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A. FREE-SURFACE WAVES MODIFIED BY A MAGNETIC FIELD

A magnetic field tangential to the free surface of a conducting fluid has a substantial

effect on the nature of the propagation of small disturbances on that surface. Consider

the geometry shown in Fig. X- 1. An infinitely deep, incompressible, and inviscid fluid
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Fig. X-1. Free-surface wave geometry.
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(X. PLASMA MAGNETOHYDRODYNAMICS)

with density p and electrical conductivity a- has a free surface at the plane y = 0. There

is a magnetic field in the x direction, and gravitational acceleration acts in the negative

y direction. The nonlinear equations of fluid dynamics are linearized to treat small
disturbances of the surface.

This problem without a magnetic field is an old one in hydrodynamics. An excellent
summary of the work may be found in Stoker. 1 A treatment of the closely related prob-

lem with a vertical magnetic field may be found in the paper by Roberts and Boardman. 2

A study of this geometry in which the fluids are assumed to have zero electrical resis-
tivity appears in Chandrasekhar.3

Since the wave motion is described by linearized equations, we may, without loss
of generality, consider two-dimensional wave motion in the x-y plane with derivatives
with respect to z being zero. It is a relatively simple matter to show that the compo-
nent of magnetic field that is perpendicular to the direction of wave propagation does not

affect the motion; hence, we may assume that the applied magnetic field is aligned along
the x axis.

1. Equations Describing the Fluid Motion

The equations necessary to describe the motion of the fluid are the linearized

inviscid Navier-Stokes equation and Maxwell's equations in the magnetohydrodynamic

or quasi-static approximation.

7 v - Vp + (j X o) (1)

j = ((E+vX B ) (2)

7X b= oj (3)

SE =a (4)
at

V v= 0 (5)

7 b = 0. (6)

Since the motion is assumed to be two-dimensional in the x-y plane, we may intro-

duce stream functions j and A for the velocity and magnetic field.

v= i -i x (7)yx xy

b=Ayi x- A i (8)

Substituting these expressions in Eqs. 1-6, we obtain, after a bit of manipulation,
B

(xx+yy)t pp A(xx+yy)x (9)PO
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A A B (10)(xx+yy) o- t -oBox. (10)

Under the assumption that all quantities are of the form f(y) ej(kx - t) , this pair of

equations can be solved to yield

'= [ 1 e k y + j 2 eY] ej(kx-tt) (11)

kB [ 2
A = - 0 eky + M 2J e ej(kx), (12)

where

2
2 J pl4

M - 0 (13)A 2 2
o

and

jWP k 2B 2 -1/2

S=k o Z (14)

Here, the square root with the positive real part is the one intended.

2. Boundary Conditions

The boundary conditions applicable at the free surface are that both components of

the magnetic field are continuous and that there is no discontinuity in pressure at the

surface. Application of these conditions to the form of solution indicated in Eqs. 11

and 12 gives a dispersion relation between k and w.

1 + k (w2-gk) - 2 - gk) = 0, (15)

A

where

B
2

vA o (16)
A pp

and P is defined in Eq. 14.

In the limit as a goes to zero, the dispersion relation takes the form

2 g
= - . (17)

k

This is the well-known result for gravity waves.

QPR No. 73 111



(X. PLASMA MAGNETOHYDRODYNAMICS)

In the limit as the resistivity becomes zero, P approaches infinity in magnitude.

The terms depending on exp(py) are then only of significance near the free surface.

This boundary layer contains a high current density that is represented in the perfect

conductivity approximation by a surface current. The dispersion relation takes the

form

2 g 2
+ k 2v (18)

k 2 -k A'k

This is the solution that is obtained directly if the fluid is assumed to be perfectly con-

ducting. It is interesting to note here that if the applied magnetic field has a component

that is perpendicular to the equilibrium surface of the fluid, no surface current is formed

and no simple normal-mode dispersion relation exists.

There are two spurious solutions to Eqs. 14 and 15. They are

2 2 2
w k v A .  (19)

3. The Effects of Small Losses

Equations 17 and 18 represent the two lossless limits of the situation under con-

sideration. We now consider the effects of small loss on these limiting forms. It is

convenient to introduce dimensionless variables. A useful choice of characteristic

dimensions is

2
vA
a A

g

vA
T-

g

The dimensionless variables will be

W1 = TW

k' = Lk

P' = P/k.

