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1 Introduction and initial motivation
In the context of the different possible scenarios for upgrading the LHC experimental

insertions, flat beam optics options have been considered in order to enhance the machine lu-
minosity. Assuming the beam to be flat in the horizontal plane at the interaction point (IP),
β∗

x � β∗
y , it is well-known that low-β doublets with symmetric powering with respect to the

IP are particularly well-suited to produce an arbitrarily small beam aspect ratio, R2
asp ≡ β∗

y/β
∗
x.

This is indeed the case provided that, on both sides of the IP, the first and second quadrupoles of
the doublet are focusing and defocusing, respectively, in the plane of smallest β∗ in order to keep
within reasonable bounds the peak β-function, βmax, which is reached in the first quadrupole of
the doublet. In the case of the LHC (proton-proton collision), and to pursue this option, it was
then customarily agreed that the only possible way was to use two-in-one-aperture quadrupoles
with opposite gradients in the two magnet bores, therefore requesting an early beam separation
with the separation dipole D1 installed in between the doublet and the interaction point. Finally,
with the significant increase of l∗ needed to accommodate the D1, this so-called ”dipole-first
scenario” [1] was found to be less attractive in terms of βmax when comparing with other op-
tions using the present conceptual design of the LHC insertions with the low β-quadrupoles in
front of the D1 (see e.g. [2] using the so-called ”quadrupole-first” layout).
In view of these facts, we have then decided to try designing a new class of magnets, pos-
sessing a single aperture but generating, or approaching as close as possible, the left/right
focusing/defocusing quadrupolar field that the twin quadrupole magnet described here-above
would produce but, this time, in a ”quadrupole-first scenario”. As described in section 4.1, such
a field can indeed be obtained, in several different manners and with a rather limited numbers
of wires, for instance 2 × 10 wires if the multipole expansion of the produced magnetic field
is requested to be purely quadrupolar up to (a10, b10) around two specified horizontal positions
±x0 of the magnet aperture. In the usual complex notations, this can be expressed as:

B(±x0 + z) ≡ [By + i Bx] (±x0 + x + i y) = ±B2 z + O(z11) , (1)

that is a sort of combined dipole-sextupole magnet, with a vertical dipole field B1 ≡ −B2x0

at its center but for which the sextupolar component would exhibit straight and not parabolic
asymptotic branches (i.e. By(x) ∝ |x| and not By(x) ∝ x2). The problem lies in the fact
than when trying to push the gradient of this ”sextupole-like quadrupole” to useful values for
the LHC insertions, that is by stacking different layers of wires, each of them producing its
own quadrupolar gradient ±B2 at the specified locations ±x0, the density of wires growths up
very rapidly at certain accumulation points located in the magnet mid-plane. Then we converge
slowly toward a two-in-one quadrupole design with a infinitely thin plate made of supercon-
ducting material separating the two magnet apertures and in which the density of current would
become ”infinite”.
While we are now convinced that the aim initially pursued is not reachable, certainly not due to
the method used, but rather due to some topological limitations linked to the harmonic properties
of the magnetic field itself, we believe that it is nevertheless worth documenting our approach,

– which is new to our knowledge,
– and might have other applications to help in the design of more exotic magnets such as, for

instance, FFAG magnets, mass-less septa and magnetic collimator, that is, in other words,
single-bore magnets producing a magnetic field with a pre-defined multipole expansion
at one or more than one transverse locations inside their aperture.

The method, based on polynomial algebra techniques will be fully described in Section 2. Al-
ready at this stage, the cases considered will be split into two distinct categories: the so-called
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”unipolar-current magnets” in which the current is the same and has the same sign, say posi-
tive, in all the wires and the ”bipolar-current magnets” for which the current is assumed to be
negative for half of the wires.
In Section 3, the method will be applied for designing very pure 2N -pole magnets (see sec-
tion 3.1 and 3.2 for unipolar and bipolar-current magnets). The design of combined magnets
(i.e. with more than one non-zero multipole components but still specified at one single trans-
verse location inside the magnet aperture), will be illustrated in section 3.3 by dealing with the
case of a combined dipole-quadrupole magnet. Unipolar and bipolar-current magnets will then
be briefly compared in section 3.4. Finally, as mentioned above in the case of the ”sextupole-like
quadrupole”, different wire stacking strategies needed to increase the magnitude of the induced
magnetic field, will be discussed in detail in section 3.5 and illustrated only by a few examples
in order to keep the length of the paper within reasonable bounds.
In Section 4, we will then address the more delicate problem of designing single-aperture mag-
nets for which the constraints on the multipole expansion of the produced magnetic field are im-
posed at more than one location of the transverse plane. As possible examples, the ”sextupole-
like quadrupole” described above will be discussed in detail (see section 4.1). We will also
present the cases of single aperture magnets where the multipole field expansion is vanishing
(up to some order) at one location and can be approximated by a very pure dipole field at one or
two other locations inside the magnet aperture (see section 4.2): that is no more no less than a
mass-less septum or a two jaw magnetic collimator with relatively thin small transition between
the zero-field and the dipole field regions.

2 Description of the method
2.1 Biot-Savart law for filamentary wires

We consider N wires of current In, parallel to each other and crossing the transverse
plane (x − y) at the positions zn

def
= xn + i yn. Using the Biot-Savart law, it is well-known that

the produced magnetic field is purely two-dimensional. In complex notations it is given by

B(z)
def
= By(x + iy) + i Bx(x + iy) =

N∑

n=1

In

z − zn
, (2)

considering µ0 = 2π which will be assumed in all the rest of the paper except when numerical
estimates will be needed.

2.2 Definition of the problem
Generally speaking, the problem is to determine the position of the N wires, that is finding

the complex numbers (zn)1≤n≤N , such that the magnetic field they induced has a given multipole
expansion at one or more than one specified locations, (Zp)1≤p≤P , of the transverse plane:

B(z) ≡

Mp∑

k=1

C
(p)
k (z − Zp)

k−1 + O
[
(z − Zp)

Mp
]

, 1 ≤ p ≤ P , (3)

where the multipole expansion of the magnetic field at the position Zp is specified up the order
Mp and given by the complex harmonics C

(p)
k ≡ B

(p)
k + iA

(p)
k , 1 ≤ k ≤ Mp (with B

(p)
k and

A
(p)
k denoting the well-known normal and skew harmonics of order k at the transverse position

z = Zp). Strictly speaking, with our present and future conventions, µ0 = 2π and the currents In

which will be chosen equal to ±1 (see sub-sections 2.3.1 and 2.3.2), the multipole components
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C
(p)
k will have to be specified in units of

[
m−k

]
. In order to preserve the clarity of the text, this

will however never be explicitly mentioned but will be kept in mind when numerical estimates
will be needed.
This being said, noting that the complex harmonics C

(p)
k are directly linked to the kth derivatives

of the magnetic field B(z) at the location z = Zp, an approach would consist in writing the
above conditions as follows:

C
(p)
k =

1

(k − 1)!

(
dk−1B

dzk−1

)

(z = Zp)
Eq. (2)

= −

N∑

n=1

In

(zn − Zp)k
, 1 ≤ p ≤ P, 1 ≤ k ≤ Mp ,

(4)
that is a set of N ′ =

∑P
p=1 Mp highly non-linear equations to be solved in terms of the 2N

variables of the problem, (In, zn)1≤n≤N (being said that the matching between the number N ′

of constraints and the number of free variables will only be done at a later stage).

