆ

MB  the peak field 
created by a permanent magnet undulator (as in Fig. 13) of same period and gap and similar 
dimension 0 2s zt t t λ= = = . Their ratio is deduced from (74) and (75): 

 0
0

0

ˆ
0.45 0.11ˆ

I

rM

JB I
M BB

λμ
λ

= ≈  (76) 

where 0μ  is the vacuum permeability, J is the current density in the conductor and rB   is the 
remanent field of the permanent magnet material.  For a 30 mm period undulator and a NdFeB 
material with a remanent field rB  of 1.2 T, one requires a current density of  more than 280 A/mm2 to 
reach the same field. Such a current density can only be achieved using superconducting technology. 
In common room-temperature electromagnet undulators, one reinforces the field by using an iron 
yoke, but staying with current densities below 5 A/mm2, which is, in most cases, insufficient to 
compete with permanent magnets. One is now in a position to understand why the large majority of 
undulators and wigglers are built with permanent magnets rather than current and yoke. Indeed 
the magnetic structure presented in Fig. 13 has been selected for a very large number of undulators. 
To obtain more fields one can also use hybrid technology in which narrow pieces of iron are inserted 
between the magnets as shown in Fig. 14: 

 
Fig. 14: The two most popular magnet structures used to build undulators and wigglers. On the right is the Pure 
Permanent Magnet (PPM) structure. On the left is the hybrid structure where pieces of iron are inserted between 
the blocks of permanent magnets. The arrows indicate the direction of magnetisation. The electron beam passes 
in the middle of the gap between the upper and lower magnet arrays.  

7.2 3D field computation 
The magnetic field produced by a hybrid structure is slightly larger than that produced by a pure 
permanent magnet structure. Figure 15 presents a comparison of the peak field and the first harmonic 
of the Fourier decomposition for a pure permanent magnet device, a hybrid structure with poles made 
from an ARMCO steel (inexpensive steel) and a hybrid device with poles made of Vanadium 
Permendur (highest performance). It appears from Fig. 15 that the first harmonic deviates only slightly 
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from the peak field. The pure permanent magnet array saturates its peak field with a lower volume of 
magnets as compared to the hybrid. The advantage in peak field of the hybrid over the pure permanent 
magnet array really occurs if a large volume of magnets is used.  

 
Fig. 15: Peak field (dash curves) and first harmonic (plain curves) of the field as a function of the total 
permanent magnet volume in units of 3

0Nλ  for a pure permanent magnet array and hybrid type structure with 
poles made either of ARMCO or Vanadium Permendur. In all three cases, the horizontal width of the block has 
been set to 02λ  and the ratio of the gap/period is 0.314. For each magnet volume all free parameters are 
optimised to maximize the peak field.  

Finally, Fig. 16 presents a comparison of peak field and first harmonic as a function of the 
gap/period ratio. For a large gap the advantage of the hybrid technology is marginal while with a 
small gap, the most difference is seen with an increasing contribution from the harmonics higher 
than 1.  

 
Fig. 16: Peak field and first harmonic as a function of the ratio of the magnetic gap to period for a pure 
permanent magnet structure and a hybrid structure with pole made of Vanadium Permendur. In both cases the 
horizontal width of the magnets is equal to twice the period, and the volume of magnet per period is equal to 

3
02λ . For gap/period, and within the constraint of a limited volume and fixed horizontal dimension, the 

dimensions of the magnets and blocks have been optimized to maximize the peak field.  
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Figures 15 and 16 have been computed using the 3D magnetostatic code RADIA [18] which makes 
use of the so-called volume integral method. Similar computations can be made from the various 
commercially available packages making use of finite elements such as TOSCA [19], FLUX3D [20], 
MAXWELL [21], ANSYS [22]. As discussed above, most undulators and wigglers are made of 
permanent magnets. In order to vary the peak field of such a device, the only method is to change the 
magnetic gap. In the particular case of the pure permanent magnet arrays, (74) allows a precise 
estimation of the peak field at any gap and period. In most situations where the fundamental 
dominates, (75) is much simpler to use. There is no such universal and simple formula as (75) for a 
hybrid structure that relates the peak field or the fundamental as a function of period and gap. The 
following empirical relationship is often used to estimate the achievable peak field B̂  based on a 
series of 2D calculations with optimized poles and magnet dimensions : 