Equations 14 and 15 become

1 = 1 - jRM ( 1-) 1/2 (20)

2
W '2-k)(1+P ' ) - 2(p'w'2-k'), (21)

k'
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where R M is a magnetic Reynolds number

3

R M -Mg (22)

To explore effects of small conductivity, we can write o as a power series in the mag-

netic Reynolds number.

o = oo + R '1 + R I +

When this is done, we find

o' =k 1/2

c = -j/4

4 - 7,'2
0

2 32l3
0

Two peculiar features may be noted. First, the rate of damping is independent of

wavelength. Second, the rate of oscillation of the system may either increase or

decrease with the addition of small loss, the change depending upon the wavelength.

For large conductivity, an appropriate expansion parameter is

1

R 1/2
M

Writing

' + y ...

we find

S = [k(l+2k)]1/2

Sjk
Z 71/2

W k(L+k)
- 0

Zk 2(1+k)

1+ 2k

The general dispersion relation has a number of interesting features, and it is being

investigated numerically.

C. W. Rook, Jr.
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B. EFFECT OF SOME IMPERFECTIONS ON LIQUID-METAL HYDROMAGNETIC

WAVEGUIDE PERFORMANCE

In the analysis of hydromagnetic waveguides, the effects of viscosity, fringing fields,

and finite conductivity walls are usually neglected. An example of each factor will be

given separately and in infinite plane parallel geometry for simplicity. The waveguide

geometry is given in Fig. X-2.

S2 x

+o

I

Fig. X-2. Waveguide geometry = 0.By

The waveguide is formed by two semi-infinite regions of conductivity a2 spaced a

distance 2a apart with faces parallel to the y-z plane. The fluid between the planes

has density p, conductivity ., and absolute viscosity 4. The imposed uniform DC

magnetic field is given by

B =iB +iB (o x ox z oz

The wave will be assumed to be TM (principal mode) and varying as

A(x, z, t) = a(x) ei(wt+kz)

The relevant equations in the fluid may now be written as

d2v

iwpvy =-jxB + j B - k v + dx
y x oz z ox y dx2 Navier-Stokes
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Jx = Ql(ex+v Y B oz )  (4)

Ohm's Law

Jz l= (ez-vB ox) (5)

de
ike - - = -ib (6)x y curl e

-ikby = (7)

db curl b
y

dx - Joz (8)

1. The Effect of Viscosity Box = 0

Equations 3-8 may now be reduced to a single fourth-order equation in v .
y

d4 ddv dv

v d x 4 - [,q(k 2 v+iw) + v(kZl+iw)] dx 2 + (k 2v+iw)(k2 T+i) +k coz y 0, (9)

where

v viscous diffusivity (10)
P

1 = magnetic diffusivity (11)
o 1

B
c = oz - longitudinal Alfvn speed. (12)

4-0 P

Note the symmetry of the magnetic and viscous diffusivities in (9).

The solution of Eq. 9 has been investigated by Blue I for 2 = 0. In this case, the

electromagnetic boundary condition requires the velocity to be zero at the walls quite

independently of viscosity. He found that for liquid metals visocity played no sig-

nificant part. For a perfectly conducting wall a2 = oo, however, the electromagnetic

boundary condition requires a velocity that is maximum at the walls if . = 0. Viscosity

might then be expected to have a significant effect.

The antisymmetric solution of (9) is

v = Al sin yl x + A 2 sinh y2x. (13)

The boundary conditions for ¢2 = oo are

v (a) = 0 (14)
y

QPR No. 73 115



(X. PLASMA MAGNETOHYDRODYNAMICS)

ez(a) = 0, (15)

where

-3
vdv 2 dv

e ?0 - (k2v+iw) (16)z . 2 3 dxikcoz dx --

and

2 2
2 2 v+r v k coz

y - (k +i) ) koz (17)
2vy 2v ] v T

Here, yl is associated with the + sign and 2 with the - sign.
Since in a typical liquid metal (NaK) at room temperature v = 9. 7 X 10 m /s and

S= 0. 3 m2/s, take the limiting forms of yl and Y2 as v- 0

2 -k 2 (c2 z+il)

I = (18)1)

2 i .
2- (19)