2.3 Generating Polynomials
This approach was typically that used in Ref. [3], being noted that a mixture of carte-

sian and cylindrical coordinates formalism was used in this article, rather than the complex
formalism which has been used so far for reasons which will become obvious later on. Solving
numerically the above set of Equations was indeed found efficient, for instance to exhibit the
existence of so-called ”unipolar-current magnets” for which all the currents In points in the
same direction contrary to more conventional configurations where half of the wires has the
other polarity. However, rather than passing directly to the numerical resolution, we will show
that it is worth going a bit deeper into the formalism in order to set up a much faster and more
constructive method to solve our problem.
The next step is indeed to introduce the following generating function:

G(z)
def
=

N∏

n=1

(1 − z/zn)In . (5)

In particular, we have
G(0) = 1 and G(zn) = 0 , 1 ≤ n ≤ N. (6)

In the case where all the currents In are positive integers (unipolar-current magnets), the gener-
ating function G(z) has to be interpreted as a polynomial in the z-variable possessing N roots
z1, . . . , zn of multiplicity I1, . . . , In, that is the N currents and wire positions to be determined.
On the other hand, in the case where some of the current are negative integers, we will then have
to deal with polynomial fractions rather than with simple polynomials.
This being said, the idea is to find certain functional relations fulfilled by the generating func-
tion G(z), rather than using directly a numerical method to solve the non-linear equations (4).
For this purpose, it is worth noting that the magnetic field B(z) defined in Eq. (2) is simply
given by the logarithmic derivative of the function G:

G ′(z)

G(z)
=

−1
N∏

k=1

(1−z/zk)
Ik

N∑

n=1

[

In

zn

(1−z/zn)In−1
∏

k 6=n

(1−z/zk)
Ik

]

=
N∑

n=1

In

z − zn

Eq. (2)
= B(z) .

(7)
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Thanks to this observation, we can reformulate the condition (3) as follows:

B(z) =
G ′(z)

G(z)
≡

Mp∑

k=1

C
(p)
k (z − Zp)

k−1 + O
[
(z − Zp)

Mp
]

=⇒
G(Zp + z)

G(Zp)
= exp

[
Mp∑

k=1

C
(p)
k

k
zk

]

+ O
(
zMp+1

) def
= Rp(z) + O

(
zMp+1

)
, 1 ≤ p ≤ P ,

(8)
where the generating function G(z) is the unknown and the functions Rp(z) are polynomials of
degree Mp given by the development in series of the exponential term up the order Mp:

Rp(z)
def
= exp

[
Mp∑

k=1

C
(p)
k

k
zk

]

+ O
(
zMp+1

)
=

Mp∑

n=0







∑

i1 . . . , iMp
PMp

m=1
m im ≡ n

Mp∏

k=1

(

C
(p)
k

)ik

kik ik!







zn . (9)

In particular we have
Rp(0) = 1 . (10)

For the sake of simplicity, but without losing any generality, we will assume that the multipole
expansion of the magnetic field is specified up to the same order M for all the positions Zp:

Mp ≡ M ⇒ deg (Rp) = M , 1 ≤ p ≤ P . (11)

Then, we will restrict ourselves to the following two specific cases.

2.3.1 Unipolar-current magnets
The magnets for which all the current In are positive and equal to unity will be referred

as unipolar-current magnets. In this case, with a multipole field expansion specified up to the
order M at each of the P distinct positions (Zp)1≤p≤P of the magnet aperture, the minimum
number of wires needed is equal to N ≡ M × P . In the case of unipolar magnets, as already
mentioned, the generating function G(z) is a simple polynomial of degree N . Then, using the
above formalism, the method is the following:

– Step 1 first determine the polynomial

G(z) ≡ Q+(z)
def
=

N∏

n=1

(1 − z/z+
n )

def
= 1 +

N∑

k=1

q+
k zk (12)

of degree N ≡ M × P which fulfills the P functional relations

Q+(Zp + z) ≡ Q+(Zp) × Rp(z) + O
(
zM+1

)
, 1 ≤ p ≤ P , (13)

where the polynomials Rp of degree M are given and depend on the P locations Zp

where the first M harmonics of the field are specified (see Eq. (9)). The above equation
is clearly linear in the unknown Q+. Said differently, by projecting the above condition
onto the monomial basis (1, z, . . . , zM) at each of the P specified locations Zp, Eq. (13)
can be expressed as a linear system of P ×(M +1) equations with N +1 ≡ P ×M +1
unknowns which are the N +1 coefficients of the polynomial Q+(z). However, using
Q+(0) = Rp(0) = 1 for all p (see Eq.’s (10) and (12)), the relation (13) can be reduced to
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a determined system of N = P × M independent linear equations in the N coefficients
(q+

n )1≤n≤N :

N∑

k=m

k! Zk−m
p

(k − m)!
q+
k − R(m)

p (0)

N∑

k=1

Zk
p q+

k ≡ R(m)
p (0), 1 ≤ m ≤ M, 1 ≤ p ≤ P, (14)

with R
(m)
p (0) the mth derivative of the polynomial Rp at z = 0.

– Step 2 in a second time, the transverse location of the N wires will be simply obtained
by determining the complex roots (z+

n )1≤n≤N of the generating polynomial Q+.
To summarise, in the case of unipolar-current magnets, the proposed formalism transforms the
initial non-linear system of N equations (see the conditions (4)) into a linear system to deter-
mine the N coefficients of a polynomial Q+(z) of degree N (with Q+(0) = 1), the roots of
which are the solutions of the problem.
The most convincing example of the powerfulness of the method can be illustrated in the case
where the multipole expansion of the field is specified at one single location of the transverse
plane, for instance to be dipolar up to an order M , i.e. P = 1, N = M , Z1 ≡ 0, C

(1)
1 ≡ 1 and

C
(1)
k ≡ 0, 2 ≤ k ≤ M . In this case, Eq. (13) is a strict equality since the the polynomial R1 and

Q+ have the same degree N = M and step 1 is straightforward:

R1(z)
Eq. (9)

= exp(z) + O(zM+1) ⇒ Q+(z)
Eq. (13)

= Q+(0)
︸ ︷︷ ︸

≡1

R1(z) ≡

M∑

k=0

zk

k!
. (15)

Finding the M roots of the above polynomial leads to the C-shape unipolar-current dipole which
was obtained by a purely numerical method in Ref. [3] and is illustrated in Fig. 1(a). The case of
an arbitrary 2p-pole will then follow immediately by finding the roots of the truncated series of
exp(zp/p), rather than that of exp(z). These simple cases will form the subject of Section 3.1.

2.3.2 Bipolar-current magnets
The magnets for which the sum of the currents In is equal to zero will be referred as

bipolar-current magnets. For the sake of simplicity, half of the currents will be assumed to be
positive and equal to unity while the other half set to -1. In particular, with a multipole field
expansion specified up to the order M at each of the P distinct positions (Zp)1≤p≤P of the
magnet aperture, the minimum number of wires needed will be assumed to be an even integer
equal to N = M × P ≡ 2 N ′.
In this second case, the generating function G introduced in Eq. (5) becomes a polynomial
fraction and is expressed in the following way:

G(z) ≡
Q+(z)

Q−(z)
with Q±(z)

def
=

N ′

∏

n=1

(1 − z/z±n )
def
= 1 +

N ′

∑

k=1

q±k zk , (16)

with (z±n )1≤n≤N ′ being the N ′ transverse positions of the wires with positive and negative cur-
rents, respectively. In particular, noting that two wires with opposite currents cancel obviously
each other if positioned at the same location, these two sets of roots can be assumed strictly
distinct. In other words, this means that the polynomials Q+ and Q− are necessarily coprime:

Q+ ∧ Q− = 1 . (17)
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This being said, in the bipolar-current configuration, the relation (8) reads

Q+(z + Zp) = λp Rp(z) × Q−(z + Zp) + O(zM+1) with λp ≡
Q+(Zp)

Q−(Zp)
, 1 ≤ p ≤ P . (18)

As in the unipolar case, the polynomials Rp are given (see Eq. (9)) and the number of unknowns
is equal to N = P ×M ≡ 2 N ′ which are the monomial coefficients (q±n )1≤n≤N ′ of the polyno-
mials Q± (reminding that, by construction, q±0 = Q±(0) = 1). The total number of constraints
is also equal to N (more precisely, P×(M+1) constraints when projecting onto the monomial
basis (1, . . . , zM ) at each of the P specified locations Zp but noting that P constraints are au-
tomatically fulfilled via Rp(0) = 1 and the above definition for the quantities λp).
However, contrary to the unipolar case, this set of conditions is not linear in the polynomials Q±.
In the case of an arbitrary number P of specified locations Zp and without assuming any specific
symmetry in the multipole expansion of the field at those locations, no general algorithm (other
than a direct numerical approach) has been found so far to solve the problem. Nevertheless, if
we restrict ourself to the most interesting cases P = 1 and P = 2, we will show hereafter that
the problem can still be solved using standard linear algebra techniques.