 2

0 0

ˆ exp ( )g gB a b c
λ λ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (77) 

where a = 3.33, b = 5.47 , c = 1.8 for a SmCo5 material with Br = 0.9 T [23] and a = 3.44, b = 5.08 , 
c = 1.54 for NdFeB material with Br = 1.1 T [24] . Such formula has been established for 

0

0.07 0.7g
λ

≤ ≤  The formula expressed in (77) is handy to obtain a rough estimate of the achievable 

peak field. It is not precise since a, b and c depend on the magnet coercivity, remanent field and 
overall volume of magnetic material. In addition it does not give any information on the harmonic 
content. Indeed, contrary to the pure permanent magnet undulator which contains harmonic 1.5.9, in 
the field, the hybrid undulator contains all odd harmonics : 1,3,5,… Finally this formula does not 
apply if one  optimizes  an undulator at some gap and wants to estimate the field that such undulator 
would produce at a larger gap.  Such formulas were more useful ten years ago when 3D magnetostatic 
computation were imprecise due to the lack of software and CPU power. Nowadays, most designers 
derive the peak field as well as the field harmonic content numerically using one of the software 
packages mentioned above.  

7.3 Variable-gap support structures 
The large field generated by an undulator results in a large magnetic force between the upper and 
lower arrays. For a sinusoidal field undulator or wiggler, the force F  can be derived by integrating 
the Maxwell Tensor over the undulator median plane. It yields: 

 2

0

1 ˆ
4

F B LW
μ

�  (78) 

where L  is the length of the undulator and W  is the horizontal width of the magnet array. For a 2 m 
long device with a 100 mm horizontal width and a 1 Tesla peak field, this force amounts to 40 000 N! 
As a result, a strong support structure is needed to guide the gap motion. In addition, it is clear from 
(75) that the field is highly sensitive to the gap and one must minimize the gap variation along the 
length of the structure if one needs a constant peak field along the structure. This is particularly 
important for undulators for which the spectrum of the radiation is made up of a set of narrow peaks 
the energy of which varies with K and therefore with the field and therefore with the gap. A large gap 
variation along the structure would broaden the peaks. In other words the supporting structure holding 
the magnet arrays must be stiff enough to minimize the deflection under the heavy magnetic load. 
Figure 17 presents such a support structure in use for the many insertion devices at the ESRF. It is a 
so-called C type structure in which the rigid frame holding both girders occupies only a single side of 
the magnet array. Such a C type structure allows the installation or removal of an insertion device 
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without having to break the vacuum of the ring. The alternative is an H type structure where the 
supporting takes place on both sides and generates a lower deflection. H type structures are usually 
only preferred for very high field devices generating large magnetic forces. The installation of H type 
structures requires breaking the vacuum in the straight section upon installation. The gap change on 
such a structure is carried out by powering one or two high torque motors equipped with proper 
demultiplication.  

 
Fig. 17: ESRF support structure holding the magnet arrays and capable of tuning the magnetic gap over a range 
of 300 mm with a resolution of 1 μm while withstanding magnetic forces as high as 100 000 N with limited 
deformation of the girder. The permanent magnet arrays are fixed to the rigid girders by means of the dovetail 
profile. 

