

Precise B-Decays Measurement sensitive to BSM Physics at ATLAS

Europhysics Conference on High Energy Physics 2007 July 2007,

Manchester, England

Martin zur Nedden Humboldt-Universität zu Berlin

For the ATLAS Collaboration

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Martin zur Nedden, HU Berlin

- ATLAS B-physics strategy, detector and trigger
- CP violation effects and sensitivity to physics beyond the standard model
- Rare B-decays

It is a pleasure to give this talk in the United Kingdom, which provides both of B-Physics conveners in ATLAS and is deeply involved in many of the studies presented here.

B Physics at LHC

- ATLAS is a <u>general-purpose</u> experiment: main emphasis on <u>high-pT physics</u> beyond the Standard Model
- ATLAS has also <u>capabilities for a rich B-physics</u> programme: precise <u>vertexing and tracking</u>, good <u>muon identification</u>, high-resolution calorimetry, dedicated and flexible <u>B-physics trigger</u> scheme.
- ATLAS has a **well-defined B-physics programme** for all stages of the LHC operation:
 - Huge b-hadron production statistics allow **precise measurements of their properties**
 - Theoretical descriptions of heavy flavoured hadrons need input from LHC
 - Precision measurements already achievable after one year of data taking
- Measurements extending the discovery potential for physics beyond SM measurements of <u>CP violation parameters</u> that are predicted to be small in the SM (e.g in $B_s \rightarrow J/\psi\phi(\eta)$) measurements of <u>rare B-decays</u> $(B_d \rightarrow K^*\gamma, B_d \rightarrow K^*\mu\mu, B_s \rightarrow \phi\gamma, B_s \rightarrow \phi\mu\mu, B_s \rightarrow \gamma\mu\mu, B \rightarrow \mu\mu)$
- Focus on physics topics that will not be accessible for the B-factories mainly B_s , baryon and double heavy flavour hadrons $(B_s \rightarrow D_s \pi, B_s \rightarrow J/\psi \phi(\eta), \Lambda_b \rightarrow J/\psi \Lambda^0, ...)$

ATLAS Experiment

D712/mb-26/06/97

ATLAS Multi Level Trigger

۰

•

٠

•

Trigger Strategies for B-Physics

- limited bandwidth for B-triggers:
highly efficient and selective trigger needed.Image: 10 modelc- and b-events contain mostly low p_T particles:
challenge to trigger on those eventsImage: 10 modelmany b-decays contain J/ψ :
useful for calibration, optimization and understanding of
detector, trigger as well as B-physicsImage: 10 modelB-trigger is based on single- and di-muons in final state
give flavour tagImage: 10 modellower lumi (< 2*10³³ cm⁻²s⁻¹)Image: 10 modelLVL 1 single u trigger with additional LVL 1 single u trigger unitImage: 10 model
 - LVL1 single µ-trigger with additional LVL1 signature or a jet in calorimeter at LVL2
 - use LVL1 Regions of Interest (**RoI**) to seed LVL2 reconstruction:
 - Jet RoI: for hadronic final states (e.g. $\mathbf{B}_{s} \rightarrow \mathbf{D}_{s}(\phi \pi)\pi$)
 - **EM RoI:** for e/γ final states (e.g. $J/\psi \rightarrow ee$, $K^*\gamma$, $\phi\gamma$)
 - Muon RoI: to recover di-muon final-states in which second muon was missed at LVL1
 - LVL1 di-muon trigger
- <u>high lumi (>2x10³³ cm⁻²s⁻¹)</u>
 - LVL1 di-µ trigger
 - $B \rightarrow J/\psi(\mu\mu)$, rare decays $(B \rightarrow \mu\mu, B \rightarrow K^{0*}\mu\mu)$, double semi leptonic decays
- Developments and studies by Rutherford, Technion (Haifa) and Tokio

• $\Phi_s = -2\lambda^2 \eta = -2\chi$: tiny in SM (-0.036±0.003 from CKM fitter)

