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Abstract 
Particles in the beams of modern accelerators travel close to the 
velocity of light. A working knowledge of the Einstein’s theory of 
special relativity is essential if one is to understand their behaviour. The 
essentials of Special Relativity are presented in this paper in the order 
in which they were discovered – from the questions raised by 
Maxwell’s theory and the Michelson Morley experiment to their final 
resolution in Einstein’s theory which is one of the cornerstones of 
modern physics.  

INTRODUCTION 

If you ask a random collection of first year students, “What do you know about 
relativity?” the answers might be: 
 

“All is relative?” 
“It all depends on your frame of reference.” 
“You will never measure an absolute velocity unless you look into space.” 
“Wasn’t it invented by the same guy that gave us the atom bomb?” 
 
Of course none of these answers are correct and if we turn to Einstein’s rather 

philosophical definition it does not give us a clue as to how to apply the principle. 
 
The laws of physics in two systems moving with a relative velocity one to another 
are equivalent. 
The speed of light is finite and independent of the motion of the source. 
 
The principle of relativity, coming after Maxwell’s equations and before quantum 

theory is one of the three great discoveries upon which modern physics is based. The best 
way to understand it is to follow the series of puzzles which confronted physics at the end 
of the eighteenth century and see how this principle pointed to their solution. 

 

OBSERVERS AND THEIR FRAMES OF REFERENCE 
 
Before plunging back into history we should have a clear idea of what is meant by a 
“frame of reference” and imagine the definition of the world as seen by two observers 
each using their own frame of reference. It helps to think of these observers as real 
people with eyes and ears and carrying clocks and rulers to measure and observe in their 
respective frames of reference. We shall call them, Joe, an observer in the “laboratory” 
frame of reference or coordinate system which to us appears to us stationary, and Moe, a 
moving observer rooted in a frame of reference whose relative velocity to Joe is a 
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vector,υ . In Figure 1 we have chosen the case where the motion is parallel to the x axis 
of both coordinate systems. Of course Moe thinks his frame of reference is stationary and 
would see Joe as moving with velocity, υ− .  If both Joe and Moe were to describe the 
position of the same point, P, in their frames of reference, Joe in the lab would write 
down three numbers zyx ,,  while moving Moe would write down zyx ′′′ ,, . 

 
Fig 1:. Joe is an observer in the laboratory while Moe is traveling to the right with a 
velocity,u  . They describe the same point P with different coordinates zyx ,,  and 

zyx ′′′ ,,  

 
Fig 2:. The Michelson and Morley experiment  
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HISTORY 

In the late eighteenth century a Scottish mathematician, Maxwell, discovered the laws of 
electromagnetism which allowed physicists to formulate a wave equation for light and 
other electromagnetic radiation. They jumped to the conclusion that light, like sound and 
other waves must be propagated in a medium which they called the ether. 

Michelson and Morley devised an experiment which would measure the velocity 
of the earth in its orbit relative to the ether. Figure 2 shows the experiment. Light from a 
source is split by a half silvered mirror, B . Half the light is reflected back from a mirror, 
C , and the other half from E  and from the back side of B to recombine with the light 
from C. The distances to each of the mirrors is adjusted to be equal so that the 
interference fringes from the two paths reinforce each other. If the apparatus is traveling 
with the ether the distances BC and BE are then both equal to L . The velocity of the light 
waves along each leg is, c . But. suppose that the whole apparatus is moving parallel to 
the earths orbit with velocity u . We show this situation dotted in Figure 2.  

Eighteenth century physicists knew about sound waves which always propagate 
with the same velocity with respect to their source and would expect the light waves to 
have velocity, c  along each let of their journey. However in the time, t , taken for the 
lithe to travel to E , it has moved to E ′  and the path length must be,  utL + . If  
 

utLct +=  
 

then the time for the outward journey is: 
 

uc
Lt
−

=  

 
and for the return journey is: 
 

uc
Lt
+

=  

 
 

the time for the total journey is : 
 

( )22
2

uc
Lc
−

  . 

