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Abstract 
The resistive-wall impedance of cylindrical vacuum 

chambers was first calculated more than forty years ago 

under some approximations. Since then many papers have 

been published to extend its range of validity. In the last 

few years, the interest in this subject has again been 

revived for the LHC graphite collimators, for which a 

new physical regime is predicted. The first unstable 

betatron line in the LHC is at 8 kHz, where the skin depth 

for graphite is 1.8 cm, which is smaller than the 

collimator thickness of 2.5 cm. Hence one could think 

that the resistive thick-wall formula would be about right. 

It is found that it is not, and that the resistive impedance is 

about two orders of magnitude lower at this frequency, 

which is explained by the fact that the skin depth is much 

larger than the beam pipe radius. Starting from the 

Maxwell equations and using field matching, a consistent 

derivation of both longitudinal and transverse resistive-

wall impedances of an infinitely long cylindrical beam 

pipe is presented in this paper. The results, which should 

be valid for any number of layers, beam velocity, 

frequency, conductivity, permittivity and permeability, 

have been compared to previous ones. 

INTRODUCTION 

Renewed interest in this old subject [1] is due to the 

important role of resistive-wall effects for collective beam 

stability in large circular proton accelerators or colliders 

such as the LHC. In particular, the numerous collimators 

in the machine are made of highly resistive graphite to 

withstand the high temperatures generated by the impact 

of high-energy protons, and will be moved into positions 

very close to the beam to protect the surrounding super-

conducting magnets from stray protons. These devices 

could create such high impedances as to severely limit the 

beam current and hence the performance of the collider. 

A number of papers have been published on this subject 

in the last few years [2,3,4], which were already discussed 

in Ref. [5]. A more recent one was published in Ref. [6]. 

In this report, whose transverse part is a summary of 

Refs. [7,8] and whose results were already briefly 

discussed in Ref. [9], the exact calculation of the electro-

magnetic fields excited by an infinitesimally thin, annular 

particle beam of finite radius in a surrounding coaxial 

vacuum chamber of infinite length is described. The 

method used to compute the fields is reviewed in the first 

section, while the longitudinal and transverse impedances 

are discussed in the following sections. It is worth 

mentioning that the “low-frequency” regime, which is of 

primary importance for the LHC collimators, was already 

obtained in Ref. [10] under some approximations. 

FIELD CALCULATIONS 

Starting from Maxwell equations, assuming that in the 

frequency domain all the field quantities are proportional 

to tje ω  (which will be omitted below for simplicity), and 

combining the conduction and displacement current 

terms, yields the following scalar Helmholtz equations for 

the longitudinal field components in the circular 

cylindrical coordinates (r, q, z) 
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Here, H  and E  are the magnetic and electric fields 

respectively, fπω 2=  is the angular frequency, j  is the 

imaginary unit, ρ  is the (source) charge density, υ  is the 

source velocity, and 

 ,00 ω
σεεεεε
j

rc +=′=      ,0 rεεε =  (3) 

 ( ) ,tan1 M00 ϑμμμμμ jr +=′=  (4) 

where ε ′  ( μ′ ) is the relative complex permittivity 

(permeability) of the pipe with 0ε  ( 0μ ) the permittivity 

(permeability) of vacuum and rε  ( rμ ) the relative 

permittivity (permeability) of the pipe, σ  is the electric 

conductivity, and Mϑtan  is the loss tangent. 

The homogeneous equations can be solved by 

separation of variables, writing the longitudinal 

component of the magnetic and electric fields as  

)()()( rRzZθΘ . It is easily found that θθ mje ±=Θ )( , 

where m  is called the azimuthal mode number, and 
zkjezZ ±=)( , where υω /=k  is called the wave 



number. The function )(rR  is found by solving the 

following equation 
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with μεβν ′′−= 21k , which is called the radial 

propagation constant, where β  is the relativistic velocity 

factor. It is known that the solutions of the differential 

Eq. (5) are the modified Bessel functions of mth order and 

argument rν , called ( )rIm ν  and ( )rKm ν . 