Case P = 1. In this paragraph, the multipole field expansion is specified up to the order M at
one single location Z1 = 0 of the transverse plane. M ≡ 2 m is assumed to be an even integer
and the field harmonics specified at z = 0 are noted (Ck)1≤k≤2m. According to the relation
(18), the problem is to find the two polynomials of degree N ′ = M/2 = m which fulfill the
following constraints:

Q+(z) ≡
Q+(0)

Q−(0)
︸ ︷︷ ︸

≡1

×Q−(z) R(z) + O(z2m+1) = Q−(z) R(z) + O(z2m+1) , (19)

with R(z) the polynomial of degree 2m defined by

R(z)
def
= exp

[
2m∑

k=1

Ck

k
zk

]

+ O(z2m+1) = 1 +
2m∑

k=1

Ck

k
zk + . . .

def
= 1 +

2m∑

n=1

rn zn . (20)

The condition (19) can then be solved in two steps.
– Step 1-a Reminding that the polynomial Q+ is of degree m and using Q−(0) ≡ q−0 = 1,

the projection of Eq. (19) onto the basis (zm+1 , . . . , z2m) gives

m∑

k=0

q−k rn−k ≡ 0 ⇒

m∑

k=1

q−k rn−k ≡ −rn , m + 1 ≤ n ≤ 2m . (21)

This forms a system of m linear equations which determines the m coefficients (q−
k )1≤k≤m

of the polynomial Q−.
– Step 1-b This being done, projecting Eq. (19) onto the monomial basis (1, . . . , zm) and

using Q+(0) = 1, the m + 1 coefficients of the polynomial Q+ are given by

q+
0 = 1 and q+

n =

n∑

k=0

q−k rn−k , 1 ≤ n ≤ m . (22)
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In some particular cases where the specified multipole expansion exhibits certain kind of sym-
metries, as for instance in the case of a pure 2p-pole magnet, the step 1-a needed to determine
the polynomial Q− could be dropped and the overall method somewhat simplified. Indeed, as it
will be shown in section 3.2, if the multipole field expansion is requested to be purely 2p-polar
up to the order 2m, the polynomials Q− and Q+ will be found to be linked by the following
relation:

Q−(z) = Q+(eiπ/pz) . (23)
The above relation implies in particular that each root (z+

k )1≤k≤m of the polynomial Q+, that
is each wire of positive current, can be associated to a wire of opposite polarity by a simple
rotation of π/p, which is a well-known feature, for instance for the standard bi-polar current
dipole or quadrupole magnets.
As a more quantitative example, if the problem is to determine the positions of 2m = 14 wires
to help in the design of a 14-block magnet producing a pure dipole field (p = 1) up to the order
2m + 1 = 15, we will have to solve the following polynomial equation:

Q+(z) = ez Q+(−z) + O(z15) with deg(Q+) = m = 7 and Q+(0) = 1 , (24)

the solution of which is given by

Q+(z) = 1 +
1

2
z +

3

26
z2 +

5

312
z3 +

5

3432
z4 +

1

11440
z5 +

1

308880
z6 +

1

17297280
z7 . (25)

The 7 complex roots of this polynomial (one real and 3 pairs of complex conjugates) correspond
to the position of the 7 wires with positive current, while the 7 wires of opposite polarity are
obtained by applying the symmetry z −→ −z (see Fig. 3(a)).

Case P = 2. In this paragraph, the multipole field expansion is specified up to the order M at
two locations Z1 = −Z2 ≡ a of the transverse plane. The corresponding harmonics are noted
(C

(1,2)
k )1≤k≤M . The total number of wires considered is then equal to 2M , M with a positive

current and the other half with the opposite polarity. According to the relation (18), the problem
is to find two polynomials Q± of degree N = M such that

{

Q+(z + a) ≡ λ1Q−(z + a) × R1(z) + O(zM+1)

Q+(z − a) ≡ λ2Q−(z − a) × R2(z) + O(zM+1) ,
(26)

where λ1,2 are two complex numbers which do no need to be further specified1) and R1,2(z) are
the polynomials of degree M defined by

R1,2(z)
Eq.(9)
= exp

[
M∑

k=1

C
(1,2)
k

k
zk

]

+ O(zM+1) = 1 +

M∑

k=1

C
(1,2)
k

k
zk + . . .

def
= 1 +

M∑

n=1

r(1,2)
n zn .

(27)
In order to solve our problem, we must first introduce certain additional algebraic objects. First,
we consider the Toeplitz operators AR1,R2

corresponding to the map of multiplication by the
polynomials R1,2 in the ring C[z] of polynomials in the variable z with coefficients from the
complex field C:

AR1,R2
: C[z] −→ C[z]

Q(z) 7→ R1,2(z) Q(z) .
(28)

1) With R1,2(0) ≡ 1, and assuming that the polynomials Q± are solutions of Eq. (26), we have de facto λ1,2 ≡
Q+(±a)/Q−(±a).
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The matrices A1,2 associated to these maps, when projected onto the M +1-dimensional vector
space CM [z] of the polynomials of degree equal or lower than M is the (M + 1) × (M + 1)
lower triangular matrix given by

A1,2 =









1 0 . . . 0

r
(1,2)
1 1

. . . ...
... ... . . . ...

r
(1,2)
M r

(1,2)
M−1 . . . 1









(29)

In particular, the matrices A1,2 are regular since their diagonal elements are all equal to unity.
Then, for an arbitrary complex number a, we introduce the linear operator of translation Ta

acting in the vector space CM [z] of the polynomials of degree equal or lower than M :

Ta : CM [z] −→ CM [z]
Q(z) 7→ Q(z + a) .

(30)

In the usual monomial basis (1, . . . , zM), its matrix Ta is upper triangular and given by:






(Ta)i,j = 0 if 0 ≤ i < j ≤ M

(Ta)i,j =
j!

i!(j − i)!
aj−i otherwise .

(31)

For two arbitrary complex numbers a and b, it is easy to see that the associated translation
matrices Ta,b commute each other and concatenate as follows:

Ta Tb = Tb Ta = Ta+b . (32)

In particular, the matrix Ta is regular with an inverse equal to T−a.
Finally, depending on the context, we will continue using the notations Q± either to refer to the
polynomials themselves or to the associated (M + 1)-dimensional vectors after projection onto
the usual basis (1, . . . , zM ), i.e.:

Q± ≡








q±0 ≡ 1
q±1
...

q±M








. (33)

With all these new notations, the equation (26) can then be re-expressed as follows:
{

Ta Q+ ≡ λ1 A1 Ta Q−

T−a Q+ ≡ λ2 A2 T−a Q−

(34)

After some algebra and using the properties of the matrices A1,2 and Ta, the above equation
leads to 


T−a A1 T 2

a A−1
2 T−a

︸ ︷︷ ︸

def
= A




 Q+ = λ Q+ with λ

def
= λ2/λ1 . (35)

In other words, the vector Q+ is an eigen vector for the matrix A defined above which, in ad-
dition, has to be normalised using the condition Q+(0) = q±0 ≡ 1. Then, using one of the two
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relations given in Eq. (34), the vector Q− can be determined within a multiplicative constant,
which is further evaluated using the condition Q−(0) = q−0 ≡ 1.
One very interesting aspect is that the matrix A of dimension M + 1 generally possess M + 1
distinct eigenvalues associated to M + 1 possible polynomials Q+ which are de facto linearly
independent. In other words, this means M + 1 possible choices of a priori completely differ-
ent topological nature for the positioning of the 2M wires. This discussion will be continued
on a more quantitative basis in section 4.1 when dealing with the so-called ”sextupole-like
quadrupole”. In particular, we will show on a specific example that in general only one of the
M + 1 eigen-polynomials do not possess any roots in the magnet mid-plane, but without being
able to bring any general proof of this result.

2.4 Magnetic potential and generating function
Before going to practical applications, a small digression could be inserted in the text to

discuss the physical interpretation of the generating function G introduced in Eq. (5).
Let us consider a convex region of the transverse plane which is free of wires, say the magnet
aperture centered around z = 0. In this area the function G(z) does not vanish by construction.
We can therefore consider its complex logarithm defined by

log [G(z)] ≡ log |G(z)|
︸ ︷︷ ︸

def
= As(x,y)

+i arg [G(z)]
︸ ︷︷ ︸

def
= φ(x,y)

. (36)

As real and imaginary parts of an holomorphic function, the real functions As(x, y) and φ(x, y)
defined above fulfill the Cauchy-Riemann equations:

{
∂xAs = ∂yφ
∂yAs = −∂xφ .