2
Notice that yl is just that which would have been obtained if viscosity had been

neglected at the outset. The velocity and tangential field then become

A, [-(l-i)v (a-x)

vy =Al siny x - 2 e (20)

e = Al cos yix. (21)
kc oz

The effect of the second term in (20) decays away from the wall with a characteris-

tic distance

6 = = viscous skin depth. (22)

In NaK at w = 400 (a frequency near the lower end of the Alfvn region 2 ) 6 = 0. 002 cm

and decreases with increasing frequency. Summarizing these results, we see that the

effect of viscosity is only to introduce a thin boundary layer near the wall in the veloc-

ity and does not affect the tangential electric field, as illustrated in Fig. X-3, in which

the relative thickness of the boundary layer has been exaggerated.
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a = 
co WALL

Fig. X-3. Effect of viscosity on e and v .
z y

2. Effect of Finite Wall Conductivity B = 4 = 0 for T1 
=

ox

In this case the fields in the fluid are given by setting v = 0, and are

by 1 = A 1 sin y1 x

ez1 = Al 'r 1 1 cos l x ,

where yl is given by (18). In the walls

-Y3x

by 2 = A 2 e

ez2 = - An 2Y3

(23)

(24)

(25)

(26)e-3

where

1
'2 = - __ 2

and

2 2
2 w _w2 k 2

Y3 iw 2

Setting the tangential electric and magnetic fields equal at the walls yields

62 Y1
tan yla 2- Y3

(27)

(28)

(29)

It is evident that y 1 and y3 must now be complex, thereby making the solution of (29)

for k 2 quite difficult. Approximate solutions may be obtained for a2 very large and

very small, but are not very useful.

If the wall is assumed to be of finite thickness b much less than an electromagnetic

skin depth so that the wall current may be considered constant in x, then (29) becomes
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a2 b
tan y1a =- Y1a-

S1 a 1
(30)

This assumption will be good for b = 0. 25 inch and frequencies in the NaK-Alfven
region for stainless-steel and even for copper walls. Equation 30 may be solved graph-
ic ally as in Fig. X-4 for yl and thus k.

0 1 n/2 2 (T1a) 3 T 4 5

-1

-2

(b)

-3

Fig. X-4. Graphical solution of Eq. 30 for NaK with
(a) stainless-steel wall, a = 7. 5 in.,

b = 0. 25 in.;
(b) copper wall, a = 6 in., b = 0. 25 in.

Notice in Fig. X-4 that an NaK waveguide constructed of stainless steel (even if good

electrical contact could be made) is almost equivalent to a perfect insulator, while cop-
per approaches reasonably close to being a perfect conductor.

3. Effect of Fringing Fields 4 = 0

After some reduction, Eqs. 3-8 become

- (c 2 +iwl) ik lby = (C 2x+iW l)e + c c e (31)
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c2i = c c e + (C 2 +iWr )e ,
o 1 I dx ox oz x oz z

where

B
c ox = transverse Alfven speed

ox Jo

2 2 2
C =C +Co ox oz

Equations 31 and 32 may now be combined to give

d2b db

(c z+iwn1 2 + 2ike c + 2 -k 2 cz+i ) b
ox 1 dx 2 ox oz dx 0 y

1
e z iw

=0

dy by]

(c +i + ike c b+k
ox 1 dx oxoz

The antisymmetric solution of 35 is

-iT 1x
b =A ey 1 sin T 2 x

T2 (c 2 x+i 1 i

ez A io
cos T 2 x,

where

kc c
T = ox oz

1 2
c + ioiox 1

1
T2 2

ox 1

(39)

2 (c 2 +r 1) -q 1k2 c2+L1ox 0

1/2
(40)

Application of the boundary condition either for an insulated wall b y(a) = 0 or for

an infinite conductivity wall ez(a) = 0 fixes T 2 and thus k

W 1 21 2

z w 21 + + . 2 52

k2 = + 2 2
2 ,

where 1 and w2 are the critical frequencies
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(34)

(35)

(36)

(37)

and

(38)
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1 2
I = yrl lT 2

2
1 oz

W2 2

and

c
ox

c
oz

(42)

(43)

(44)

An exact evaluation of (44) is shown in Fig. X-5 (log-log coordinates) for an NaK

experiment, 6 = 0. 1, with the curve for 6 = 0 dashed for comparison. Notice that the

10
3 -

10
2 

-102

10
0  

-kr

10-1

100 101 1 Wc 10
2  

103 2 104 105

Fig. X-5. Propagation constant with transverse field effect in
NaK. (Boz = 8 kgauss; a = 6 in.; 6 = 0. 1; r2 = oo.)

real part of k goes to zero at the frequency we. If 6 < 1, this frequency is given

by
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1 w 2

(45)

and is due to an ordinary cutoff in the transverse field. As the transverse field com-

ponent is made smaller, 6 - 0, this cutoff recedes to zero frequency.

