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Abstract

We present a new method to search for a light scalar top with mt̃1
<
∼ mt, decaying

dominantly into a c-jet and the lightest neutralino, at the LHC. The principal idea
is to exploit the Majorana nature of the gluino, leading to same-sign top quarks
in events of gluino-pair production followed by gluino decays into top and stop.
The resulting signature is 2 b-jets plus 2 same-sign leptons plus additional jets and
missing energy. We perform a Monte Carlo simulation for a benchmark scenario,
which is in agreement with the recent WMAP bound on the relic density of dark
matter, and demonstrate that for mg̃ <

∼ 900 GeV and mq̃ > mg̃ the signal can be
extracted from the background. Moreover, we discuss the determination of the stop
and gluino masses from the shape of invariant-mass distributions. The derivation
of the shape formulae is also given.

1 Introduction

Owing to the large top Yukawa coupling, the supersymmetric partners of the top quark,
the so-called ‘scalar tops’ or ‘stops’, play a special role in the MSSM [1]. This is manifest
in i) the mixing of the left- and right-chiral states t̃L,R to mass eigenstates t̃1,2 with
the mixing and mass splitting proportional to M2

LR = htv2(At − µ cot β); ii) the large
impact of the stop masses on the light Higgs mass mh through radiative corrections; and
iii) the influence of the stop sector on the renormalization group (RG) running of the
SUSY breaking parameters. RG running and L–R mixing can render the lighter stop,
t̃1, much lighter than all other squarks. Indeed, there are scenarios which prefer a very
light t̃1, lighter than the top quark. For example, the requirement of a strong enough
first order phase transition to preserve the baryon asymmetry of the Universe, together
with the Higgs mass bound from LEP2, favour mt̃1

< mt and somewhat small values of
tan β ∼ 2–8 [2–5]. A light t̃1 also ameliorates the fine-tuning in SUSY models.

The experimental bound on mt̃1
from LEP2 [6] is about 94–100 GeV, depending on the

decay mode, the t̃ mixing, and the mass difference between the t̃1 and the lightest SUSY
particle (LSP). This leaves us with 100 GeV < mt̃1

< mt as a very interesting possibility
to consider. A t̃1 in this range may be discovered at the Tevatron [7, 8] provided the t̃1–
LSP mass difference is large enough. At the LHC, studies of scalar tops typically suffer
from an enormous SUSY background, often from b̃ decays, which makes it very difficult
to extract the t̃ signal [9–11]. However, it has to be noted that most of these studies
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mt̃1
[GeV] 120 130 140 150 160 170 180

σ(t̃1t̃
∗
1), Tevatron 5.43 3.44 2.25 1.50 1.02 0.71 0.50

σ(t̃1t̃
∗
1), LHC 757 532 382 280 209 158 121

Table 1: NLO cross sections in pb for t̃1 pair production at the Tevatron and the LHC,
computed with Prospino2 [12]. For the radiative corrections, mq̃ = 1 TeV for all squarks
apart from t̃1, and mg̃ = 660 GeV.

were performed within the mSUGRA scenario, which imposes relations between stop and
sbottom masses, and also between stops/sbottoms and the rest of the spectrum. In this
paper we follow a different approach, discussing the phenomenology of a light t̃1 in the
framework of the general MSSM.

Quite generally, pair production of light stops has a large cross section at both the
Tevatron and the LHC, comparable to the tt̄ cross section. The cross sections at next-
to-leading order (NLO) are given in Table 1. If mt̃1

< mχ̃±
1

+ mb and mt̃1
− mχ̃0

1
<

mW , the t̃1 may decay dominantly into cχ̃0
1 [13]. This gives a signature of two c-jets

plus missing transverse energy Emiss
T , which may be extracted at the Tevatron provided

mt̃1
− mχ̃0

1

>
∼ 30 GeV and mχ̃0

1

<
∼ 100 GeV, for an integrated luminosity of 4 fb−1 [7, 8].

At the LHC, however, it will be exceedingly difficult to use this signature for a discovery.
In this paper, we therefore propose an alternative signature to search for a light t̃1 at

the LHC: For masses up to ∼1 TeV, gluinos are also copiously pair-produced at the LHC.
The cross sections at NLO are given in Table 2. If mg̃ > mt̃1

+ mt, gluinos decay into
stops with a large branching ratio. The important point is that being Majorana particles,
they decay into t t̃∗1 or t̄ t̃1 combinations with equal probability. Pair-produced gluinos
therefore give

g̃g̃ → tt̄ t̃1t̃
∗
1, tt t̃∗1t̃

∗
1, t̄t̄ t̃1t̃1 (1)

and hence same-sign top quarks in half of the gluino-to-stop decays. Let now the W
stemming from t → bW in the same-sign top events decay leptonically, and let the t̃1
decay into cχ̃0

1. This gives a signature of two b-jets plus two same-sign leptons plus jets
plus missing transverse energy,

g̃g̃ → bb l+l+ (or b̄b̄ l−l−) + jets + Emiss
T , (2)

which is quite peculiar. As we will show, it will serve to remove most of the backgrounds,
both SM and SUSY, and may hence be used for discovery of a light stop at the LHC. It may
moreover be used for determining a relationship between the gluino, stop and neutralino
masses. Furthermore, it might offer a possibility to test the Majorana nature of the
gluino by comparing the number same-sign and opposite-sign di-tops from Eq. (1). The
signature Eq. (2) will therefore be useful for LHC analysis even in the case that the stop
is discovered at the Tevatron. Of course, gluino–squark and squark-pair production with
subsequent q̃ → g̃q decay can also contribute to the signal, although with additional jets.
For the masses of interest in this study, σ(pp → g̃q̃) is comparable in size to σ(pp → g̃g̃),
while σ(pp → q̃q̃(∗)) is smaller by about a factor of five.