A recent evolution of undulator technology has been to reach very small magnetic gaps. This 
pressure is drawn from the requirement to push the fundamental photon energy of an undulator 
spectrum to higher energy. A typical undulator system is 5 m long and is operated with a magnetic 
gap close to 10 mm. The magnet blocks are located in the air outside of a narrow aperture and flat and 
thin wall vacuum chamber where the electron beam circulates in ultra high vacuum. This chamber is 
usually made of aluminium with wall thickness less than 1 mm leaving less than an 8mm vertical 
aperture to the electron beam. The narrow aperture and the long length of the undulator results in a 
poor vacuum, which is undesirable since it generates bremsstrahlung in the associated beamline. 
Pumping is either made by a ribbon of Non Evaporable Getter (NEG) material placed along the 
chamber close to the beam in a so-called anti-chamber (APS type chamber), or by evaporating a thin 
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film of NEG material on the internal wall of the chamber (ESRF type chambers). In both cases the 
NEG needs to be activated to a higher temperature in order to ensure the correct pumping speed.  

7.4 In-vacuum undulators 
If a smaller magnetic gap is required, then one must use the so-called in-vacuum undulator technology 
developed at NSLS [25], Bessy [26], Photon factory [27], SPring-8 [28] and ESRF [29]. Several years 
ago this technology was considered as somewhat adventurous. Nowadays, though still tricky, it has 
become mature and is now commercially available following the large-scale implementation on the  
Spring-8 storage ring. The magnet blocks are placed inside the vacuum chamber. To be compatible 
with the ultra high vacuum, the magnet blocks need to be coated with a ultra high vacuum compatible 
material such as Nickel or TiN. The magnet surface is covered by a thin sheet (~0.1 mm) of a 
sandwich of copper and nickel. The copper conducts the return current from the beam and avoids 
excessive heatload deposition in the blocks while the nickel adds a constant attraction force of the 
sheet towards the magnet array and maintains the sheet in contact with the magnets. Figure 18 
presents a 3D view of such an in-vacuum undulator as built at the ESRF.  

 
Fig. 18: 3D view of an ESRF in-vacuum undulator. Illustration from Ref. [9]. 

7.5 Phase errors 
The magnetic field from undulators and wigglers must satisfy three types of specifications. The first 
types of specifications are the user specifications, which are the field geometry, period and number of 
periods. These must be selected in order to reach the desired photon energy range with the desired flux 
and brilliance within the heatload constraints that the beamline is capable of handling. The second 
class of specifications concerns the integrated multipole components (both normal and skew) that 
must be sufficiently small in order to prevent closed orbit distortion, tune shifts and possible reduction 
of dynamic aperture (see section above). The third class of specifications concerns only undulators, 
the peak field and period of which must be stable to a fraction of a per cent along the length of the 
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device if one wants to keep narrow high harmonic peaks in the spectrum. To address this question 
more quantitatively, let us define the phase advance pΦ  of the pth pole of the magnetic field at the 
wavelength λ : 

 2 2 2
2 1 ( ( ) ( ))p x z

Pole p

s s dsπ γ ϑ ϑ
λγ

⎡ ⎤
Φ = + +⎢ ⎥
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where ( )x sϑ and ( )x sϑ  are the horizontal electron velocities defined as  
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The whole range of longitudinal coordinates is partitioned into a number of consecutive poles. The 
partition points are defined as the points where the 2 2( ) ( )x zs sϑ ϑ+  reach a local minimum as a 
function of s. The naming of the pole can be traced to the case of an ideal hybrid undulator for which 
the partition points fall exactly in the middle of an iron pole. Equations (1) and (2) can be expressed as 
: 
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If the wavelength λ  is equal to the fundamental undulator wavelength and if the field is an ideal 

sinewave then all pΦ  are equal to π  and 
2

24pi

p
e NΦ =∑ . Field errors generate some fluctuations 

of pΦ  from one period to the next. Assuming that the phase errors are independent and uncorrelated 

from one pole to the next with an r.m.s. fluctuation σ Φ  (also called phase error), then the angular 
spectral flux given by (81) is reduced to: 
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Both the phases pΦ  and phase errors σ Φ  scale like 1 λ , therefore the reduction of the angular 
spectral flux due to the phase errors induced by magnetic imperfections are strongly dependent on the 
harmonic number. The higher the harmonic the higher the reduction. Table 2 presents a computation 
of 

2

e σ Φ−  as a function of harmonic number for two different cases of r.m.s. phase errors of 1° and 6° 
degrees computed on the fundamental wavelength 1λ . A phase error of 6° corresponds to a typical 
undulator assembled from permanent magnets without any particular precautions for correcting such 
phase errors, while a 1° phase error corresponds to a specially shimmed undulator (see below). 
Clearly, undulators used on the fundamental are rather insensitive to phase errors. On the other hand, 
operating an undulator on a high harmonic with high flux and brilliance requires special care in 
removing phase errors. 
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Table 2: Reduction of the angular spectral flux as a function of harmonics and r.m.s. phase error.  