 
If we now look at the path taken to C  and back we find that the light must travel 

along the hypotenuse of a triangle and the total time is: 
 

( )22

2
uc

Lc
−

  . 
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 The eighteenth century physicists believed that the difference in these times 
would be a measure of u  and that the fringes would move out of register if the apparatus 
was rotated to point towards the sun rather than tangential to the earths orbit. The number 
of fringes counted would determine u and tell them the earth’s velocity in space. To their 
disappointment and consternation the fringes did not change and there was no 
satisfactory explanation for this other than perhaps that there was no such thing as ether - 
or perhaps the distance BE  had shrunk so that : 

( )22 uc
LL BC

BE
−

  . 

 
Some years after the experiment, Lorentz, who had taken upon himself the task of 

tidying up Maxwell’s equations and casting them in the elegant form we now use, found 
a transformation of time and space coordinates which predicted just such a contraction of 
space. However this idea was thought to be a mathematical fudge and not treated with the 
respect it deserved. It took an even greater mind, that of Einstein, to realise that this was 
part of a far reaching theory of special relativity. 
 

THE LIGHT CLOCK AND THE DILATION OF TIME 

While our thoughts are buzzing with such things it is a good time to understand another 
of the transformations that Lorentz had discovered: the dilation of time. To understand 
this phenomenon we imagine a clock as seen by our two observers Joe and Moe. Moe has 
taken his clock in a spaceship while Joe observes the clock from his stationary laboratory 
on earth. We see Joe’s view in the upper diagram of Figure 3. The clock relies upon a 
light wave or photon, generated by a photodiode or flashtube, traveling to a mirror where 
it reflected back to a photocell which generates an electrical signal which, in turn, 
produces an audible “tick”. If the mirror is a distance, D , from the diode the interval 
between ticks will be 

 
cD /2  

 
Joe observes that the mirror and receiver move during the time the reflection takes and 
that the distance traveled by the photon is longer. This is exactly the problem we have 
solved in the side leg of the Michelson and Morley experiment where we found the time 
to travel back and forth observed  by Joe in the lab was  
 

222 )/(1/)/(2/2 cucLucLc −=−   . 
 

The rate of ticking observed by Joe will therefore be slower by a factor 
 

γ=β−=− 22 1/1)/(1/1 cu   . 
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Fig. 3: The light clock as seen by Moe in a spaceship (a) and, (b) by Joe from his 

laboratory on earth.  

 
 

Here we have taken the opportunity to define two parameters cu /=β  and γ  which we 
shall see are fundamental in the notation of special relativity. However we are in danger 
of  losing the historical thread and should now return to the concept of Newton and see 
the impact that Maxwell’s unification of electricity and magnetism had upon physics. 

TRANSFORMATIONS  

The laws of physics and in particular Newton’s Law of Motion had always been held to 
be independent of the velocity of the observer. We would now say “independent under a 
transformation between observers with relative velocity,u .” The transformation they 

SPECIAL RELATIVITY

5



applied in Newton’s day, the Galilean transformation, can be expressed by four equations 
which take us from Joe’s world into that of Moe 
 

 .

,
,

x x ut
y y
z z
t t

′ = −
′ =
′ =
′ =

 

 
Then in 1880 came the discovery by Maxwell of  four equations which defined a new law 
of physics uniting electricity and magnetism 
 

0
,

,

=⋅∇
ρ=⋅∇

∂
∂+=×∇

∂
∂−=×∇

B
D

DJH

BE

t

t

 

 
which had the untidy quality of not being invariant under a Galilean transformation. 
When  converted from Joe’s world to Moe’s they became a mess and predicted effects 
which were just not observed. 
 
Then, around 1900, Lorentz hit upon a transformation which did leave Maxwell’s 
equations (and Newton’s) unchanged for Moe. The Lorentz transformation is 
 

2 2

2

2 2

1

 .
1

,

,
,

/

x utx
u v

y y
z z

t ux ct
u v

−′ =
−

′ =
′ =

−′ =
−

 

 
Lorentz had in fact made a major leap towards special relativity and offered his 

transformation to explain the Michelson and Morley experiment, but this suggestion was 
rejected by the world as a mere mathematical artifact. 