The rest of the paper is organised as follows. We first discuss in Section 2 constraints
from the relic density of dark matter. In Section 3 we perform a case study of a light stop
for the LHC: the parameters of our benchmark scenario are given in Section 3.1, the Monte
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mg̃ [GeV] 400 500 600 700 800 900 1000
σ(g̃g̃) [pb] 113 31.6 10.4 3.84 1.56 0.68 0.31

Table 2: NLO cross sections in pb for gluino-pair production at the LHC, computed with
Prospino2 [12]. For the radiative corrections, mt̃1

= 150 GeV and mq̃ 6=t̃1
= 1 TeV has

been assumed.

Carlo simulation is explained in Section 3.2, the effective mass scale is shown in Section 3.3,
the signal isolation is discussed in detail in Section 3.4, and the determination of masses
in Section 3.5. In Section 4 we then present our conclusions. Finally, the derivation of
the formulae for the invariant-mass distributions is given the Appendix.

2 Constraints from relic density

Requiring that the lightest SUSY particle (LSP) provide the right amount of cold dark
matter

0.0945 ≤ Ωh2 ≤ 0.1287 (3)

at 2σ [14, 15] puts strong constraints on any SUSY scenario. In the standard approach,
the relic density is Ωh2 ∝ 1/〈σv〉, where 〈σv〉 is the thermally averaged cross section times
the relative velocity of the LSP pair. This thermally averaged effective annihilation cross
section includes a sum over all (co-)annihilation channels for the LSP. For a neutralino
LSP, the value of Ωh2 hence depends on the χ̃0

1 mass and decomposition (i.e. on the
gaugino-higgsino mixing), as well as on the properties of all other sparticles that contribute
to the annihilation and co-annihilation processes. The main channels are i) annihilation
into fermion pairs via s-channel Z or Higgs exchange, ii) annihilation into fermion pairs
via t-channel sfermion exchange, iii) annihilation into WW or ZZ via t-channel exchange
of charginos or neutralinos, and iv) co-annihilation with sparticles which are close in mass
to the LSP. The value of Ωh2 depends sensitively on the kinematics of the dominating
process; in case i) e.g. on mA − 2mχ̃0

1
, and in case iv) on the mass difference ∆M between

the neutralino and the co-annihilating sparticle, often the lighter stau or as in our study
also the light stop. As has been shown in [16,17], a shift in ∆M of only 1 GeV can induce
an O(10%) change in Ωh2.

For a given set of gaugino-higgsino parameters one can hence derive constraints on
[part of] the rest of the spectrum in order to satisfy the WMAP bound of Eq. (3). We
illustrate this considering two scenarios motivated by the results on baryogenesis viable
light stop models of [18], but neglecting CP-violating phases for simplicity. For computing
the neutralino relic density, we use the program micrOMEGAs 1.3 [19]. In order not to
vary too many parameters, we use a common mass scale of 250 GeV for all sleptons
apart from τ̃1, and a common mass of 1 TeV for all squarks apart from t̃1, assuming
τ̃1 ∼ τ̃R and t̃1 ∼ t̃R. Varying mt̃1

and mτ̃1 then means adjusting mŨ , mẼ, At, and Aτ

for fixed mQ̃, mL̃, µ and tan β. For the gaugino masses, we assume the GUT relation
M2 = (g2/g1)

2M1 ≃ 2M1.

3
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Figure 1: Neutralino relic density for M1 = 110 GeV, M2 = 220 GeV, µ = 300 GeV,
tan β = 7: in a) the WMAP allowed band in mt̃1

–mτ̃1 plane, and in b) Ωh2 as a function
of mt̃1

for various τ̃1 masses. Computed with micrOMEGAs 1.3. All masses are in [GeV].
The other parameters are as explained in the text.

2.1 M1 = 110 GeV, µ = 300 GeV, tan β = 7

As the first scenario we take the parameter point M1 = 110 GeV, M2 = 220 GeV,
µ = 300 GeV and tanβ = 7. This gives a spectrum of mχ̃0

1...4
= {105, 191, 306, 340} GeV

and mχ̃±
1,2

= {189, 340} GeV. The χ̃0
1 is dominantly a bino with only 1% wino and 5%

higgsino admixture. With slepton masses around 250 GeV, squark masses around 1 TeV
and mA ≫ 2mχ̃0

1
, the χ̃0

1 annihilation cross section is much too low, leading to Ωh2 ∼ 0.8,

which is well above the WMAP bound. One possibility to achieve the right Ωh2 is to lower
mA to about 250 GeV. In this case the neutralinos annihilate efficiently through χ̃0

1χ̃
0
1 →

A → bb̄, leading to Ωh2 ∼ 0.1 (when closer to the pole of mA − 2χ̃0
1, the χ̃0’s annihilate

too fast and Ωh2 becomes too small). Another possibility is to rely on co-annihilation
with stops or staus. This puts rather strong constraints on the τ̃1 and/or t̃1 masses, since
stau co-annihilation occurs for mτ̃1 − mχ̃0

1

<
∼ 10 GeV while stop co-annihilation requires

mt̃1
− mχ̃0

1

<
∼ 25 GeV. These constraints imply that the decay products of the staus or

stops will be difficult to detect at a hadron collider.
Figure 1a shows the WMAP-allowed band in the mt̃1

–mτ̃1 plane for t̃1 ∼ t̃R and
τ̃1 ∼ τ̃R, mA = 1 TeV and the other parameters as explained above. Figure 1b shows the
neutralino relic density as a function of mt̃1

for various values of mτ̃1 . As can be seen,
the WMAP bound puts a lower limit on the t̃1 and τ̃1 masses of mt̃1