(37)

Therefore, we have

(∂x − i∂y) As = (∂y + i∂x) φ

=
1

2
(∂x − i∂y) (As + iφ)

= ∂z log[G] =
G ′

G

Eq. (5)
= By + i Bx .

(38)

In other words, the functions As and φ can be interpreted as the longitudinal vector potential
and the scalar potential associated to the 2D magnetic field induced by the N wires of current
In:

[Bx, By] = gradφ = −Curl [As es] (39)

In particular, the field lines are given by the conditions

As(x, y) = log |G(x + iy)| = Cst ⇒ |G(z)| = Cst . (40)

3 Distribution of wires associated to a given truncated multipole expansion of the
field at one single location of the transverse plane
This section will present several applications of the methods in the case P = 1, that is the

determination of the position of M wires to generate a given 2D magnetic field for which the
multipole expansion up to the order M is specified at one single position of the transverse plane.
In the first two sub-sections, dealing with unipolar-current and bipolar-current configurations,
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we will present the case of pure 2N -pole magnets, that is a 2D magnetic field for which all the
harmonics Ck but one, the harmonics CN ≡ 1, are null up to the order M . Then the example
of a dipole-quadrupole combined magnet will be illustrated in sub-section 3.3. In the last two
sub-sections, the unipolar and bipolar-current configurations will be qualitatively compared in
terms of geometry, aperture and field quality, and also briefly in terms of efficiencies, that is
gauss/ampere or Bpeak/B(z = 0). In addition, different possible strategies for stacking several
layers of wires will be discussed in order to reach the magnetic field or magnetic gradient
required at the center of the aperture, while preserving or even improving the purity of the field
produced.

3.1 Pure 2N -pole magnet approximated with an unipolar-current wire distribution
We start with the most simple configuration where all the current In are set to unity

(unipolar-current magnets). The multipole expansion of the magnetic field is specified at one
single location of the transverse plane, Z = 0, and supposed to approach an unit dipole up to
the order M :

C1 ≡ 1 and Ck ≡ 0 , 2 ≤ k ≤ M . (41)

Following Eq.’s (9) and (13), the position of M wires are simply given by the M complex roots
of the following polynomial:

G(z) ≡ Qdip
+ (z) = Qdip

+ (0)
︸ ︷︷ ︸

≡1

× exp(z) + O(zM+1) =
M∑

k=0

zk

k!
. (42)

The ”unipolar-current” dipole corresponding to M = 14 wires is shown in Fig. 1(a), where all
the harmonics strictly below C15 have been eliminated. In the case where the multipole field
expansion is assumed to be purely 2N−polar up to the order N ×M , N > 1, the generalization
is straightforward. The position of the M × N wires is indeed given by the complex root of the
polynomial

G(z) ≡ Q2N−pole
+ (z) = exp(zN/N) + O(zNM+1) =

M∑

k=0

zNk

Nkk!
≡ Qdip

+ (zN/N) . (43)

More simply, for each of the M roots (zdip
m )1≤m≤M of the polynomial Qdip

+ , it is sufficient to
calculate the N complex numbers corresponding to one of the N th roots of N×zdip

m . In this way
we obtain directly a very pure 2N -pole with CN = 1 and for which all the other harmonics of
order strictly lower than N × M + 1 have been eliminated2). The corresponding quadrupole,
sextupole and octupole made of 2×14 = 28, 3×14 = 42 and 4×14 = 56 wires are showed in
Fig. 1 for the field lines, and Fig. 2, for the contours of constant field magnitude errors w.r.t. the
ideal 2N -pole field (i.e.

∣
∣B(z) − zN−1

∣
∣).

3.2 Pure 2N -pole magnet approximated with a bipolar-current distribution
As previously, we start with the case of a magnetic field which is specified to be purely

dipolar up to the order M with C1 ≡ 1, M being assumed to be an even integer in this case.
Following Eq.’s (9) and (18), the location of M/2 wires of positive and negative currents are

2) For symmetry reasons, all the harmonics strictly lower than N × (M + 1) are in fact eliminated in this case
with only N × M wires.
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(a): Unipolar-current dipole (b): Unipolar-current quadrupole

(c): Unipolar-current sextupole (d): Unipolar-current octupole

Figure 1: Field lines for the unipolar-current dipole, quadrupole, sextupole and octupole mag-
nets made of 14, 28, 42 and 56 wires, respectively.
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(a): Unipolar-current dipole (b): Unipolar-current quadrupole

(c): Unipolar-current sextupole (d): Unipolar-current octupole

Figure 2: Contours of constant field magnitude error w.r.t. the ideal 2N -pole magnetic field
(i.e. the quantity

∣
∣B(z) − zN−1

∣
∣ , N = 1, . . . , 4) for the unipolar-current dipole, quadrupole,

sextupole and octupole magnets made of 14, 28, 42 and 56 wires, respectively: the six levels
indicated correspond to relative field errors less than 0.1 unit of 10−4 (10 ppm), 1 unit, 10 units,
1%, 10% and 100%.
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given by the complex roots of the two polynomials Q± of degree M/2, satisfying Q±(0) = 1
and which fulfill the following functional relation:

Qdip
+ (z) = exp(z) Qdip

− (z) + O(zM+1) . (44)

As showed in Eq.’s (21) and (22), this relation is equivalent to two linear systems in the coef-
ficients of Q±, which then can be solved numerically to determine in an unique way these two
polynomials.
This being said and as previously announced, one can push a bit further the analytical treatment
of this specific case. Indeed, by considering the above relation for z and −z and by multiplying
the two corresponding equalities, one gets

Qdip
+ (z) Qdip

+ (−z) = Qdip
− (z) Qdip

− (−z) + O(zM+1) . (45)

The polynomials occurring on both sides of this relation are of degree 2×M/2 = M . Therefore
the above relation is in fact a strict equality:

Qdip
+ (z) Qdip

+ (−z) = Qdip
− (z) Qdip

− (−z) . (46)

Therefore, this implies that the polynomial Qdip
− (z) divides the polynomial Qdip

+ (z)×Qdip
+ (−z).

Then, remembering that the polynomials Q− and Q+ are coprime (see the discussion leading to
Eq. (17)), we conclude easily that the initial condition (44) is in fact equivalent to

{

Qdip
− (z) ≡ Qdip

+ (−z)

Qdip
+ (z) = exp(z) Qdip

+ (−z) + O(zM+1) with deg(Qdip
+ ) = M/2 and Qdip

+ (0) = 1 .
(47)

Finally, as in the unipolar configuration, it is easy to see that the general case of the pure 2N -
pole (up to the order N × M ) can be deduced from the dipolar case by using the following
relations:

Q2N−pole
± (z) = Qdip

± (zN/N) ⇒ Q2N−pole
− (z)

Eq.(47)
= Qdip

+ (−zN/N) = Q2N−pole
+

(
eiπ/Nz

)
.
(48)

The polynomials Qdip
+ of degree 1, . . . , 7 which satisfy the relation (47) for M = 2, 4, . . . , 14

are given below

Qdip
+ =1 + z

2 for M = 2

Qdip
+ =1 + z

2 + 1
12 z2 for M = 4

Qdip
+ =1 + z

2 + 1
10 z2 + 1

120 z3 for M = 6

Qdip
+ =1 + z

2 + 3
28 z2 + 1

84 z3 + 1
1680 z4 for M = 8

Qdip
+ =1 + z

2 + 1
9 z2 + 1

72 z3 + 1
1008 z4 + 1

30240 z5 for M = 10

Qdip
+ =1 + z

2 + 5
44 z2 + 1

66 z3 + 1
792 z4 + 1

15840 z5 + 1
665280 z6 for M = 12

Qdip
+ =1 + z

2 + 3
26 z2 + 5

312 z3 + 5
3432 z4 + 1

11440 z5 + 1
308880 z6 + 1

17297280 z7 for M = 14 .

(49)

The bipolar-current dipole, quadrupole, sextupole and octupole magnet corresponding to M =
14, that is made of 14, 2×14 = 28, 3×14 = 42 and 4×14 = 56 wires, respectively, are illustrated
in Fig.’s 3 and 4 for the field lines and the quality of the field produced.
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(a): Bipolar-current dipole (b): Bipolar-current quadrupole

(c): Bipolar-current sextupole (d): Bipolar-current octupole

Figure 3: Field lines of the bipolar-current dipole, quadrupole, sextupole and octupole magnets
made of 14, 28, 42 and 56 wires, respectively. The yellow and red zones are in the vicinity the
wires of positive and negative current, respectively.