 
In order to fall in line with current convention we shall redefine the unprimed and 

primed coordinate of Joe and Moe with suffices 1 and 2 respectively so that the Lorentz 
transformation becomes 

22

2
11

2121222

11
2

1

/    ,     ,       ,
1 cv

cvxttzzyy
cv

vtxx
−

−
===

−

−
=   . 
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We have also taken the liberty of putting c  where Lorentz had used v  and have 
redefined the relative velocity between Joe and Moe to be, v .  

 
We can imagine that this appears simpler in the notation of special relativity 

which defines 

γ=
β− 21

1  . 

 

LORENTZ CONTRACTION 

We are now in a position to think clearly about Lorentz’ explanation of the Michelson 
and Morley experiment. In the lower diagram of Figure 4 we imagine how Joe lays down 
a ruler of length 0l  to measure a distance from the origin to 1x . Moe (upper diagram) sees 
this but the point 2x  in his coordinates is transformed by 
 

22

12
1

1 cv

vtxx
−

−
=  

 
and if all this happens at a time 021 == tt  

22
12 1 cvxx −=  

 
Fig. 4: The two views of a measurement of length. Joe lays down a ruler in (b) and Moe  

(a)  sees it as shorter. 

 
In the lower figure we have Joe’s view as he lays down a ruler length: 2l . In the 

upper figure we see that Moe who is moving , compares the position of the ends  at the 
same time ( t=0 in both systems) with marks on his bench (perhaps by a photo) and 
concludes Joe’s ruler is shorter:  

γ=−= /1 1
22

12 lcvll  . 
 
This effect is called Lorentz contraction. 
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TIME DILATION  

We can move on immediately to see how the Lorentz transformation explains the light 
clock. In Figure 5  Moe’s view is above and Joe’s below. Moe has one clock while Joe 
has two, one at the origin and the other at a point 1x  that Moe’s clock passes at a time 
which appears to be 2t  ( 0T  in the diagram). The aim of what follows is to find out what 
time 1t  this event seems to occur on Joe’s second clock. All three clocks start at the same 
instant when Moe’s clock passes the first of Joe’s. 

 
Fig. 5: Moe’s view is above and Joe’s below. Moe has one clock while Joe has two 

In order to simplify the process we arbitrarily choose  
 

22
1

1
1 cv

vtx
−

=  

then 
 

22

2
11

2
1

/

cv

cvxtt
−

−
=  

and this gives 
  

222

2
1

1
t

cv

t
t γ=

−
=   . 

 
It seems to Joe that the moving clock of Moe is running slow. To find a physical 

demonstration of this one only has to observe that muons from cosmic ray interactions 
with the upper atmosphere survive to reach ground level even though the life time at rest 
of the muon is much shorter than the time it would take to this distance at the velocity of 
light. The clocks of the cosmic muons telling them when to decay seem to an earth bound 
observer to run slow.  
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FOUR VECTOR OF SPACE-TIME 

Most of us are familiar with the simple transformation that rotates a point, , ( )11, yx  by an 
angle θ  about the origin to lie at coordinates, ( )22 , yx . 
 

2 1 1

2 1 1

cos sin
sin cos   .

,x x y
y x y

= θ + θ
= − θ + θ

 

 
This transformation may be thought of as a rotation of a vector of constant length 

 
22 yx + . 

 
The Lorentz transformation: 
 

22

2
11

2121222

11
2

1

/    ,     ,       ,
1 cv

cvxttzzyy
cv

vtxx
−

−
===

−

−
=  

 
rotates the 4-vector: ),,,( ctzyx −  so that its “length” is an invariant 
 

22222 tczyx +++  . 
 
This is our first example of a quantity that is invariant under a change to the 

moving coordinate system. It is a step towards restoring physics to the nice situation 
where one could apply a Galilean transformation to Newton’s “metric” as it is called and 
find the laws of motion were unchanged. Quantities that are invariant under Lorentz 
transformation are at the heart of physics. To find that something is invariant or to find a 
transformation that preserves invariance of a physical law gives enormous confidence in 
its validity. It also provides a shortcut to solving physical problems as we shall see in the 
case of synchrotron radiation later. 