>
∼ 125 GeV and

mτ̃1
>
∼ 112 GeV (which is, however, only a stringent bound if one requires that the LSP

provide all the cold dark matter). It can also put an upper limit on one mass as a function
of the other. This bound is more severe. For example, for mt̃1

>
∼ 130 GeV agreement with

WMAP requires mτ̃1
<
∼ 114 GeV if no other process helps the χ̃0

1 annihilate efficiently.
The exact masses of the other sleptons and squarks are not important for the computation
of the relic density in this example because they are too heavy to contribute significantly
in (co-)annihilation processes.
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Figure 2: WMAP allowed band in the mt̃1
–mτ̃1 plane analogous to Fig. 1a, but for µ =

180 GeV.

2.2 M1 = 110 GeV, µ = 180 GeV, tan β = 7

For the second scenario, we lower µ to 180 GeV, keeping the other parameters as above.
This leads to mχ̃0

1...4
= {93, 152, 188, 274} GeV and mχ̃±

1,2
= {139, 273} GeV. The χ̃0

1 has

now 4% wino and 25% higgsino admixture and annihilates quite efficently into W+W−,
giving a relic density of Ωh2 = 0.138. We hence need only a small additional contribution
to 〈σv〉, e.g. from light staus or stops, or from Higgs exchange.

Figure 2 shows the WMAP allowed band in the mt̃1
–mτ̃1 plane for this scenario. The

allowed region is much larger than in Fig. 1a, especially because for mt̃1
>
∼ 130 GeV,

t-channel exchange of τ̃1 with mτ̃1
<
∼ 160 GeV is sufficient to bring Ωh2 into the desired

range. For mτ̃1
<
∼ 105 GeV, on the other hand, stau co-annihilation comes into play, driv-

ing Ωh2 below the 2σ WMAP bound. Likewise, Ωh2 turns out too low for mt̃1
<
∼ 120 GeV

because of co-annihilation with stops. Note, however, that in this scenario a t̃1 heavier
than about 144 GeV will decay into bχ̃+

1 rather than into cχ̃0
1, which gives additional b

jets and, more importantly, additional same-sign leptons. This changes the signature of
Eq. (2) to

g̃g̃ → bbb̄b̄ l+l+l−l− + Emiss
T , (4)

or more generally to 4b + 4W + Emiss
T . It is clear that the information from the same-sign

top quarks is lost in this way.

3 Case study for the LHC

3.1 Choice of parameters

In order to explore the feasibility of extracting the light stop signal Eq. (2) at the LHC,
we perform a case study for the parameters of Sect. 2.1 (M1 = 110 GeV, µ = 300 GeV,
tan β = 7), mt̃1

= 150 GeV and mg̃ = 660 GeV, assuming BR(t̃1 → cχ̃0
1) = 1. All

squark mass parameters apart from mŨ3
are set to 1 TeV in order to maximise BR(g̃ →

tt̃1) and suppress background from e.g. b̃ → tχ̃− decays. For the sleptons, we take
ML̃,Ẽ = 250 GeV. As explained in Sect. 2.1, agreement with WMAP can be achieved

5



M1 M2 M3 µ tan(β)
110 220 660 300 7
mA At Ab Aτ

250 −670 −500 100
mL̃1,2

mL̃3
mQ̃1,2

mQ̃3

250 250 1000 1000
mẼ1,2

mẼ3
mŨ1,2

mD̃1,2
mŨ3

mD̃3

250 250 1000 1000 100 1000

α−1
em(mZ)MS GF αs(mZ)MS mZ mb(mb)

MS mt mτ

127.91 1.1664 × 10−5 0.11720 91.187 4.2300 175.0 1.7770

Table 3: Input parameters for the LST1 scenario [masses in GeV]. Unless stated otherwise,
the SM masses are pole masses.

d̃L ũL b̃1 t̃1 ẽL τ̃1 ν̃e ν̃τ

1001.69 998.60 997.43 149.63 254.35 247.00 241.90 241.90

d̃R ũR b̃2 t̃2 ẽR τ̃2

1000.30 999.40 1004.56 1019.26 253.55 260.73
g̃ χ̃0

1 χ̃0
2 χ̃0

3 χ̃0
4 χ̃±

1 χ̃±
2

660.00 104.81 190.45 306.06 340.80 188.64 340.09
h H A H±

118.05 251.52 250.00 262.45

Table 4: SUSY mass spectrum [in GeV] for the LST1 scenario. For the squarks and
sleptons, the first two generations have identical masses.

by mA ≃ 250 GeV or, if mA is large, by mτ̃1 ≃ 112–113 GeV. In what follows we use
mA = 250 GeV. We call this the LST1 scenario. The parameters and the resulting mass
spectrum calculated with SuSpect 2.3 [21] are given in Tables 3 and 4, respectively. Note
that the SUSY-breaking parameters in Table 3 are taken to be on-shell.

3.2 Monte Carlo simulation

We have generated SUSY events and tt̄ background equivalent to 30 fb−1 of integrated
luminosity with PYTHIA 6.321 [22] and CTEQ 5L parton distribution functions [23], cor-
responding to three years running of the LHC at low luminosity. The SUSY NLO cross
sections are found in Table 5. We have also generated additional SM background in five
logarithmic pT bins from pT = 50 GeV to 4000 GeV, consisting of 5 × 104 of W + jet,
Z + jet, and WW/WZ/ZZ production and 3.5 × 105 QCD 2 → 2 events per bin.