15



(a): Bipolar-current dipole (b): Bipolar-current quadrupole

(c): Bipolar-current sextupole (d): Bipolar-current octupole

Figure 4: Contours of constant field magnitude error w.r.t. the ideal 2N -pole magnetic field (i.e.
the quantity

∣
∣B(z) − zN−1

∣
∣ , N = 1, . . . , 4) for the bipolar-current dipole, quadrupole, sextupole

and octupole magnets made of 14, 28, 42 and 56 wires, respectively: the six levels indicated
correspond to relative field errors less than 0.1 unit of 10−4 (10 ppm), 1 unit, 10 units, 1%, 10%
and 100%.
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3.3 Dipole-quadrupole combined magnet and connection with FFAG magnets
In this paragraph, the method is applied to the design of a combined dipole-quadrupole

magnet. As an example, the position of N = 20 wires is determined to produce a magnetic field
for which the multipole harmonics Ck at z = 0 are specified as follows:

C1 ≡ 5 , C2 ≡ 1 and Ck ≡ 0 , 3 ≤ k ≤ 20 . (50)

Following the techniques developed previously for an unipolar-current magnet (see section-
2.3.1), the wire position is determined by finding the N = 20 roots of the following polynomial
of degree N = 20:

Q+(z) = exp(5z + z2/2) + O(z21)
Eq.(9)
=

20∑

n=0

[
∑

i,j,i+2j=n

5i

2j i! j!

]

zn . (51)

In the bipolar-current configuration, the positions of the 10+10 wires with positive and nega-
tive currents correspond to the roots of the two polynomials Q+ and Q− which are univocally
determined by the following condition (see section 2.3.2):

Q+(z) = exp(5z + z2/2) Q−(z) + O(z21) with deg(Q±) = 10 and Q±(0) = 1 . (52)

The corresponding unipolar-current and bipolar-current 20-wire magnets are showed in Fig. 5,
where the field lines and contours of constant field magnitude are drawn for both configurations.
It is worth mentioning the possible connection with FFAG accelerators which require a magnetic
field of the form

B(z) = B0

(

1 +
z

R0

)k

, (53)

where R0 is the distance between the center of the ring and the magnet center z = 0, B0 denotes
the reference vertical dipole field of the accelerator at the reference radius r = R0 and k is the
so-called geometrical field index of the FFAG accelerator. In the present case, we then have
k ≡ 1, R0 = C1/C2 = 5 m and B0 = µ0 I/(2π) × C1 = 10 Gauss assuming a current of
±1000 A circulating in the 20 wires of the magnet. This field can of course be further amplified
by stacking several layers of wires (see sub-section 3.5.1 and Fig. 6(b)). However what is more
relevant at this stage is that, in the bi-polar current configuration, we obtain directly a left/right
asymmetric coil layout which is qualitatively very similar to that recently proposed for super-
conducting type magnets to be used in FFAG machines (see e.g. [4]).
Finally, both in the unipolar and bipolar-current configurations, it is rather clear that the method
used can be quickly generalized for an arbitrary field index k for which the generating polyno-
mials Q± can be found by solving the following functional relation:






Q+(z) = exp

[∫ z

0

dz′ B(z′)

]

+ O(zM+1) = exp

[

B0

(
(1 + z/R0)

k+1 − 1
)

R0 (k + 1)

]

+ O(zM+1)

for the unipolar systems ,

Q+(z) = exp

[

B0

(
(1 + z/R0)

k+1 − 1
)

R0 (k + 1)

]

Q−(z) + O(zM+1)

for bipolar systems .
(54)
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(a) (b)

(c) (d)

Figure 5: 20-wires unipolar-current (top) and bipolar-current (bottom) dipole-quadrupole com-
bined magnet (with C1 = 5, C2 = 1 and Ck = 0, 3 ≤ k ≤ 20). Field lines (Fig.’s (a) and (c))
and contours of constant field magnitude B (Fig.’s (b) and (d)).
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3.4 Comparison between unipolar and bipolar-current magnets
No attempt will be made here for a thorough comparison between unipolar-current and

bipolar-current magnets. However some general features are worth mentioning.

3.4.1 Coil geometry
First of all, as shown by the previous examples, it is clear that the two configurations of

current studied so far (amongst many other possible ones) leads to drastically different magnet
geometries. The cases of the unipolar-current dipole and quadrupole (see Fig.’s 1(a) and 1(b))
are particularly interesting due to the sizable wire-free area, respectively on the right side and
on the two sides of the magnet. If applicable, these open sides in the horizontal plane leave
therefore the possibility of accessing to the magnet interior or, which might be of great interest,
to absorb or extract the synchrotron radiation in the case of high intensity electron storage rings
(idem for the debris, if produced in one specific plane only, at the interaction point of a collider).
However the price to pay is that current return paths will be a priori longer for the unipolar-
current magnets, where presumably return bus-bars will be positioned outside a shield, rather
than contributing for the magnetic field itself as this is the case in the bipolar configuration.
Concerning the bipolar-current 2N -pole magnets previously considered, it is also worth noting
that the wires are not confined to a right circular cylinder as it is usually the case in a standard
design of superconducting magnets. On the contrary, as shown in Fig 3(b), the bipolar-current
quadrupole is very similar to the well-known Panofsky quadrupole made of uniform current
sheets inside a square iron box. Then, the bipolar-current sextupole and octupole are in some
sens generalized Panofsky magnets, with an almost regular hexagonal and octogonal geometry.

3.4.2 Aperture and field quality
Because of their completely different geometries, it is rather difficult to compare a given

unipolar and bipolar-current 2N -pole magnet in terms of aperture. However, in the particular
case of round beam, the magnet aperture could still be defined as the interior of the largest
possible circle which does not intercept the wires (that is defined by the root z±

n of smallest
modulus if one comes back to the formalism previously developed). Using this definition, it is
clear that in the case of the unit dipole field, the bipolar-current configuration is roughly twice
more favorable in terms of aperture (see Fig.’s 1(a) and 3(a)): min [|z±

n | , 1 ≤ n ≤ 14] ∼ 10
in the case of the bipolar-current unit dipole and min [|z+

n | , 1 ≤ n ≤ 14] ∼ 5 in the other
configuration. Then, in the general case of the 2N -pole magnet, this difference is less and less
visible for N large and tends to unity as fast as 21/N (see e.g. the discussion following Eq. (43)).
Concerning the area of the regions of good field quality, say where the relative field error w.r.t.
to the ideal 2N -pole field is less than one permil (corresponding to the third contour level on
the Fig.’s 2 and 4), this tendency is approximately the same. In other words, this means that, in
relative, the ratio between magnet aperture and zone of good field quality is roughly the same
in both configurations (∼ 70 − 80%), but noting that the uni-polar current quadrupole remains
nevertheless very competitive, also in absolute, concerning the horizontal extension of the good
field quality region (compare Fig.’s 2(b) and 4(b)).

3.4.3 Efficiencies
Working at constant aperture, the above discussion can also be rephrased in terms of

efficiency for the generation of a magnetic field of given magnitude or of given gradient at
the magnet center, assuming a given current I circulating in the wires and a given aperture of
the magnet defined by a inner radius Rin. More precisely, for a given 2N -pole, one deduces
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from above that the quantity |B(z=0)| /I/RN
in is roughly twice smaller in the case of unipolar-

current magnets. For instance, rescaling to 28 mm the inner radius Rin
3) of the 14-wire unipolar

and bipolar-current dipoles showed in Fig.’s 1(a) and 3(a) and assuming a density of current j
of 1000 A/mm2 circulating in the wires, the dipole field produced at the magnet center will be
around 0.04 T and 0.08 T, respectively, for a total cross-section of conductor equal to 14 mm2.
Finally, another interesting quantity concerns the ratio of this field with respect to the peak
magnetic field which is reached in the magnet coils. This ratio shall be as high as possible, e.g.
for super-conducting magnets operating very close to the critical surface Bc(j). Without going
into the details of this discussion, which is beyond the scope of this paper, we will just mention
that the unipolar-current magnets are again slightly less performing with this respect.