LORENTZ MATRIX 
 
The Lorentz transformation can be written in a very compact form as a four by four 
matrix operating on a column vector ( )ctzyx −,,,  

 

12 100
0100
0010

001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

β

β

γ=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

− ct
z
y
x

ct
z
y
x

 

 

where                                                cv /=β  and 
21

1
β−

=γ   . 
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This will transform from the lab (Joe) to moving (Moe) coordinates while the inverse 
matrix 

21 100
0100
0010

001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

β−

β−

γ=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

− ct
z
y
x

ct
z
y
x

 

 
transforms an observation of position and time in the moving system to predict what the 
observer in the lab records. 

TRANSFORMING A VELOCITY  

The relative velocity is now written, υ , to distinguish it from the observed velocity of a 
point in the laboratory 1v . We first express a component of the velocity in the laboratory 
frame as the product of two differentials 

 

1

2

2

1

1

1
1 dt

dt
dt
dx

dt
dxvx ==   . 

 
We now refer back to the equations of the Lorentz transformation.. The first of these 
when applied to a transformation from Moe to Joe becomes 
 

22

22
1

1 cv

txx
−

υ+
=   . 

 
Thus the first of the two differentials is 
 

( ) ( ) ( )υ+γ=υ+γ=υ+
−

= xvtx
dt
dtx

dt
d

cvdt
dx

222
2

22
2

22
2

1

1

1   . 

 
Next we differentiate the fourth Lorentz equation 
 

22

2
11

2
1

/ 
cv

cxtt
−

υ−
=   . 

 
to obtain  
 

( )[ ] ( )[ ]xvcxct
dt
d

dt
dt

1
2

1
2

1
11

2 1 υ−γ=υ−γ=   . 

 
Finally after forming the product of the two differentials and solving for xv1  we have 
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( )2
1

2
1 1 cv

v
v

x

x
x υ+

υ+
=    and   

( )
β−
β−

=
x

x
x vc

cvc
v

1

1
2   . 

 
It is interesting to note that if β= cv x1  then 02 =xv  and if c=υ  then cv x =2  for all 
values of υ . 

A SMALL STEP TO REDEFINE MOMENTUM AND ENERGY 

The above equations for transformation of velocities do not at first appear impressive but 
they may be used to reveal how the fundamental quantities of dynamics, energy and 
momentum should be transformed. It was one of Einstein’s crucial contributions to o 
defined a particles momentum and energy 
 

vm
vm

cv

vm
mvp γ=

β−
=

−
== 02

0

2

0  
1

   
)/(1

 

 
2

0
2

02

2
0

2

2
0 T  

1
   

)/(1
cmcm

cm

cv

cm
E γ=+=

β−
=

−
=  

 
where 0m  is the mass of the particle when at rest in the laboratory, v  is the velocity of 
the particle with respect to the laboratory observer , cv /=β  and T is the kinetic energy 
of the particle.  

Applying the rule for transformation of velocity we find that the three momenta 
and the total energy are four elements of a vector which obeys the Lorentz transformation 
which we applied to space and time coordinates. 
 

21 1000
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00
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⎟
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⎜
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=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−
−

cp
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cp

E

cp
cp
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E

z

y

x

z

y

x   . 

 
The reader will note that the components of the momentum have been multiplied 

by –c to make them fit the transformation. Moreover there is a quantity  
 

( )  )( 22
0

22 cmpcE =−  
 

which is invariant as we move from one moving frame to another as is the law of motion  
 

Fp =
dt
d  

 
of a particle under the influence of a force F  . 
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Other useful relationships emerge: 
 

00 /    ,/    ,/ EpcEpcEE =βγ=β=γ   . 
 

MOVING FROM NEWTON TO EINSTEIN 
 
The first two of these last equations are plotted below to illustrate that, while in the 
classical Newtonian regime the energy increase with the square of the velocity, and while 
by accelerating particles we can increase their energy parameter, γ , indefinitely, their 
velocity “saturates” approaching that of c  (or 1=β ) more slowly and asymptotically. 