Detector simulation has been done using the generic LHC detector simulation
AcerDET 1.0 [24]. This expresses identification and isolation of leptons and jets in terms
of detector coordinates by azimuthal angle φ, pseudo-rapidity η and cone size ∆R =
√

(∆φ)2 + (∆η)2. We identify a lepton if pT > 5(6) GeV and |η| < 2.5 for electrons
(muons). A lepton is isolated if it is at a distance ∆R > 0.4 from other leptons and jets,
and if the transverse energy deposited in a cone ∆R = 0.2 around the lepton is less than

6



σ(t̃1t̃1) σ(g̃g̃) σ(g̃q̃) σ(χ̃0
2χ̃

±
1 ) σ(χ̃±

1 χ̃∓
1 ) σ(q̃q̃) σ(q̃q̃∗) σ(χ̃±

1 g̃) σ(tt̄)
LST1 280 5.39 4.98 1.48 0.774 0.666 0.281 0.0894 737

Table 5: The main SUSY NLO cross sections in pb for the LST1 scenario, computed with
Prospino2 [12]. For comparison, we also give the tt̄ NLO cross section taken from [20].

10 GeV. Jets are reconstructed by a cone-based algorithm from clusters and are accepted
if the jet has pT > 15 GeV in a cone ∆R = 0.4. The jets are re-calibrated using a flavour
independent parametrisation, optimised to give a proper scale for the dijet decay of a
light (100–120 GeV) Higgs boson. The b-tagging efficiency and light jet rejection is set
according to the pT parametrization for a low luminosity environment given in [25].

3.3 Effective mass

In Fig. 3 we show the distribution of the effective mass Meff,

Meff = Emiss
T +

∑

i

pjet
T,i, (5)

for the LST1 scenario under study. The cuts used are:

• Require at least four jets with pjet
T > 100, 100, 50, 50 GeV in each event.

• No isolated electrons or muons.

• Emiss
T > max(100, 0.25

∑

pjet
T ) GeV.

The clear excess of events toward high values of Meff, compared to the SM distribution,
indicates that SUSY should be easily discovered in our light stop scenario.

The effective mass has also been shown (see [26,27]) to work as a measurement of the
effective SUSY mass scale, M eff

susy, given by

M eff
susy = Msusy −

m2
χ̃0

1

Msusy

, (6)

where the SUSY mass scale, Msusy, is a cross section weighted average of the masses of
the initially produced SUSY particles; usually gluinos and squarks. In the light stop
scenario, stop pair production overwhelmingly dominates the SUSY cross section. Yet it
is difficult to extract the stop mass from the effective mass in this manner, since the cuts
placed to handle the SM background also remove most of the stop pair production events.
What remains is mostly gluino-pair production and gluino-squark production, and we can
instead use the effective mass to estimate the gluino mass. In [27] the linear regression
relationship Mest = 1.7M eff

susy + 134.15 GeV, where Mest is the fitted peak of the Meff

distribution, was found from a large set of random mSUGRA and MSSM models. The
joint statistical and systematic error on the SUSY mass scale from using this relationship
was estimated to be below 40% after one year running of the LHC at low luminosity.
With the peak effective mass value of Mest ≃ 1023 GeV at LST1, and a conservative
estimate of accuracy at the level of 30% after 30 fb−1 of integrated luminosity, this gives
M eff

susy = 523 ± 157 GeV. This may serve as a first estimate of the gluino mass scale.
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Figure 3: Effective mass distribution. SM contributions are tt̄ (filled circles), W+jet (tri-
angles), Z+jet (inverted triangles), WW/WZ/ZZ production (stars) and QCD (squares).
The sum of all SM events is shown by the hatched histogram. SUSY events are shown as
open circles.

3.4 Signal isolation

The peculiar nature of the signal with a same-sign top pair will serve to remove most of
the background, both SM and SUSY. We use the following cuts:1

• Require two same sign leptons (e or µ) with plep
T > 20 GeV.

• Require at least four jets with pjet
T > 50 GeV, at least two of which are b-tagged.

• Emiss
T > 100 GeV.

• We cut on top content in the events by requiring two combinations of leptons and
b-jets to give invariant masses mbl < 160 GeV, consistent with a top.

The effects of these cuts are shown in Table 6. The column “2lep 4jet” gives the
status after detector simulation and cuts on two reconstructed and isolated leptons and
four reconstructed jets; “2b” is the number of events left after the b-jet cut, assuming a
b-tagging efficiency of 43%; “Emiss

T ” is the cut on missing transverse energy and “SS” the
requirement of two same-sign leptons. These cuts constitute the signature of Eq. (2). Note
the central importance of the same-sign cut in removing the SM background, which at
that point consists only of tt̄ events. The cuts on transverse momentum and top content
“2t” are used to further reduce the background. We find that the gluino-pair production,
followed by gluino decay into top and stop and leptonic top decay, is easily separated from
the background.

1It should be noted that the cut values have not been optimized to isolate the signal for this particular
model (LST1); they have been chosen so as to effectively remove SM events and to isolate events with
two same-sign top quarks.

8



Cut 2lep 4jet plep
T pjet

T 2b Emiss
T 2t SS

Signal
g̃g̃ 10839 6317 4158 960 806 628 330

Background
SUSY 1406 778 236 40 33 16 5
SM 25.3M 1.3M 35977 4809 1787 1653 12

Table 6: Number of events left after cumulative cuts for 30 fb−1 of integrated luminosity.

To investigate other possible backgrounds to our signal we have used MadGraph II

with the MadEvent event generator [28, 29]. The search has been limited to parton level,
as we find no processes that can contribute after placing appropriate cuts. We have
looked at SM processes that can mimic a same-sign top pair by mis-tagging of jets or the
production of one or more additional leptons, as well as inclusive production of same-sign
top pairs. We assume that the two extra jets needed in some cases could be produced by
ISR, FSR, or the underlying event. In particular we have looked at diffractive scattering
qq → W±q′W±q′ and the production of a top pair from gluon radiation in single W
production qq′ → tt̄W±. Also checked is the production of tt̄l+l−, tt̄tt̄, tt̄tb̄, tt̄bt̄, tW−tW−,
t̄W+t̄W+ and W±W±bb̄jj. We place cuts on leptons and quarks as given above, and
demand two lepton-quark pairs consistent with top decays. We also require neutrinos
from the W decays to give the required missing energy. After these cuts and reasonable
detector geometry cuts of ∆R > 0.4 and |η| < 2.5 for all leptons and quarks, we find that
the cross-sections of all of these processes are too small, by at least an order of magnitude,
to make a contribution at the integrated luminosity considered.