3.5 Strategies for stacking the wires
All this brings us to the study of multi-layer magnets obtainable by different possible

wire stacking strategies, in order to enhance the magnitude of the magnetic field produced,
while preserving or improving its quality in the vicinity of the magnet center. In this section,
the multipole expansion of the magnetic field is assumed to be specified up the order M where
most of the harmonics Ck, k ≤ M, are set to zero, with the exception of a few of them which
are prescribed on purpose to non-zero values (e.g. the single component CN , N ≤ M for the
2N -pole magnets studied in sections 3.1 and 3.2 or the dipole and quadrupole components C1

and C2 in the case of the combined magnet described in sub-section 3.3). We define hereafter
two possible strategies to build up a multi-layer magnet for which the integer M defined above
will be kept constant or will vary during the layer stacking process. While each of the following
strategies can in principle be applied to any of the magnet types discussed so far, we will restrict
ourselves to a rather limited number of examples in order to preserve as much as possible the
clarity of the discussion.

3.5.1 Radial stacking strategy at constant field quality
The most straightforward strategy is to stack different layers of wires in an homothetic

way starting from a mono-layer configuration with M wires which ensures a given multipole
expansion up to the order M . More precisely, let us start with a wire configuration defined by
M complex numbers (zi)1≤m≤M which are the M roots of a polynomial Q+ of degree M (resp.
of two polynomials Q± of degree M/2) satisfying a functional relation of the type:

Q+(z) = exp

[
M∑

k=1

Ckz
k/k

]

+ O(zM+1) , or

Q+(z) = exp

[
M∑

k=1

Ckz
k/k

]

× Q−(z) + O(zM+1) ,

(55)

depending on whether the magnetic system considered is of unipolar or bipolar type. For any
complex number α, it is clear that the polynomials Q±(z/α) satisfy a similar functional relation
changing the harmonics Ck into Ck/α

k. More generally, let us introduce a set of L scale factors,
says uniformly distributed on the positive real axis:

αl ≡ α0 (1 + lδα) , 1 ≤ l ≤ L , with δα � 1 . (56)

3) Rin = 28 mm corresponds to the inner coil radius of the LHC main dipole magnets.
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Based on the argument of above, it is clear that the L×M wires defined by the complex numbers
(αlzm) will produce the following magnetic field around z = 0:

B(z) =
M∑

k=1

βk Ck zk−1 + O(zM+1)

with βk
def
=

1

αk
0

L∑

l=1

1

(1 + l δα)k
≈

1

αk
0

∫ L

0

dl
1

(1 + l δα)k
∼







1

δα α0

log L if k = 1

1

(k − 1) δα αk
0

otherwise.

(57)
In other words, this process will not generate new non-zero harmonics, which means that the
field quality is preserved, and the non-zero harmonics will be enhanced by the factors βk.
However, while this strategy presents no intrinsic limitations to amplify the produced dipole
field (β1 ∝ log(L) for a large number L of layers), the 2N -pole magnets of higher order cannot
be pushed to arbitrarily high gradient, assuming a given magnet aperture (related to α0) and
noting that the distance between two consecutive layers (related to δα) has a lower limit given
by the finite dimension of the wires themselves. Furthermore, in practice, the wires will be re-
stricted to only M azimuthal directions of the transverse plane, leaving sizable coil-free space
which would be better used to contribute to the production of the required magnetic field and
then maintain within reasonable bounds the radial dimensions of the magnet. Finally, consider-
ing the case of a combined magnet, that is with more than one non-zero specified harmonics,
this method tends to decrease the harmonics ratios Ck/C1, 1 ≤ k ≤ N , with no guaranty that,
after the stacking process, they finally converge to their prescribed value.
In order to overcome this potential limitation, a more subtle approach consists in solving L times
the functional relation (55) associated to L different set of harmonics (C

(l)
k )1≤l≤L on which the

only constraint is that each specified harmonics Ck actually corresponds to the sum over the
index l of the harmonics C

(l)
k . There is of course an infinite number of possible choices for the

L sets(C(l)
k )1≤l≤L.

One possible choice is to see a combined magnet as the superposition of several pure 2N -pole
magnets, putting the 2N -pole layers of the highest order as close as possible to the magnet
center in order to maximize the magnet aperture at constant 2N -polar gradient. Another pos-
sibility, more economical in terms of the total number of wires which are needed, consists in
superposing on top of each other several combined magnets according to the following strategy.

– For a given harmonics of order k, the ratios (C
(l)
k /C

(l)
1 )1≤l≤L are kept constant for all

layers:

C
(l)
k = C

(l)
1 ×

(
Ck

C1

)

spec.

, 1 ≤ k ≤ M , 1 ≤ l ≤ L . (58)

– The first non-zero harmonics produced by the first layer, say C
(1)
1 , is numerically adjusted

to match the prescribed magnet aperture (knowing that the inner aperture of the magnet
obviously increases when its main field decreases).

– the set of harmonics (C
(l)
1 )1≤l≤L is decreasing with l and is adjusted step by step such

that, for instance, the minimum distance between two wires belonging to two consecutive
layers is kept constant.

– the stacking process is stopped when
L∑

l=1

C
(l)
1 ≈ (C1)spec. . (59)
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(a) (b)
Figure 6: Bipolar-current combined magnet made of 51 layers of 20 wires, with an inner aper-
ture radius adjusted to 10 cm and producing a pure dipole-quadrupole field up to the order
M = 20 with C1 = 5000 and C2 = 10000. The green and red wires are of positive and neg-
ative current, respectively. Fig. (a) has been obtained by superposing a pure 43-layers dipole
(with C1 = 5000) and a pure 8-layers quadrupole (with C2 = 10000) while Fig. (b) is the
superposition of L = 51 dipole-quadrupole combined magnets for which the set of harmonics
(C

(l)
1 , C

(l)
2 )1≤l≤L fulfills the conditions enumerated in section 3.5.1.

These two possibles options are illustrated in Fig. 6 in the case of a dipole-quadrupole combined
magnet (in the bipolar-current configuration), possessing an inner aperture radius of 10 cm and
for which the field quality is specified up to the order M = 20 with C1 = 5000 and C2 = 10000.
This corresponds to a dipole field of 1T and a quadrupole gradient of 2T/m assuming a current
of ± 1000 A in the wires. In both cases, the minimum distance between two consecutive layers
of wires has been kept constant, tuned to 1 mm, and the total number of layers needed has been
found to be equal to L = 51 (more precisely, 8 quadrupole layers and 43 dipole layers in the
case where the combined magnet is obtained by the strict superposition of the corresponding
dipole and quadrupole). As a result, thee two configurations have also been found rather similar
in terms of peak coil field, of the order of 1.5 T assuming a current of I = 1000 A in the wires.
However, as expected by construction, the geometry of this two magnets is drastically differ-
ent. In the first case, we recognize the superposition of a pure dipole magnet on top of a pure
quadrupole (see Fig.’s 3(a) and 3(b)) and, for each of these two structures, the M = 20 cor-
responding azimuthal directions around which the wires are distributed. In the second case,
these 20 azimuthal directions are slightly curved due to the fact that the ratios (C

(l)
2 /C

(l)
1 )1≤l≤L

have been kept constant in the stacking process (see the short discussion after Eq. (57)). The
magnet dimension is also significantly increased, which indicates in particular that the distance
between two individual wires belonging to two consecutive layers can be much larger than the
1 mm minimum inter-layer distance. In others words, this means a much more difficult geome-
try to achieve in practice but, contrary to the first layout, a possibly better mechanical stability
due to the strict separation between the wires of positive and negative current.
To summarise briefly, the radial stacking strategy appears particularly well-suited to help in the
design of magnets with low or moderate gradient. Indeed, it allows to determine rapidly not
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only the few azimuthal directions where the blocks of conductor have to be roughly positioned
(eventually for a further numerical optimization) but it also gives a quick estimate of the radial
extension of the blocks in order to ensure the production of a magnetic field of good quality
with a given magnitude at the magnet center.