G. B. Kliman
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C. FRICTION-FACTOR MEASUREMENTS IN LIQUID-METAL MAGNETOHYDRO-

DYNAMIC CHANNEL FLOWS

Pressure-flow relations in a constant, transverse magnetic field region provide

information on the character of MHD channel flows and the energy conversion devices

based on these flows. 1 Data on friction factors in such a uniform field region of a

constant-area channel have been obtained for NaK flows by using the flow facility

described in Quarterly Progress Report No. 72 (pages 156- 163).

Table X- 1. Comparative maxima for important parameters.

Investigator R M/Rma x  M /Rmax

Hartmann and 4.9 X 103 1. 5 X 10 - 3  1. 1 X 10 - 2

Lazarus 2  3. 2 X 103 1.9 X 10 - 3  1. 4X 10 - 2

Murgatroyd 3  7 X 10 4  1. 8X 10 - 3  2. 2X 10-1

3 X 10 4  2. 1 x 10 - 3  1.3 X 10 - 1

Brouillette and 7. 7 X 10 4  2. 3 X 10 - 4  4. O0 10 - 3

Lykoudis 5  4. 4. 0 X 10 4.5 10 - 5  8. 1 X 10 - 4

Present 6. 0X 10 4  1. 1 X 10 - 3  7.2 X 10 - 2

3.2X 10 4 2. 5X 10 - 3 2. OX 10-1
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Previous experimental work in this area has employed mercury. 2-5 Sodium potas-

sium gives much larger values of Hartmann number (M) for a given channel and mag-

netic field, and thus much larger ranges of M/R and M 2/R, where R is the Reynolds

number. Comparative maxima are given in Table X- 1. The higher values attained by

Murgatroyd 3 are due to his much higher field strength (20, 000 gauss as opposed to 5500

for the present work).

The channel is shown schematically in Fig. X- 6, in which B and U are the
o o

applied magnetic field and mean velocity, respectively. Magnetic flux density, con-

tinuously variable up to a value of 5500 gauss and virtually uniform over the channel

section of interest, was supplied by an electromagnet. Flow was provided by a

20-gal/min, 20-psi positive displacement pump, and surge tanks ensured that it was

almost pulsation- free.

0.25 cm

5

STAINLESS STEEL
U o

0.25 cm

B

Fig. X-6. Channel cross section.

Pressure differences were read directly from NaK manometers, with a small

amount of kerosene on top of each to improve readability. Velocity was measured by

a calibrated Venturi meter, whose pressure differences were read as indicated above.

Fluid temperature was read by a thermocouple potentiometer unit. Voltages across

the channel and an electromagnetic flowmeter in the loop were obtained by using a high-

impedance oscilloscope.

The results of pressure measurements are shown as friction factors vs M/R in

Figs. X-7 and X-8. The friction factor is defined as

2

h f oL
L 2g D' (1)

where hL is the hydraulic head loss along a length L of a uniform channel of hydraulic

radius D in which fluid is flowing with mean velocity U , and g is the gravitational
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constant.

It is well established that liquid metals generally do not wet solid metal surfaces. 6' 7

Under such circumstances very poor electrical contact exists. It is thus reasonable

to assume that the walls of the channel make poor electrical contact with the fluid. The

+ Ri R
Vo = aUB o, RL Vm

RL = RL + Rc

Fig. X-7. Lumped-circuit model of
nonwetting contact.

voltages measured across the channel were approximately 5 per cent of those predicted

and measured 8 for insulated side walls and highly conducting end walls and thus con-

firmed the existence of an electrical contact resistance, R c , substantially greater than

the channel internal resistance R..
1

10-2

M/R

Fig. X-8. Friction factor vs M/R for R z 3. 2 X 10 4
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A circuit representation of the situation is shown in Fig. X-7, in which RL is the

load imposed by the finite conductivity walls and Vo is the open-circuit voltage. From

a one-dimensional treatment,

V =aU B ,

where a is the interelectrode distance, U is the mean flow velocity for either turbulent

or laminar flow, and Bo is the uniform applied magnetic field.