Last but not least we have assumed that there is no additional same-sign top produc-
tion from flavour-changing neutral currents (FCNC), i.e. that the anomalous couplings in
tgc(u) vertices are effectively zero. See [30] for a discussion on same-sign tops in FCNC
scenarios.

3.5 Determining masses

Having isolated the decay chain it will be important to measure the properties of the
sparticles involved to confirm that the decay indeed involves a light scalar top. Since the
neutralino and the neutrino in the top decay represent missing momentum and energy,
reconstruction of a mass peak is impossible. The well studied alternative to this, see
e.g. [26,31–34], is to use the invariant-mass distributions of the SM decay products. Their
endpoints can be given in terms of the SUSY masses involved, and these equations can
then in principle be solved to give the masses.

In our scenario there are two main difficulties with this. First, there are four possible
endpoints: mmax

bl , mmax
bc , mmax

lc and mmax
blc , of which the first simply gives a relationship

between the masses of the W and the top, and the second and third are linearly dependent,
so that we are left with three unknown masses and only two equations. Second, because
of the information lost with the escaping neutrino the distributions of interest all fall
very gradually to zero. Determining exact endpoints in the presence of background, while
taking into account smearing from the detector, effects of particle widths etc. will be very

9
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Figure 4: Invariant-mass distributions for LST1. These distributions only take into ac-
count the kinematics of the decay, i.e. no spin or width effects are included.

difficult. The shapes of the invariant-mass distributions are shown, for some arbitrary
normalization, in Fig. 4.

In what follows we have partially solved the second problem by extending the endpoint
method and deriving analytic expressions for the shape of the invariant-mass distributions
mbc and mlc. The derivation is given in Appendix A. These shapes can now be used to
fit the whole distributions of the isolated signal events and not just the endpoints. This
greatly reduces the uncertainty involved in endpoint determination, and provides the
possibility of getting more information on the masses. One could also imagine extending
this method to include spin effects in the distribution, to get a handle on the spins of the
SUSY particles involved and possibly confirming the scalar nature of the stop2.

In fitting the mbc and mlc distributions, we start from the isolated g̃g̃ signal of Sec-
tion 3.4. However, these events contain some where one or both of the W decay to a tau,
which in turn decays leptonically. These taus are an additional, irreducible background
to our distributions. The b-jets and leptons are paired through the cut on two t quark
candidates. A comparison with Monte Carlo truth information from the event generation
shows that this works well in picking the right pairs. The issue which remains is to iden-
tify the c-quark initiated jets and to assign these to the correct b-jet and lepton pair. The
precision of our mass determination is limited by systematics from these problems.

Two different strategies can be used for picking the c-jets. The strong correlation
between the tagging of b- and c-jets suggest an inclusive b/c-jet tagging of at least four
jets per event. The two types of jets can then be separated on their b-tagging likelihoods,
and the requirement of two top candidates in the event. A thorough investigation of this
strategy requires a full simulation study, using realistic b-tagging routines. The other
strategy, which we follow here, is to accept a low b-tagging efficiency to pick two b-jets
and reject most c-jets. The likelihoods in the b-tagging routine can then help pick the
correct c-jets from the remaining jets. In this fast simulation study we are restricted to
a simple statistical model of the efficiency of making this identification. We have looked
at two cases: One worst case scenario with no direct c-jet identification, where we only
use the kinematics of the event to pick out the c-jets, and one where we have assumed an

2For more details on the derivation of invariant-mass distributions in cascade decays, and the inclusion
of spin effects, see [35].
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additional 20% probability of identifying a c-jet directly from the b-tagging likelihood.
For events where we have missed one or both c-jets, they are picked as the two hardest

remaining jets with pjet
T < 100 GeV. The upper bound on transverse momentum is applied

because the stop is expected to be relatively light if our signal exists, and it avoids
picking jets from the decay of heavy squarks. Our c-jet candidates are paired to the top
candidates by their angular separation in the lab frame, and by requiring consistency
with the endpoints of the two invariant-mass distributions we are not looking at. E.g.
if we wish to construct the mbc distribution we demand consistency with the endpoints
mmax

lc and mmax
blc

3. Events with no consistent combinations of c-jets and top candidates
are rejected.

The fit functions for mbc and mlc are given in Eqs. (24) and (48). In principle both
of the two linearly independent parameters mmax

bc and a could be determined by fits.
However, we typically have mtmt̃1

≪ m2
g̃ for light stops, so that a ≈ 1. For LST1, the

nominal value is a = 0.991. The distributions are sensitive to such values of a only at
very low invariant masses. Because of the low number of events, no sensible value can be
determined from a fit; we therefore set a = 1. The fit quality and value of mmax

bc is found
to be insensitive to the choice of a for a >

∼ 0.980.
The results of the fits to mmax

bc , assuming no c-jet tagging, are shown in Fig. 5. The
combined result of the two distributions is mmax

bc = 383.2± 4.9 GeV, to be compared with
the nominal value of 391.1 GeV. The large χ2 values of the fits and the low value of mmax

bc

indicate that there are some significant systematical errors. Comparing to Monte Carlo
truth information we have found that the peaks at around 100−150 GeV, responsible for
the bad fit quality, are chiefly the result of events with one or more taus (see above). In
Fig. 6 we show the results assuming 20% c-tagging efficiency. The combined result has
improved to mmax

bc = 389.8 ± 5.3 GeV. We expect to be able to do better than this with
full information from the b-tagging routine.