The source charge density ρ  has to be specified at this 

stage to obtain the exact forms of the azimuthal and axial 

functions )(θΘ  and )(zZ . A macro-particle of charge 

eNQ b=  is assumed to move along the pipe (in the z-

direction) with an offset ar =  in the 0=ϑ  direction and 

with velocity cβυ =  (equal to the bunch velocity 

cbb βυ = ). Neglecting betatron and synchrotron 

oscillations, assuming that the beam is not affected by the 

wake field, and using the azimuthal Fourier 

decomposition of the charge, the charge density can be 

written [11] 
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where m
m aQP =  is the mth multipole moment, and 

10 =mδ  if m = 0, 0 if m ∫ 0. Proceeding to the frequency 

domain and considering only one mode m, it is seen that 

the charge density mρ  is proportional to zkjem −)(cos ϑ , 

which leads to the following longitudinal components of 

the electric and magnetic fields (reinserting the time 

dependence) 

( ) ( ) ( )[ ],)(sin 21 rKCrICemH mm
zktj

z ννθ ω += −  (7) 
( ) ( ) ( )[ ] ,)(cos 43 rKCrICemE mm

zktj
z ννθ ω += −  (8) 

where 4,3,2,1C  are constants to be determined by field 

matching, as all field strength components have to be 

matched, i.e. in the absence of surface charges and 

currents the four tangential field strengths have to be 

continuous (matching of the radial components is 

redundant). 

Finally, using Maxwell equations in a source-free 

region, the transverse field components can be deduced 

from the longitudinal ones (with HZG
rr

0= , where 0Z  is 

the free-space impedance) 
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where )(cos/// 000 ϑϑϑ mGGEEEE rrzz ===  and 

)(sin/// 000 ϑϑϑ mGGGGEE zzrr === . 

LONGITUDINAL IMPEDANCE 

Considering only the term m = 0 (longitudinal 

monopole), the charge density, in the frequency domain, 

is given by 

 ( ) ( ) .
2

;,0
zkjear

a

Q
zr −−= δ

υπ
ωρ  (13) 

The longitudinal source electric field in the vacuum 

region between the beam and the vacuum pipe ( bra ≤≤ , 

where b is the inner beam pipe radius) has been computed 

in Ref. [12] and is given by 
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where 2/12 )1( −−= βγ  is the relativistic mass factor, 

γ/aks = , γ/rku = , and TMα  is the unknown 

parameter which has to be found by field matching at the 

layers’s boundaries. The total (i.e. resistive-wall plus 

space-charge) longitudinal impedance is given by 
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which, using Eqs (14), leads to (with L the length of the 

resistive object)   
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Figure 1: Longitudinal impedance for the case of a 

(single-layer) 1 m long (round) LHC graphite collimator 

with radius b = 2 mm and conductivity 115- m10 −−Ω=σ . 

The resistive-wall impedance is obtained by subtracting 

from the total impedance of Eq. (16) the impedance 

obtained with a perfect conductor at br = , i.e. when 



( ) ( )1010TM / xIxK=α  with γ/1 bkx = , which yields 

the space-charge impedance 
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The present formalism can be used for any number of 

layers of the vacuum pipe [13]. Only the result for a 

single layer extending up to infinity is given here 
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where bx ν=2 . The longitudinal impedance (divided by 

revffn /= ) for the case of a LHC collimator is shown in 

Fig. 1, revealing a good agreement with Ref. [10]. 

TRANSVERSE IMPEDANCE 

Considering only the term m = 1 (transverse dipole), 

the charge density, in the frequency domain, is given by 
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The longitudinal source-field components (for bra ≤≤ ) 

have been computed in Ref. [12] and are given by 
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where the unknown parameters TMα  and TEα  have to be 

found by field matching at the layers’s boundaries. The 

total horizontal impedance is given by 
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which, using Eqs. (10) and (11), yields  
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The space-charge impedance is obtained with a perfect 

conductor at br = , i.e. when ( ) ( )1111TM / xIxK=α , 

and is given by 
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The present formalism can also be used for any number 

of layers of the vacuum pipe [7]. Only the result for a 

single layer extending up to infinity is given here  
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The transverse impedance of a LHC graphite collimator is 

shown in Fig. 2, in good agreement with Ref. [10]. 
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Figure 2: Transverse impedance for the case of a 
LHC graphite collimator (see Fig. 1). 

CONCLUSION 

A general formalism to compute both longitudinal and 

transverse impedances of an infinitely long multi-layer 

circular beam pipe has been presented. Three frequency 

regimes are found [8], in agreement with Ref. [10] in the 

particular case of a (single-layer) LHC collimator. 

Comparisons with Ref. [2] can be found in Refs. [7,8]. 
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