10-1

10-2

fMHD

fgen (a' 50)

V
-- 4%
VO

Fig. X-9. Friction factor vs M/R for R = 6 X 10 4

It is convenient to define a resistance ratio a' as

R +R
al = R. (3)

1

where a' is determined from measured voltage V m , since

Vm RL RL/Ri

V R + R. +R - I + a' (4)o L 1 c

By rewriting the result of Penhune 9 for laminar flow, the equivalent friction factor
f is
m
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32M 2  (a' + M coth M)
f (5)m R (a'+l)(M coth M - 1)

For turbulent flow, a similar result holds,

32M
f 3 + f (6)m a'R mhd'

where fmhd denotes the insulated-wall MHD friction factor obtained by Murgatroyd. 3

In Eqs. 5 and 6

R - pUD and M 2 = B2 D)2 "

where p is the density, il is the viscosity, and a- is the conductivity of the fluid.

In this study a' > 50, and the two expressions differ by less than 5 per cent in

regions for which both apply.

Equation 6 is plotted in Figs. X-8 and X-9 for comparison with observed values, and

shows good agreement over the entire range of M/R values. Work is now in progress

to obtain data over a wider range of channel and electrical loading conditions. Copper

electrodes will be used to ensure wetting contacts.

W. D. Jackson, J. R. Ellis, Jr.
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D. DIPOLE-DIPOLE INTERACTIONS BETWEEN A POLARIZABLE PARTICLE AND

AN ADSORBED LAYER OF DISCRETE DIPOLES

1. Introduction

This is the second in a series of reports that will present the results of analytical

studies of cesium films adsorbed on refractory metal substrates. Since a cesium film

of less than one monolayer adsorbed on materials such as tungsten serves to reduce

the work function of the surface, adsorption phenomena are pertinent to thermionics

research. Analytical results have been presented in previous works1-3 relating atomic

and ionic heats of adsorption and electron work function to the degree of coverage.

These results compare favorably with available experimental data. 4,5

The initial phase of this research has already been presented. Two values for the

penetration coefficient, one for a mobile film, and one for an immobile film, were

derived. The experimental values fell between the two. In the treatment presented

in the first report an important effect was not considered - the effect of polarization

of the adsorbed particles while they are in the strong depolarizing field of the other
7

ions. A method for calculating the effect of the depolarizing field of the discrete

dipole layer on a given test particle is presented in this report which is based on the

adsorption model given previously.6

If an ion is placed in the depolarizing field that results from an adsorbed layer of

discrete dipoles, the field will induce a dipole moment in the test particle, directed

toward the surface, by distorting the charge distribution of the electron cloud. This

moment is given by

ri = aE, (1)

where a is the polarizability of the test particle. The interaction of the induced dipole

with the discrete dipoles will be repulsive. The object of this report is to derive an

approximate analytical expression to describe this repulsive dipole-dipole interaction

as a function of the distance of the test particle from the dipole layer.

2. Depolarizing Field

The induced dipole given by Eq. I can be determined by knowing the depolarizing

field. An approximate field can be obtained by the following method. The potential at the

charge center of an adsorbed ion in the dipole layer as determined previously 8 is equal

2. 25qO /2ZX
to V(r=k) = 3 It can be shown that for r of the order of X the relation

d

2. 25qX 3/2r
V(r) = 31 (2)

d
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r- r

Fig. X- 10. Adsorbed dipole layer potential as a function
of distance from the substrate.

is also valid. As r becomes large, V(r) - Vo = 2Mo 10. The description of V = V(r)

between the region in which the linear approximation is no longer valid and the region

in which r approaches infinity has been derived but is extremely complicated to eval-

uate in a simple manner. The relation is of such a form that little accuracy is lost by

making the following linearizing assumption. Consider the potential to increase lin-

early by Eq. 2 until V(r) = V0 at r as shown in Fig. X- 10. Setting V(r) = V and

solving for r = r yield

r = d 3)

2. 2501/2
1

The linearized potential is equivalent to a region for r < r in which the depolarizing

field is constant and given by

8V(r) 2. 25qXk 3 /2
E (4)

