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A. MICROWAVE PROPERTIES OF THE ATMOSPHERE AND SURFACE OF VENUS

Extensive computations have been made of the microwave spectra that would char-

acterize various atmospheric models for the planet Venus. The models considered were

the CO2-N 2 model, the aeolospheric model,2 and three cloud models. A brief summary

of the computations and some of the conclusions are presented here.

In the CO 2 -N 2 model the microwave absorption arises from collision-induced dipole

moments, which become important at high pressures. Recent measurements by

Thaddeus and Ho 3 of the absorption coefficient of CO 2 -N 2 mixtures at high pressures

and temperatures, and estimates of the CO 2 mixing ratio (Kaplan4 and Spinrad 5 ) have

enabled more accurate spectral computations to be made. The CO2-N2 model assumed

an atmosphere in adiabatic equilibrium composed of 10 per cent CO 2 and 90 per cent
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NZ , with a constant mixing ratio. The temperature was assumed to be 700° K at the

surface and to decrease 7 ° K/km to an isothermal region at 287 0 K beginning at altitude

60 km. The surface of Venus was assumed to be a smooth dielectric sphere with

dielectric constant 5. The computations included the effect of surface reflectivity on

the surface emmissivity and on the radiation incident upon the surface. Two brightness

temperatures have been computed; one, labeled E//, is the average brightness temp-

erature for a narrow triangular segment whose surface is everywhere parallel to the

electric vector E, and the other, labeled H//, is the average brightness temperature
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Fig. III-Z. Theoretical radio spectra for
the CO -N 2 model atmosphere.

of a similar segment whose surface is everywhere parallel to the magnetic vector H

(Fig. III- 1).

The results for the first model are shown in Fig. III-2 for surface pressures of

20, 100, and 300 atmospheres. Superimposed upon the figure are dots representing

the observations that have been made. The major conclusion for this model is that if

the CO2-N 2 absorption is responsible for the decrease in brightness temperature which

occurs at short wavelengths, surface pressures will be in the range 100-300 atmos-

pheres. A second model was considered, which was the same as the first, except that

the lapse rate was 4. 83 o K/km, and there was no isothermal region. The results indi-

cate that even greater surface pressures, 300-1000 atmospheres, are required for this

model, and even with these high pressures agreement with the experimental points is

poor.

The aeolospheric model presumes an atmosphere containing large amounts of dust.

This dust can affect the microwave spectrum both by absorption and scattering. Compu-

tations for models containing dust with dielectric constants that were not a function of

frequency yielded spectra that varied too slowly to match the observations if only absorp-

tion was considered, but varied quite sharply when scattering was included. The equations

of radiative transfer were solved for the scattering atmosphere under the assumption

of isotropic Rayleigh scattering. The solution was obtained by an iteration procedure

on the IBM 7094 digital computer. Results were obtained for several models. The

model providing the best agreement with observations assumed dust particle diameters

varying linearly from 0. 6 mm at the ground to 0 at 90 km. The density also varied
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Fig. 111-3. Theoretical radio spectra for an atmosphere
of dust particles with a maximum size of 0. 6
mm. Both absorption and scattering are in-
cluded in the computation.

linearly, from 10 and 100 g/m3 at the ground to 0 at 90 km. The temperature distri-

bution and surface model were the same as for the 4. 83 0 K/km CO2 -N 2 model. The

result is shown in Fig. 111-3. Although the scattering model can explain very rapid

decreases in brightness temperature at short wavelengths, it requires large particle

diameters, greater than 0. 5 mm, and large densities, greater than 10 g/mmosphere, to be effec-

tive. The required densities are reduced if still larger particles are present. It also

requires some absorption above the scattering layer to raise the 4-mm temperature

to the observed values. Because of the very strong dependence of the scattering cross

section Qand upon the particle diameter D (Q5 - D ), the break point in the spectrum would

be expected to be strongly dependent upon meteorological conditions in the lower atmos-

phere.

The cloud models considered were: (i) a cloud with absorption proportional to fre-

quency; (ii) a cloud with absorption proportional to the square of the frequency; and

(iii) a water cloud in equilibrium with the water vapor beneath it. The first cloud was

of uniform density and composed of particles with a complex dielectric constant of

o = 5(1-0. 05j), which is typical of many organic substances. This yields an absorption

coefficient proportional to frequency. The cloud was 30 km thick with a temperature of

415* K at the bottom, and a temperature of 270 ° K at the top. The planetary surface

was the same as in the previous models. Although this model provided sufficient micro-

wave absorption at short wavelengths and at reasonable cloud densities, 0. 1-1 g/m 3

it did not provide a sufficiently abrupt change of brightness temperature in the 0. 8-cm
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to 3-cm region. The second model, which is more characteristic of liquid cloud par-

ticles composed of freely rotating dipoles restrained by a simple viscous force, had

an absorption coefficient proportional to the square of the frequency. This produced

much better agreement with the observations, as shown in Fig. 111-4. The 4-mm data

can be better matched if the cloud is the same, but at a higher temperature. The data

at 10 cm could be better matched if the surface emissivity were somewhat greater.

This model has the advantage of simplicity in that it requires only a cloud layer of

reasonable densities which absorbs approximately according to the Debye equation for
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Fig. indicate that ifII-4. Theoretical radio spectra for a cloud
model with absorption proportional to
the square of the frequency.

nonresonant absorption.

The final model considered was that of a water cloud, 6 km thick, with a temper-

ature of 300'°K at the bottom and Z70°*K at the top. The bottom of the cloud was assumed

to be in equilibrium with water vapor that had a constant mixing ratio beneath the clouds.

The cloud density was 1 g/m3 , and the atmospheric lapse rate was 4. 83 ° K/ki. The

results indicate that if the surface pressure is as high as Z0 atmospheres, then the

atmospheric absorption is too great to be compatible with the 3-cm observations. Lower

cloud temperatures, and thus less water vapor beneath the clouds, permit higher sur-

face pressures.

A more complete discussion of the computations and conclusions has been prepared

for publication.
A. H. Barrett, D. H. Staelin
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B. K-BAND RADIOMETRY

A five-channel radiometer has been constructed and is operating in the 19-25.5 Gc

frequency range. The radiometer is a Dicke-type superheterodyne radiometer with

microwave channel-dropping filters and five separate mixers. Digital synchronous

detection is used in which the analog signal is converted to pulse frequency so that a

synchronously switched up-down counter can detect the signal. The digital output is

stored on punched paper tape for processing by the PDP- computer. Preliminary tests

indicate that the equipment is stable and has ATrms 0. 5-2 K for a time constant of

1 second. Measurements of sky-brightness temperature are now under way. The radiom-

eter will be modified soon to permit measurements in the 21-33 Gc band. In these

measurements the 28-ft paraboloid at Lincoln Laboratory, M. I. T., will be used; obser-

vations of the sun, moon, various other sources, and extensive observations of the planet

Venus will be included. It is hoped that the spectral measurements of Venus in the

important region where the transition in brightness temperature occurs will lead to

better understanding of the planet's atmosphere.

D. H. Staelin
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