4 Conclusions

We have investigated a baryogenesis-motivated scenario of a light stop (mt̃1
<
∼ mt), with

t̃1 → cχ̃0
1 as the dominant decay mode. In this scenario, pair production of t̃1 leads to

a signature of two jets and missing transverse energy, which is all but promising for the
discovery of t̃1 at the LHC.

We have hence proposed a method which uses instead stops stemming from gluino
decays: in gluino pair production, the Majorana nature of the gluino leads to a peculiar
signature of same-sign top quarks in half of the gluino-to-stop decays. For the case that
all other squarks are heavier than the gluino, we have shown that the resulting signature
of 2b’s + 2 same-sign leptons + jets +Emiss

T can be extracted from the background and
serve as a discovery channel for a light t̃1.

We have also demonstrated the measurement of a relationship between the gluino, stop
and LSP masses. Taken together with a determination of other invariant-mass endpoints,
and a measurement of the SUSY mass scale from the effective mass scale of events, this
may be sufficient to determine the masses of the SUSY particles involved. In particular,

3We require that the values are below the rough estimates mmax

bc
= 430 GeV, mmax

lc
= 480 GeV and

mmax

blc
= 505 GeV, approximately 40 GeV above the nominal values, so no precise pre-determination of

endpoints is assumed.
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Figure 5: Invariant-mass distributions without c-jet tagging (black with error bars) and
best fit. Left panel shows mbc, right panel mlc. Also shown are the contributions from
the SM background (green) and the SUSY background (blue). The SUSY background
consists mostly of events with one or more taus (see text).
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Figure 6: Invariant-mass distributions with 20% c-tagging efficiency after b-tagging. For
details see caption of Figure 5.

if the invariant-mass distributions of the isolated events fit the predicted shapes, this
strengthens the interpretation of the events as gluino decays into a top and a stop.

Last but not least some comments are in order on the robustness of the signal. While
our analysis has been done for mg̃ = 660 GeV, we have checked that the signal remains
significant enough for a 5σ discovery for gluino masses up to mg̃ ∼ 900 GeV. In the
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high-mass region, gluino-squark production with subsequent squark decay to gluino is
responsible for a significant fraction of events. On the other hand, if sbottoms are lighter
than assumed for LST1, they will contribute to the SUSY background through b̃i → tχ̃±

j

(i, j = 1, 2) decays. For instance, lowering the sbottom masses by a factor of 2, while
keeping all other parameters as in LST1, would increase the background after cuts by
5 events. While this is not dramatic, the fits to invariant-mass distributions are worse
because of the opening up of new gluino decays g̃ → bb̃i. Lowering the stop mass while
keeping the LSP mass fixed, entering the stop-coannihilation region, should also make
the signal more difficult to find because the c-jets become too soft. Still, we find only a
12% decrease in the signal when setting mt̃1

= 120 GeV. This can be explained by a large
number of signal events passing the cuts because of squark decays to gluinos producing
an extra jet. This implies that the same-sign tops can be used to search for a light stop
even in the stop-coannihilation channel, unreachable at the Tevatron. The fit to the
invariant-mass shapes is again worse than for LST1.

We conclude that if t̃1 decays into cχ̃0
1, light stops may be discovered through the search

for same-sign tops in the decay of pairs of gluinos for a wide range of SUSY masses. A
relation between the gluino, stop and LSP masses can be determined from invariant-mass
distributions. In this paper we have demonstrated the feasibility of our method; a full
simulation will clearly be necessary to assess its full potential.
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A Derivation of shape formulae

The differential decay width for two independent angular variables (cosines) u and v, in
a decay with a given spin configuration, is

1

Γ

∂2Γ

∂u∂v
= fu(u)θ(u − 1)θ(1 − u)fv(v)θ(v − 1)θ(1 − v), (7)

where the spin information is contained in the functions fu(u) and fv(v) and the theta
functions are ordinary step function, limiting the values of u and v that give non-zero
decay width.

By a change of variables one can easily go from an expression of the invariant-mass in
terms of these variables, to the distribution sought. Given the invariant-mass m(u, v), we
have

1

Γ

∂Γ

∂m2
=

∫ ∞

−∞

1

Γ

∂2Γ

∂m2∂v
dv

=

∫ ∞

−∞

∣

∣

∣

∣

∂ (u, v)

∂ (m2, v)

∣

∣

∣

∣

1

Γ

∂2Γ

∂u∂v
dv. (8)

An extension to three or more independent angular variables is trivial.
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We now proceed to derive the shape of the distribution of the invariant-masse of the b-
and the c-quark, mbc, and the invariant-mass of the lepton and the c-quark, mlc. We will
assume that all particles are spin-0, so that we have isotropic decays in particle rest frames.
This lets us set fu and fv to be constant. This result is what we expect when summing
over all final states. Effects of non-zero spin can be introduced via these functions. We
also assume that the lighter quarks, b and c, are massless.