8r d3

and a field-free region for r > r

3. Analysis

Since the difference in potential of an ion at infinity and an r < r is desired, con-

sider the process of bringing an ion from infinity to r < r . As the ion moves from

infinity to r , the only interaction is that of a positively charged particle with a dipole
6 *

layer. At r = r , the ion enters the depolarizing field, at which point a moment is

induced in the ion i = aE. As the ion approaches the surface from r there are two

types of interactions to consider, that of the positive charge with the adsorbates and

that of the induced dipole with the discrete dipoles at each adsorption site. The poten-

tial resulting from the dipole-dipole interaction of the induced dipole of the test particle

with the dipoles of the adsorbed layer at the lattice site identified by the indices i, j is

given by 9 ' 10
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M.j . i- 3(nMi) (n i )

qV. = 3 (5)
1] r..

13

where

M i. = q- aE (6)

and r.. is identified in Fig. XVII-21 of Quarterly Progress Report No. 72 (page 167),

n is a unit vector along r..ij, and Mij is considered as a point dipole at i, j with r = 0.

Since Mij and .i are parallel, Eq. 5 becomes

qV 3 (7)
1J r.

ij

where

22 4d 2 2a)
1

2
cos2 E.. = r . (8b)

1 2r..1J

Combining Eqs. 7 and 8 yields

M. 41 3/2 32

qVij (r) = - - (9)S8d3  i2+j 2 3/2 4d(i+j 2) 5/2

Since by definition V = 0 at r = 0, Eq. 9 becomes

3 Mij 4i5/2r 2

qV..(r) = -

32d 5 (i+j2) 5/2

and

O5/2 r23M. .. L. r oo

qV(r) = - (10)
32d5 2 2 5/2

Combining Eqs. 1, 4, 6, and 10 together with 1 5. 04 gives for the

-oo00 (i2+j2)5/2

final result
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1. 06qX2a04r21. 06q aOr 2. 25a 3/2
Vi(r) = - d 3 id (r

V.(r) = V.(r )1 1

for r < r

for r > r

(11)

This is the analytic statement of the potential resulting from induced dipoles.

The change in adsorption properties of ions from depolarization may be determined

from Eq. 11. The dipole-dipole interaction of induced dipoles in atomic species with

the surface dipoles is much greater than that interaction occurring between induced

dipoles in ions and surface dipoles because the polarizability of the cesium atom is

almost twenty times as great as that of ions. The expression for the dipole-dipole

interaction of an atom passing through the dipole field given by Eq. 4 is

1. 06qk2 a 04 r 2  2. 25a. /2
V (r) = - a 3 -

a d8 d 3 1
(12)

where a is the atom polarizability, and a. is the ion polarizability.
a 1

Vi(r ) and V a (r ) are calculated for the cesium-tungsten system and the results

presented in Table X-2. The results are for conditions at T = 8000 K with k = 1. 65 A,

Table X-2. Potential across ionic and atomic depolarizing dipole layers.

o 0. V.(r=r ) eV V (r=r) eV

0 0 0 0
-5 -4

.05 .05 2. 4X 10- 2. 48 X 10
-4 -3

.1 .1 1. 69 X 10-4 3. 16 X 10-3

. 2 . 2 1. 32 X 10-3 2. 47 X 10-2

.3 .3 4. 42 X 10-3 8. 25 X 10-2

.4 .4 1 X 10 - 2  .187

.5 .5 1. 89 X 10 - 2  . 354

.6 .586 3 X 10 2  . 561

.7 .666 4. 25 X 10 - 2  .795

.8 .732 5. 5 X 10 - 2  1. 03
-2

.9 .782 6. 53 X 10 1. 22

1. 0 .85 8. 07 X 10-2 1. 51
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o 3
the cesium ionic core radius; d = 3. 15 A, the tungsten lattice parameter; a. = 2. 46 A,

3 11
a = 46A As is to be expected, the interaction is significant only between the induced

moment in the atom and the dipole layer, since this moment is nearly twenty times as

great as that which is induced in the ionic species.

The results presented in this analysis will be essential in the continuation of this

work on adsorption phenomena of monolayers, since a quantitative means of determining

the effects of polarization of atoms and ions and of ions in a dipole field was needed.

This is provided by Eqs. 11 and 12. Work is in progress to show the effects of the

dipole- dipole interactions on the penetration coefficient, work function, and atomic and

ionic heats of adsorption.

J. W. Gadzuk
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