Harmonic # 6°Φ =σ  1°Φ =σ  
1 0.99 1 
5 0.76 0.99 
9 0.41 0.98 

13 0.16 0.95 
 
Contrary to the dipole or quadrupole magnets, permanent magnet undulators are not iron-

dominated magnets. This is not only true for pure permanent magnet undulators but also for hybrid 
undulators in which the major part of the field is not created by the magnetized iron but by the 
permanent magnet material itself. As a consequence, the precise field profile is very sensitive to the 
variation of magnetization from one magnet block to the next as well as to the precise position of each 
block in the array. In addition, while all magnetic blocks are specified identically, the magnetization is 
usually not 100% uniform in the block: depending on the manufacturing process, there can be 
significant non-uniformities. While the manufacturer of an iron-dominated magnet must essentially be 
careful with regard to the precision of machining of the yoke (the non-uniform magnetic permeability 
is usually low), the manufacturer of a permanent magnet undulator or wiggler must limit the 
deviations from one magnet block to another. The blocks must usually be measured one by one in an 
effort to cancel their variations of magnetization by suitable pairing during the assembly process. If 
done with the utmost rigour this work is enormous (typical undulators such as the 100 period 
undulator include 800 magnet blocks), although it is rarely carried through to the required precision. 
In addition small random position errors during assembly add new types of errors. As a result an 
assembled undulator is rarely within the desired specifications in terms of both multipole errors and 
phase errors. Some further shimming must be carried out. Shimming can be achieved either by 
displacing some of the blocks or by adding small thin pieces of iron (50 microns typical) on the 
surface of the blocks as shown in Fig. 19. In general it is preferable to tune the field errors by 
displacing magnet blocks or a pole whenever possible rather than adding iron shims that always 
shortcut some of the flux generated by the blocks.  

 
Fig. 19: Multipole and spectrum (phase) shims on a pure permanent magnet array (PPM) or a hybrid array 
(HYB)  
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8 Insertion devices for circular polarization 
So far we have discussed the properties and engineering of conventional insertion devices with a 
planar, nearly sinusoidal magnetic field. These undulators and wigglers essentially produce linearly 
polarized radiation with an electric field perpendicular to the plane of the undulator magnetic field. 
For some scientific applications, it is important to produce circularly polarized radiation. There exists 
a number of different types of insertion design optimised to generate such radiation. We shall not 
review them extensively. The reader interested in more detail should consult Refs. [3,30]. We shall 
only discuss in more detail the most successful of such undulators known as Apple II [31]-[33]. Apple 
II undulators are now present in almost all synchrotron light sources. The magnet array of an Apple II 
undulator is shown in Fig. 20.  

 
Fig. 20: Magnet array of an Apple II undulator 

The magnet array can be described as a pure permanent magnet array where the upper and 
lower arrays have been cut into two independent arrays, the longitudinal position of which can be 
changed with respect to each other. Let us number the magnet arrays as A1, A2, A3 and A4 as shown 
in Fig. 20. Let us first consider the situation in which the A2 and A4 magnet arrays stay in position 
while the A1 and A3 arrays are moved longitudinally by the same quantity δ . One can then show that 
the transverse components of the magnetic field seen by the beam is, in general, ellipsoidal:  
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where 
0

2 δϕ π
λ

=  and 0zB  and 0xB  vary with the magnetic gap between the upper and lower magnet 

arrays. Depending on the displacement δ , the field can be linear vertical, ellipsoidal, circular or linear 
horizontal. The three most important limiting cases are: 
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If, on the other hand, one displaces the A1 and A3 magnet arrays in opposite directions but with the 
same quantity δ , then the magnetic field seen by the beam is: 
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This defines a linearly polarized magnetic field with orientation continuously rotating from vertical to 

horizontal  as 
0

2 δϕ π
λ

=  varies from 0 to π . 