A.1 mbc

In the rest frame (RF) of the stop, energy and momentum conservation in the decay of
the gluino, stop and top gives

E t̃1
c =

m2
t̃1
− m2

χ̃0

1

2mt̃1

, (9)

E t̃1
t =

m2
g̃ − m2

t − m2
t̃1

2mt̃1

, (10)

E t̃1
b =

m2
t − m2

W

2E t̃1
t − 2

√

(E t̃1
t )2 − m2

t cos θt̃1
tb

, (11)

where E t̃1
c , E t̃1

t and E t̃1
b are the energies of c, t and b respectively in the stop RF and θt̃1

tb

is the angle between t and b in that frame.
We can rewrite cos θt̃1

tb in terms of an isotropically distributed angle, θt
g̃b, in the top

RF.4 By expressing m2
g̃b in the two rest frames, and since cos θt̃1

tb = cos θt̃1
g̃b, we get

E t̃1
b (E t̃1

g̃ −

√

(E t̃1
g̃ )2 − m2

g̃ cos θt̃1
tb) = Et

b(E
t
g̃ −

√

(Et
g̃)

2 − m2
g̃ cos θt

g̃b). (12)

In the top RF, from the conservation of energy and momentum in the decays of the gluino
and the top, we have that:

Et
b =

m2
t − m2

W

2mt

, (13)

Et
g̃ =

m2
g̃ + m2

t − m2
t̃1

2mt

. (14)

Solving for cos θt̃1
tb , using (10), (11), (13) and (14), we then arrive at

cos θt̃1
tb =

a − cos θt
g̃b

1 − a cos θt
g̃b

(15)

where a is given by

a =
m2

2

m2
1

, (16)

4We here make the assumption that the top has spin-0. Again this is what a sum over final states will
yield.
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with m1 and m2 defined as

m2
1 = m2

eg − m2
t − m2

et1
, (17)

m4
2 = m4

1 − 4m2
t m

2
et1
. (18)

We can now find an expression for m2
bc :

m2
bc = 2E t̃1

b E t̃1
c

(

1 − cos θt̃1
bc

)

= (mmax
bc )2

(

1 − a cos θt
g̃b

1 + a

)

(

1 − cos θt̃1
bc

2

)

, (19)

where the endpoint of the distribution, mmax
bc , is

(mmax
bc )2 =

(m2
t − m2

W )

m2
t

(

m2
et1
− m2

eχ0

1

)

(m2
1 + m2

2)

2m2
et1

. (20)

Using the switch of variables

u =
1 − cos θt̃1

bc

2
, v =

1 − cos θt
g̃b

2
, (21)

we can write the invariant-mass as

m2
bc = (mmax

bc )2

(

1 − a + 2av

1 + a

)

u. (22)

From Eq. (8), and setting fu(u) = fv(v) = 1, we find the distribution of the invariant-mass

1

Γ

∂Γ

∂m2
bc

=

∫ ∞

−∞

∣

∣

∣

∣

∂ (u, v)

∂ (m2
bc, v)

∣

∣

∣

∣

θ (u) θ (1 − u) θ (v) θ (1 − v) dv

=
1 + a

(mmax
bc )2

∫ 1

0

1

1 − a + 2av
θ

(

1 −
m2

bc (1 + a)

(mmax
bc )2 (1 − a + 2av)

)

dv. (23)

The theta function leads to two different lower limits on the integration, depending on
the value of mbc. Performing the integration gives

1

Γ

∂Γ

∂m2
bc

=















1 + a

2a(mmax
bc )2

ln
1 + a

1 − a
for 0 < m2

bc < (mmax
bc )2 1−a

1+a
,

1 + a

2a (mmax
bc )2 ln

(mmax
bc )2

m2
bc

for (mmax
bc )2 1−a

1+a
< m2

bc < (mmax
bc )2,

(24)

expressing the distribution in terms of two parameters, a and mmax
bc .

A.2 mlc

In the top RF, energy and momentum conservation in the decay of the gluino, stop, top
and W gives, in addition to Eq. (13),

Et
l =

mtm
2
W

(m2
t + m2

W ) − (m2
t − m2

W ) cos θt
Wl

, (25)

Et
c =

mt(m
2
t̃1
− m2

χ̃0

1

)

m2
1 − m2

2 cos θt
t̃1c

, (26)
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where Et
l and Et

c are the energies of b, l and c respectively in the top RF, θt
Wl is the angle

between W and l in that frame and θt
t̃1c

is the angle between t̃1 and c.

We again change angles to isotropically distributed angles (under spin-0 assumptions).
From cos θt

Wl = − cos θt
bl, and expressing m2

bl in both the top and W rest frames, we have

Et
bE

t
l (1 + cos θt

Wl) = EW
b EW

l (1 − cos θW
bl ). (27)

In the W RF, energy and momentum conservation in the top and W decays gives

EW
b =

m2
t − m2

W

2mW

, (28)

EW
l =

1

2
mW . (29)

Using (13), (26), (28) and (29) we find that

cos θt
Wl =

(m2
t − m2

W ) − (m2
t + m2

W ) cos θW
bl

(m2
t + m2

W ) − (m2
t − m2

W ) cos θW
bl

. (30)

From cos θt
t̃1c

= cos θt
g̃c, and expressing m2

g̃c in both the t and t̃1 rest frames we get

Et
c(E

t
g̃ −

√

(Et
g̃)

2 − m2
g̃ cos θt

t̃1c
) = E t̃1

c (E t̃1
g̃ −

√

(E t̃1
g̃ )2 − m2

g̃ cos θt̃1
g̃c) (31)

from which, using (9), (10), (14) and (26), it follows that

cos θt
t̃1c

=
a − cos θt̃1

g̃c

1 − a cos θt̃1
g̃c

. (32)

This could also have been found from (15), using a symmetry argument.
We can now find an expression for m2

lc :

m2
lc = 2Et

l E
t
c

(

1 − cos θt
lc

)

= (mmax
lc )2

(

1 − a cos θt̃1
g̃c

1 + a

)

(

m2
t + m2

W − (m2
t − m2

W ) cos θW
bl

2m2
t

)(

1 − cos θt
lc

2

)

,(33)

where

(mmax
lc )2 =

(

m2
t̃1
− m2

χ̃0

1

)

(m2
1 + m2

2)

2m2
t̃1

. (34)

Using the switch of variables

u =
1 − cos θt̃1

g̃c

2
, v =

1 − cos θW
bl

2
, w =

1 − cos θt
lc

2
, (35)

we can write

m2
lc = (mmax

lc )2

(

1 − a + 2au

1 + a

)(

m2
W + (m2

t − m2
W ) v

m2
t

)

w. (36)
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Shape y(x1) y(x2)
I y2 < y(x1) y1 < y(x2) < y2

II y1 < y(x1) < y2 y1 < y(x2) < y2

III y2 < y(x1) y(x2) < y1

IV y1 < y(x1) < y2 y(x2) < y1

V y(x1) < y1 y(x2) < y1

Table 7: Shapes for the area of integration for the integral in Eq. (41).