Results for 30 fb ⁻¹ luminosity:				
signal events:		270.000		
B _s mass resolution:		16.5 MeV		
Background from J/W K ^{0*}	and bb $\rightarrow J/\Psi X$:	15 %		
$\varepsilon(tag)$ / wrong tag fraction	jet charge	63.0 % / 38 %		
	electron	1.2 % / 27 %		
	muon	2.5 % / 24 %		

- New Physics could lead to enhanced and measurable CP violation.
- 7 parameters extracted in maximum likelihood fit to angular distribution of the decay : A_{||}(t=0), A_T(t=0), δ₁, δ₂ (2 ind. magnitudes and phases) ΔΓ_s, Γ_s, Φ_s (weak decay parameter)
 - despite enormous LHC statistics and well-controlled background several parameters get highly correlated
 - to avoid failing a fit due to high Δm_s - Φ_s correlation, Δm_s was fixed

 $\begin{array}{lll} \sigma(\Phi_{s}) & \sim & 0.046 \ (\mbox{for } m_{s} = 20 \ \mbox{ps}^{-1}) \\ \sigma(\Delta\Gamma_{s}) / \Delta\Gamma_{s} = & 13\% \\ \sigma(\Gamma_{s}) / \Gamma_{s} & = & 1\% \\ \sigma(A_{\parallel}) / A_{\parallel} & = & 0.9\% \\ \sigma(A_{T}) / A_{T} & = & 3\% \end{array}$

Results from Lancaster University

Δm_s Measurement

 $b \rightarrow d$, s transitions (FCNC) are forbidden at the tree level in SM and occur at the lowest order through one-loop-diagrams "penguin" and "box"

Main points to study:

- good test of SM and its possible extensions
- information of the long-distance QCD effects
- * determination of the $|V_{td}|$ and $|V_{ts}|$
- * some of the rare decays as background to other rare decays (for example $B_d \rightarrow \pi^0 \mu^+ \mu^-$ as bkg for $B_{d,s} \rightarrow \mu^+ \mu^-$)

ATLAS offline analysis : $B_s \rightarrow \mu\mu$

40

60

Martin zur Nedden, HU Berlin

B-Physics at ATLAS

80

Vertex fit Chi2

100

Projected upper limits : $B_s \rightarrow \mu\mu$

extraction of upper limit on $Br(B_s \rightarrow \mu\mu)$ (from 7 signal and (20±12) background events)

expected statistics of reconstructed events at $L = 30 \text{ fb}^{-1}$

BR used in MC	Decay channel	Signal events	Background upper limit	
1.3 x 10 ⁻⁶	$B_d \rightarrow K^{0*} \mu \mu$	2500	12000	I
1.0 x 10 ⁻⁶	$B_s \rightarrow \Phi \mu \mu$	900	10000	ATLAS statistics errors
3.5 x 10 ⁻⁷	$B^+ \to K^+ \mu \mu$	4000	12000	SM model theory
6.4 x 10 ⁻⁷	$B^+ \rightarrow K^{*^+} \mu \mu$	2300	12000	MSSM with C \0
2.0 x 10 ⁻⁶	$Λ_b \rightarrow Λμμ$	800	4000	T INISSING WITH $C_{7eff} > 0$

- A_{FB} shape and BR provides strong indirect tests of BSM physics
- shape of distribution sensitive to trigger and offline selection cuts, especially at low q² region
 - \bullet small $\mu\mu$ opening angle is trigger challenging
 - Λ_{b} example:

detector acceptance and trigger muon: p_T cuts prefers higher q² and causes A_{FB} reduction by factor of 0.6 at q²/M_b² < 0.1

Analysis by Univ. Prague, Cosenza and Moscow

- well-defined B-Physics programme
- different Trigger Strategies for low and high luminosity phases well-prepared
- CP violation studies for B_s
- rare B-decays measurable with ATLAS sensitive to BSM.
- precision B-physics measurements provide an additional method for searches for new physics at LHC