As just discussed, the magnetic field generated by an Apple II is extremely flexible. One can 
show that for a given gap and period the field in whichever polarization state is close to the highest 
that one can design. These properties of flexible polarization and field efficiency are the reason for the 
success of the Apple II undulator. Contrary to a conventional planar device where only the gap is a 
free parameter, an Apple II undulator is built with three degrees of freedom, namely the magnetic gap 
and the longitudinal positions of both the A1 and A3 magnet arrays. From the engineering point of 
view the field tuning of an Apple II undulator is more tricky since the integrated multipoles must be 
insensitive to any of the three degrees of freedom. Apple II undulators also present a variation of the 
second order focusing (focusing inversely proportional to the inverse of the square of the electron 
energy, see Section 6) as a function of the longitudinal position of the A1 and A3 magnet arrays. This 
requires special attention, especially on a low-energy storage ring.  

9 Undulators for free electron lasers 
Finally it is difficult to conclude this lecture on insertion devices without briefly mentioning the 
special kind of undulators needed for the new free electron laser projects. The most ambitious Free 
Electron Lasers (FELs) are based on the Self Amplified Spontaneous Emission (SASE).  In a SASE 
FEL, the synchrotron radiation produced in the entrance of the undulator is re-amplified as the 
electrons travels further inside the undulator. The process saturates at a very large field and the SASE 
radiation generated can be more monochromatic and brilliant than synchrotron radiation also called 
(by analogy with classical lasers) spontaneous emission. 

In order to have enough gain and to saturate the laser power over a limited length of undulator, 
ultra short electron bunches with low energy spread and emittance are needed. Such electron beam 
characteristics are not available from a storage ring; but from a linear accelerator injected with 
recently developed ultra low emittance electron guns. Nevertheless the undulators need to be long. 
The shorter the targeted wavelength, the higher the electron energy and the longer the undulator. For 
an ultimate 0.1 nm wavelength FEL (LCLS project at SLAC and XFEL project at DESY), one 
estimates that the electron energy will need to be in the 15-20 GeV range and the undulator will be 
100 to 200 m long. Such long undulators need to be split into segments of few metres length as shown 
in Fig. 21. The undulator can either be of the planar type or helical. The amplification per unit length 
of undulator (also called the growth length) is higher in a helical undulator than in a planar undulator. 
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This makes the total length of a helical undulator shorter. Nevertheless many projects still rely on the 
planar type permanent magnet based structure which is the best known and mastered. 

 
Fig. 21: 3D conceptual design of the XFEL undulator. A large number of variable gap vertical field undulators 
of  about 3 m length are separated by diagnostic stations. 

The undulator segments are spaced a few tens of centimetres from each other. The sections 
between undulators include: 

- quadrupole focusing for maintaining a small electron beam size all along the device, 
- steerers to align the electron beam in each undulator section, 
- three-pole phasing section to delay the electron bunch and ensure a proper phasing of the 

undulator sections, 
- electron-beam-position monitors. 

Contrary to storage ring type undulators, the magnetic specification of the SASE undulator segments 
are quite relaxed both in terms of integrated multipoles and phase errors. This is due to the fact that 
electrons only pass once in the undulator and that only the fundamental of the spectrum is really 
amplified. One of the challenging issues is the required alignment of the electron beam axis to the 
radiation beam to a precision of a few micrometers over the full 100-200 m length. Such an alignment 
requires sophisticated electron and photon beam based alignment techniques. Another challenging 
issue is the organization of the series production and measurement and tuning of such undulator 
segments by industry. The reader interested in more information  concerning the design and 
manufacture of very long SASE undulators should consult Refs. [34]-[39].  
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