Since

1

Γ

∂3Γ

∂u∂v∂m2
lc

=
1

Γ

∂3Γ

∂u∂v∂w

∣

∣

∣

∣

∂ (u, v, w)

∂ (u, v,m2
lc)

∣

∣

∣

∣

=
m2

t (1 + a)θ̂(u)θ̂(v)θ̂(w)

(mmax
lc )2 (1 − a + 2au) (m2

W + (m2
t − m2

W ) v)
, (37)

where θ̂(x) = θ(x)θ(1 − x), we have from a generalization of (8) that

1

Γ

∂Γ

m2
lc

=
m2

t (1 + a)

(mmax
lc )2

∫ 1

0

∫ 1

0

θ̂(w)

(1 − a + 2au)(m2
W + (m2

t − m2
W )v)

dudv. (38)

The step functions for w give more complicated bounds on the integration than what was
the case for mbc. We must have m2

lc > 0 and

m2
W + (m2

t − m2
W )v >

m2
t (1 + a)m2

lc

(mmax
lc )2(1 − a + 2au)

. (39)

This integration and the integration limits from the last inequality are best explored by
yet another change of variables

x = 1 − a + 2au, y = m2
W + (m2

t − m2
W )v, (40)

from which the integral can be written

1

Γ

∂Γ

m2
lc

=
1 + a

2a(mmax
bc )2

∫ m2
t

m2

W

∫ 1+a

1−a

θ̂

(

m2
lc

(mmax
lc )2

m2
t (1 + a)

xy

)

1

xy
dxdy. (41)

We note that there is a maximum of m2
lc < (mmax

lc )2, as expected. There are then five
different possible shapes for the areas of integration in the xy−plane. For ease of notation
we use

x1 = 1 − a, x2 = 1 + a, y1 = m2
W , y2 = m2

t . (42)

The shapes can be categorized by bounds on y(x1) and y(x2) as found in Table 7. The
inequalities in the categorization of the shapes can be expressed as bounds on m2

lc:

y1 < y(x1) ⇔ (mmax
lc )2 (1 − a)

(1 + a)

m2
W

m2
t

< m2
lc, (43)

y1 < y(x2) ⇔ (mmax
lc )2m2

W

m2
t

< m2
lc, (44)

y2 < y(x1) ⇔ (mmax
lc )2 (1 − a)

(1 + a)
< m2

lc, (45)

y2 < y(x2) ⇔ (mmax
lc )2 < m2

lc. (46)
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We can see that there will be two cases, depending on the mass hierarchy:

Case A:
m2

W

m2
t

< 1−a
1+a

Case B:
m2

W

m2
t

> 1−a
1+a

(47)

We give the invariant-mass distribution for both of these cases.

Case A Here Shape III is excluded, so the invariant-mass distribution is

1

Γ

∂Γ

m2
lc

=















































































































1 + a

2a(mmax
bc )2

ln
1 + a

1 − a
ln

m2
t

m2
W

for 0 < m2
lc < (mmax

lc )2 1−a
1+a

m2

W

m2
t

,

1 + a

2a(mmax
bc )2

[

ln
1 + a

1 − a
ln

m2
t

m2
W

−
1

2

(

ln
1 + a

1 − a

m2
t

m2
W

m2
lc

(mmax
lc )2

)2
]

for (mmax
lc )2 1−a

1+a

m2

W

m2
t

< m2
lc < (mmax

lc )2 m2

W

m2
t

,

1 + a

2a(mmax
bc )2

ln
1 + a

1 − a

(

ln
(mmax

lc )2

m2
lc

−
1

2
ln

1 + a

1 − a

)

for (mmax
lc )2 m2

W

m2
t

< m2
lc < (mmax

lc )2 1−a
1+a

,

1 + a

2a(mmax
bc )2

ln
(mmax

lc )2

m2
lc

(

ln
(mmax

lc )2

m2
lc

− ln
(

2m2
t

)

)

for (mmax
lc )2 1−a

1+a
< m2

lc < (mmax
lc )2.

(48)

Case B Here Shape II is excluded, giving

1

Γ

∂Γ

m2
lc

=



































































































1 + a

2a(mmax
bc )2

ln
1 + a

1 − a
ln

m2
t

m2
W

for 0 < m2
lc < (mmax

lc )2 1−a
1+a

m2

W

m2
t

,

1 + a

2a(mmax
bc )2

[

ln
1 + a

1 − a
ln

m2
t

m2
W

−
1

2

(

ln
1 + a

1 − a

m2
t

m2
W

m2
lc

(mmax
lc )2

)2
]

for (mmax
lc )2 1−a

1+a

m2

W

m2
t

< m2
lc < (mmax

lc )2 1−a
1+a

,

1 + a

2a(mmax
bc )2

ln
m2

t

m2
W

(

ln
(mmax

lc )2

m2
lc

−
1

2
ln

m2
t

m2
W

)

for (mmax
lc )2 1−a

1+a
< m2

lc < (mmax
lc )2 m2

W

m2
t

,

1 + a

2a(mmax
bc )2

1

2

(

ln
(mmax

lc )2

m2
lc

)2

for (mmax
lc )2 m2

W

m2
t

< m2
lc < (mmax

lc )2.

(49)
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