 
Fig. 6: Variation of velocity of a moving particle with increasing energy 

 
The shape of this curve is defined  

 

111    ,
1

1 2

22
0

⇒⎟
⎠
⎞⎜

⎝
⎛

γ−=β
β−

=γ=
cm

E   . 
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TRANSFORMING ACCELERATION AND FORCE COMPONENTS 
 
Having earlier understood how to transform velocities we can use a similar procedure to 
deduce how to transform an acceleration. This is somewhat tedious and the reader may 
prefer to skip this and the transformation of a force which follow.  However it is 
important to note that the transformations of forces and accelerations in the directions 
transverse to the direction of motion of the moving frame depend on γ . This is the reason 
why synchrotron radiation and its distribution in the laboratory are so strongly dependent 
on γ . 
 

To pursue the analysis we can differentiate to find the acceleration 
 

1
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2

1

1

1
1 dt

dt
dt
dv

dt
dv

a xx
x ==   . 

 
Again after using two partial differentials we obtain for  
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We can also express a force as three components (X, Y, Z) which transform as: 
 

( )1111
1

212 ZvYv
vc

XX zy
x

+
υ−

υ−=  

[ ]22
1

1
2

1 cv

YY
xυ−γ

=  

[ ]22
1

1
2

1 cv

ZZ
xυ−γ

=   . 

 

WHY IS SYNCHROTRON RADIATION SO γ  DEPENDENT? 
 
Synchrotron radiation is simply dipole radiation from a moving charge like an electron 
circulating in a magnetic field. Larmor solved this problem and it is easy to calculate that 
the power radiated is : 
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( )2
3

2

06
1 z

c
eP

πε
=   . 

 
Here we see the acceleration of the charge, z , which is in the transverse direction 

as shown in Figure 7. 
 

 
 

Fig. 7: This shows the particle motion and that of the transverse force and acceleration.  

 
If we look at the transformations of acceleration above (the za  component 

corresponds to z  and is the only component of acceleration present) and imagine that 
xv1=υ  we find that  

 

yy aa 122
1
γ

= .  

 
We suddenly realise that z2γ  is an invariant under Lorentz transformation and by putting 
it in Larmor’s classical formula instead of 2γ we have a law of physics which will be 
valid in any frame of reference: 
 

( ) 42
3

2

06
1 γ
πε

= z
c
eP   . 

 
We have just done something rather “grown up” in physics and by expressing a 

classical law in the invariant coordinates of special relativity produced a new law of 
physics that applies whatever the relative velocity of the particle or observer. Another 
example of this method is to be found in the field of synchrotron radiation. 

 
In Figure 8 the diagram on the left shows how we expect the radiation to be rather 

isotropic around a slowly moving particle while on the right we see that it is concentrated 
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in a narrow cone if the radiation from a rapidly moving particle is observed my Joe in the 
lab. Observed by Moe sitting on the moving particle it would of course appear as in the 
left hand figure. We can think of the radiation as photons. A photon seen by Moe has 
momentum zp at right angles to the path of the particle as seen by Joe, Moe measure the 
momentum to 0=xp  along the path towards Joe. The Lorentz transformation tells us 
that while zp  is unchanged for Joe he sees a large 2cmp ox βγ=  

 

 
 

Fig. 8: The left diagram shows Moe's isotropic view of synchrotron radiation as he 
moves with the particle and the right shows how this transforms into a narrow cone in the 

laboratory. 

 

 

 
Fig. 9: The momentum vector of the synchrotron light photon as seen by Joe in the lab 

and, below, how this defines a narrow cone. 
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Figure 9 shows above the momentum vector of the photon (labeled s) seen by Joe 

in the lab and below how the isotropic distribution of photons in the moving system 
appears as a forward cone of opening angle γ/1  to Joe in his lab. 

TRANSFORMING ELECTRIC AND MAGNETIC FIELDS 
 
Finally and to be complete we include the transformation matrix for a six vector whose 
components are the three components of electric field and those of magnetic field 
multiplied (in MKS notation) by c. 
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CONCLUSIONS 

This is really as far as one needs to go to understand special relativity and apply it to 
particle accelerators. Once one gets used to using invariant quantities and the laws of 
physics in invariant form it is often simple to solve a problem in the moving system of 
the particle and transform the solution into the lab or vice versa. We already have found 
this in dealing with synchrotron radiation. Another example is that of space charge which 
is particularly simple in the frame of reference of the mobbing bunch where fields are 
simply electrostatic. 
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