3.5.2 Azimuthal stacking strategy at improved field quality
As shown in the previous section, the radial stacking process allows to select only a

few azimuthal directions where the wires concentrate, with, as a result, sizable coil-free spaces
which would be better used to further push the magnet transfer function B/I . These M specific
azimuthal directions are directly given by the order M up to which the multipole expansion of
the magnetic field has been specified. Therefore, it is natural to study multi-layer magnets for
which each layer of wires l, 1 ≤ l ≤ L, contributes to the generation of the prescribed main
field, while warranting a purity of the magnetic field up to a given oder Ml, changing with l and
eventually much larger than the minimum required order M .
Without giving a rigorous proof of what follows, the tendency is that at constant main field
specified up to the order M , the radial position of the M corresponding wires goes to infinity
when M becomes arbitrarily large. In other words, at constant aperture, improving the field
quality (by increasing the order M ) is also a very efficient way to enhance the magnet transfer
function, which can be physically explained by an increase of the azimuthal wire density. This
effect can be easily seen in the case of the unit unipolar or bipolar-current dipole made of M
wires, the transverse positions of which are given by the M or M/2 roots of the polynomial Q+

fulfilling the following relations (see Sub-Sections 4.1 and 4.2 ):

Q+(z) =
M∑

k=0

zk

k!
= exp(z) + O(zM+1) for the unipolar-current dipole

Q+(z)

Q+(−z)
= exp(z) + O(zM+1) with deg(Q+) = M/2 for the bipolar-current dipole.

(60)
Since the exponential function does not admit any root in the complex plane, except at z = −∞,
it is rather clear that by approaching uniformly the function exp(z), that is, in particular, by
increasing the degree of polynomial Q+, its root of smallest radius will automatically move
away from the origin.
As an example, Fig. 7 presents the case of a bipolar-current quadrupole magnet, with an inner
radius adjusted to 5 cm and made of L = 13 layers of wires, each of them producing a pure
quadrupolar field up to an order (Ml)1≤l≤L, with M1 = 60, M2 = 56, . . . , and M13 = 12,
and choosing 1 mm for minimum distance between two consecutive layers. The quadrupole
harmonics of this magnet has been found equal to C2 ≈ 110′000. This means a quadrupole
gradient of 22 T/m for I = 1000A, with a corresponding peak coil field of the order of 1.3 T
(that is only slightly higher than the magnetic field of 22 × 0.05 = 1.1 T reached at the magnet
inner radius of 5 cm).
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Figure 7: Bipolar-current quadrupole magnet made of 13 layers of 60, 56, . . . and 12 wires,
respectively. The green wires are of positive current while the current is negative in the red wires.
The inner aperture of the magnet and the minimum inter-layer distance have been adjusted to
5 cm and 1 mm, respectively. This magnet produces a pure quadrupole field with C14 the first
non-zero harmonics after C2. Its transfer function is about 22 T/m/kA with a peak coil field of
1.3 T assuming a current of I = 1000 A.

4 Single aperture magnets generating a more exotic magnetic field with specified
multipole expansions at more than one location of the transverse plane
In this last section, a few examples will illustrate the more delicate case of a magnetic

field for which the multipole expansion is prescribed at several locations of the transverse plane.
We will start with the so-called ”sextupole-like quadrupole” mentioned in the introduction of
this paper. Then in sub-sections 4.2, we will study the possibility of designing mass-less septa
and two-jaw magnetic collimators, that is defining the layout of a single aperture magnet for
which the multipole expansion of the field is vanishing up to an order M at a given point of
the transverse aperture and can be approximated by a pure dipole field around one or two other
locations.

4.1 The ”sextupole-like quadrupole”
As already mentioned in the introduction, the overall study has been motivated by the

design of a single aperture magnet able to produce a pure quadrupole field, say up to the order
M = 10, which would change sign around two specified positions±x0 of the transverse plane:

{
B(x0 + z) = B2 z + O(zM )

B(−x0 + z) = −B2 z + O(zM ) .
(61)

As discussed in section 2.3.2 (paragraph ”P = 2”), the minimum number of wires needed is
equal to 2M for bipolar systems, that is 20 wires in our specific case. The transverse positions
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of these wires are then given by the 2 × M complex roots of two polynomials Q±, each of
degree M and fulfilling the following conditions (see Eq. (26)):

{

Q+(z + a) ∝ Q−(z + a) × exp(B2 z2/2) + O(zM+1)

Q+(z − a) ∝ Q−(z − a) × exp(−B2 z2/2) + O(zM+1)

with deg(Q±) = M and Q±(0) = 1 .

(62)

As shown in section 2.3.2, the determination of these two polynomials is equivalent to an eigen-
value problem. More precisely, using vector notations (see Eq. (33)), the polynomial Q+ nor-
malised to Q+(0) = 1 is an eigen-vector of the (M+1)×(M+1) square matrix defined by

A
Eq.(35)

= T−x0
A1 T 2

x0
A−1

2 T−x0
, (63)

while the polynomial Q− is obtained by the following relation

Q−

Eq.(34)
= cst×

[
Tx0

A−1
2 T−x0

]
Q+ , (64)

where the multiplicative constant on the right-hand side is fixed by the condition Q−(0) = 1. In
the above two equations, T±x0

denote the matrices associated to the linear operators of transla-
tion T±x0

acting on the ring CM [z] of the polynomials of degree equal or lower than M (see the
definition (30) and Eq. (31)). Then, the matrices A1,2 describe the operators of multiplication
AR1,R2

, up to the order M , by the functions R1,2
def
= exp(±B2 z2/2) (see Eq.’s (28) and (29)).

Using the symmetries which are intrinsic to this particular case, the problem can be somehow
simplified by remarking that

R1(z) × R2(z) ≡ 1 ⇒ A−1
2 = A1 , (65)

and by introducing the symmetry operator V defined by

V : CM [z] −→ CM [z]
Q(z) 7→ Q(−z) .

(66)

Indeed, in the usual basis (1, z, . . . , zM ), the matrix V associated to the operator V is diagonal
and given by

V = Diag(1, −1, . . . , 1, −1) (assuming M is an even number for the sake of simplicity).
(67)

Furthermore, the matrix V possesses the following properties:






V 2 = 1

V T±x0
V = T∓x0

V A1,2 V = A1,2 ,
(68)

where the first two properties are obvious, for instance by coming back to the basic definition
of the operators V and T±x0

, and where the last property comes from the parity of the functions
R1,2

def
= exp(±B2 z2/2) with respect to the z-variable. Using these properties, the matrix A to

be diagonalized can then be re-expressed as follows:

A
Eq.(63)

= T−x0
A1 T 2

x0
A−1

2 T−x0

Eq.(65)
= T−x0

A1 T 2
x0

A1 T−x0
≡ B2

with B
def
= T−x0

A1 Tx0
V

Eq.(68)
= V Tx0

A1 T−x0
.

(69)
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Any eigenvector of the matrix B is then an eigenvector for the matrix A and conversely if
the B matrix has M +1 distinct eigenvalues, that is in particular M +1 linearly independent
eigenvectors, which is generally the case in practice. The polynomials Q+ can therefore be
searched as an eigen vector of the matrix B:

[T−x0
A1 Tx0

V ] Q+ ≡ λQ+ with Q+(0)=1 for the normalization, (70)

which in principle possesses M + 1 distinct solutions. Then, the relation (64) can be used to
determine the polynomial Q−:

Q−

Eq.(64)
= cst×

[
Tx0

A−1
2 T−x0

]
Q+ ,

Eq.(65)
= cst × [Tx0

A1 T−x0] Q+
Eq.(68)

= cst× [V T−x0
A1 Tx0 V ] Q+

Eq.(70)
= λ × cst× V Q+ .

(71)

Finally, using the normalization condition Q±(0) = 1, we get λ×cst ≡ 1, which simply means
that in the bipolar-current configuration the so-called ”sextupole-like quadrupole” shall exhibits
a dipolar symmetry:

Q−(z) = Q+(−z) . (72)

All this being said, we then expect M + 1 different possible wire configurations to achieve a
prescribed sextupole-like quadrupole field up to the order M . These configurations are shown
in Fig. 8 in the case M = 10, x0 = 1 cm and B2 = 50′000 corresponding to a magnet trans-
fer function of 10 T/m/kA. Only one of these 11 possible solutions does not exhibit any wire
in the magnet mid-plane. This solution is illustrated in more detail in Fig. 9, in particular in
terms of field lines and 2D-mappings of the vertical and horizontal field as a function of x and
y. The region of good field quality does not extend beyond a radius of about x0/2 around the
two transverse positions ±x0 where the produced magnetic field has been specified to be purely
quadrupolar up to the order M = 10. This feature might be non-limiting to cope with two circu-
lating round beam, say collimated at 3σ and separated by 2 x0 ∼ 10σ. This represents however
a first severe bottleneck for our present purpose where the initial goal was to produce flat beams
at the interaction point and to separate them in the plane of smallest βmax (see Section 1). The
second limitation occurs when trying to push the magnet transfer function applying for instance
the radial stacking strategy described in sub-section 3.5.1. More precisely, Fig. 10 shows a
multi-layers sextupole-like quadrupole magnet obtained by keeping x0 = 1 cm and M=10, but
solving our problem for several successive values for B2 decreasing from B

(max)
2 = 50′000 to

B
(min)
2 = 500. While some wires tends to moves away from the origin (the 2+2 wires on the

left/right side of each pictures), the mid-plane of the magnet exhibits 4 and then 8 accumulation
points where the other wires tends to concentrate.
To summarise, we conclude that sextupole-like quadrupole magnets can certainly be achieved
but exhibit specific features and/or serious limitations in terms of geometry and/or maximum
possible gradient to be of any interest for the upgrade of the LHC experimental insertions.
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Figure 8: Eleven possible wire configurations generating the sextupole-like quadrupole field
described by Eq. (61) with M = 10, x0 = 1 cm and B2 = 50′000 (green and red wires are
of positive and negative current, respectively). Starting from the top, the fourth configuration
offers the widest aperture (no wire in the vicinity of the magnet center).
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Figure 9: ”Sextupole-like quadrupole” magnet obtained for M = 10, x0 = 1 cm and B2 =
50′000 corresponding to a transfer function of 10 T/m/kA: contours of constant magnitude of
B (top-left), line of B (top-right) and Bx,y field maps (bottom-left and bottom-right pictures
respectively).
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1 cm
2 cm

Figure 10: Multi-layer ”sextupole-like quadrupole” obtained for M = 10, x0 = 1 cm and
several values of B2 decreasing from 50’000 to 500. As usual, the wires of positive current are
indicated in green and those of negative current in red. The green and red arrows illustrates the
change of position of the corresponding wires when B2 is reduced.

4.2 The mass-less septum and the two-jaw magnetic collimator
As final examples, we will investigate the case of a mass-less septum and of a two-jaw

magnetic collimator, that is a magnetic field specified at two or three locations of the transverse
plane, Z1,2 = (0, x0) or Z1,2,3 = (0, x0, −x0), and possessing the following characteristics:

Case 1: B(x0 + z) = B1 + O(zM+1) and B(−x0 + z) = O(zM+1)
Case 2: B(±x0 + z) = ±B1 + O(zM+1) and B(z) = O(zM+1) ,

(73)

with B1 defining the magnitude of the vertical dipole field in the region(s) which is (are) adjacent
to the zero-field region.
Contrary to the ”sextupole-like quadrupole magnet”, the problem will be solved assuming the
current I to be positive for all the wires (unipolar system). According to section 2.3.1, the
minimum number of wires needed is equal to 2 × M and 3 × M in these two respective cases.
Their transverse positions is then given by the complex roots of the polynomial Q+ which is
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univocally determined by the following condition (see Eq. (13)):

Case 1: Q+(x0 + z)

Q+(x0)
=

M∑

k=0

Bk
1zk

k!
+ O(zM+1) and Q+(−x0 + z)

Q+(−x0)
= 1 + O(zM+1)

Case 2: Q+(±x0 + z)

Q+(±x0)
=

M∑

k=0

(±)k Bk
1z

k

k!
+ O(zM+1) and Q+(z)

Q+(0)
= 1 + O(zM+1) ,

(74)
with Q+(0) = 1 and deg(Q+) = 2 M / 3 M for case 1 and 2, respectively.
Taking in both cases x0 = 5 cm and B1 = 50, that is a transfer function of 100 G/kA, the
corresponding unipolar-current magnets are shown in Fig.’s 11 and 12 for the 40-wires mass-
less septum (M = 20) and the 56-wires magnetic collimator (M = 18), respectively.
Qualitatively speaking, the horizontal width of the transition region is about 2 cm in both cases,
that is about 20% of the distance 2x0 separating the two extreme locations where the multipole
expansion of the field has been specified. In the vertical direction, the region of good field
quality extend up to y = ±1 → ±1.5 cm in the case of the mass-less septum due to the
presence of wires located at (x, y) ∼ (0, ±2 cm). On the other hand, for the two-jaw collimator,
this area does not extend beyond y = ±0.5 → ±0.7 cm, leaving nevertheless three regions
of extremely good field quality: the field free region containing the rectangular area defined by
{|x|≤1.5 cm, |y|≤0.5 cm} and the two dipole field regions defined by {−5.5 cm≤x≤−4 cm,
|y|≤0.5 cm} and {4 cm≤x≤5.5 cm, |y|≤0.5 cm} (see Fig. 13 for more details).
Without going into the details, it is worth mentioning that as for the ”sextupole-like quadrupole
magnet”, any attempt to increase the transfer function of these magnets (e.g. via the radial
stacking strategy described in section 3.5.1) tends to generate wire accumulation points close
to the magnet mid-plane. In other words, such magnets do not appear very attractive in terms
of maximum achievable transfer function, which may limit their potential use in high-energy
beam extraction lines. On the other hand, the latter remain rather interesting objects to be used
as primary collimators in high-energy ring, e.g. by injecting in the wires an AC-current tuned
to the betatron frequency. Indeed, in a multi-turn process, this will tend to clean the transverse
tails of the beam while minimizing the diffusion effects generated in its core. This proposal will
form the subject of a future study.
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Figure 11: Unipolar-current mass-less septum made of 2 × M = 40 wires and corresponding
to B1 = 50 (i.e. transfer function of 100G/kA) and x0 = 5 cm in Eq. (73) (case 1): contours of
constant magnitude of B (top-left), lines of B (top-right) and Bx,y field maps (bottom-left and
bottom-right pictures respectively).
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Figure 12: Unipolar-current two-jaw magnetic collimator made of 3 × M = 54 wires and
corresponding to B1 = 50 (i.e. transfer function of 100G/kA) and x0 = 5 cm in Eq. (73) (case
2): contours of constant magnitude of B (top-left), lines of B (top-right) and Bx,y field maps
(bottom-left and bottom-right pictures respectively).
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Figure 13: Horizontal (left picture) and vertical (right picture) magnetic field [T/kA] produced
by the two-jaw magnetic collimator described in Fig. 12.

5 Summary and Conclusions
The first motivation of this paper has been the feasibility study of a mass-less focusing-

defocusing quadrupole magnet, or ”sextupole-like quadrupole magnet”, in order to enhance the
LHC luminosity while sticking to the so-called ”quadrupole-first scenario” (see section 1 for
more details). While principle designs of such a magnet can be obtained, the initial goal has
not been reached in terms of maximum achievable gradient which would be useful for the LHC
insertions (see section 4.1 for more details). On the other hand, this study allowed to set up a
new algorithmic method able to generate in a deterministic way the distribution of N current
wires which is associated to a given 2D-magnetic field (see section 2 for a detailed description).
More precisely, as shown by the various examples and discussions presented in sections 3 and
4, it is clear that the method developed allows to design and study rapidly a given magnet which
has been specified in terms of mechanical acceptance, field quality and characteristics of its
main field at one or a several locations of its inner aperture. In particular, it allows to exclude or
motivate quickly the detailed study of very exotic magnets, like the high-gradient sextupole-like
quadrupole mentioned above or the single or two-jaw collimator described in section 4.2.
Furthermore, even if the solutions given are expressed in terms of filamentary current distri-
butions, which is not practical for designing realistic high-field magnets, the potential of the
method lies also in its possible connection to more standard magnet design programs. Indeed,
working with conductor blocks and generally using algorithms of iterative type, these programs
have generally no specific guaranties of convergence if, at the first iteration, the centroids of the
coil-blocks is badly positioned. The method developed offers then this first iteration.
Finally, the connection with 2D-electrostatic field is straightforward, which gives another poten-
tial application of the method in the field of electrostatic magnets or wire chambers for particle
detection.
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