
XX. PROCESSING AND TRANSMISSION OF INFORMATION

Prof. R. M. Fano E. R. Berlekamp G. S. Harlem
Prof. R. G. Gallager D. G. Botha J. L. Holsinger
Prof. F. C. Hennie III J. E. Cunningham K. Ikushima
Prof. T. S. Huang S. M. Diamond Y. Iwadare
Prof. I. M. Jacobs J. R. Disbrow C. W. Niessen
Prof. C. L. Liu H. Dym R. Pilc
Prof. A. M. Manders P. M. Ebert E. A. Prange
Prof. B. Reiffen D. D. Falconer J. E. Savage
Prof. W. F. Schreiber E. F. Ferretti J. R. Sklar
Prof. C. E. Shannon G. D. Forney, Jr. K. D. Snow
Prof. I. C. Stiglitz R. E. Grabowski W. R. Sutherland
Prof. O. J. Tretiak D. N. Graham M. G. Taylor
Prof. J. M. Wozencraft N. Gramenopoulos H. L. Yudkin

U. F. Gronemann

RESEARCH OBJECTIVES

1. Picture Processing

Work is continuing on the processing of pictures by means of computers. The broad
objective of this work is to elucidate the fundamental properties of vision as they apply
to image transmission and reproduction. Among the more specific objectives are the
design of efficient image-transmission systems, and the development of devices capable
of performing some "human" operations, such as noise reduction, image detection, and
quality improvement.

Progress during the past year toward reaching these objectives has been made in
studies pertaining to the visibility of noise of known spectral content, the improvement
of image quality through linear filtering, and the synthesis of motion-picture sequences
from a small portion of the information of each frame. Studies are continuing on two-
dimensional image synthesis techniques for improving transmission efficiency.

W. F. Schreiber

2. Communications

Preliminary work on the transmission of vocoded speech has emphasized the need
for an experimental vocoder suitable for use in conjunction with various modulation and
coding schemes. Such a vocoder must be flexible in its configuration. Accordingly, the
IBM 7090 is being programmed, through use of the BTL BLD-DI compiler, to provide
a general-purpose speech-processing facility. Various techniques for the reduction of
redundancy will be used, together with error-correcting codes, in an effort to improve
voice communication over noisy channels.

Adequate analytical treatment of the performance of encoding and decoding schemes
over noisy time-variant channels is very difficult. Theoretical investigations of this
work continue, but it is certain that experimental evaluation of the ideas generated by
such studies will be necessary. To this end, a channel characterized by acoustic reflec-
tion from air bubbles in water has been constructed in the laboratory, and is now being
evaluated. It appears that most of the communication difficulties inherent in channels
with a time-bandwidth product greater than unity are exhibited by this acoustic channel.

This research was supported in part by the National Science Foundation (Grant
G-16526), the National Institutes of Health (Grant MH-04737-03), the National Aeronautics
and Space Administration (Grant NsG-496); and in part by Purchase Order DDL BB-107
with Lincoln Laboratory, a center for research operated by Massachusetts Institute of
Technology, with the support of the U.S. Air Force under Contract AF 19(628)-500.
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In order to complete the laboratory facilities needed to support experimental com-
munication study, a flexible encoder-decoder is required. Special-purpose adjuncts,
added to a general-purpose digital computer, would provide an efficient compromise
between speed and flexibility. The conceptual design of these ancillary devices, and the
evaluation of the over-all performance resulting from their use, is under way.

In addition to the experimental program outlined above, fundamental theoretical work
in the processing and transmission of information continues on a broad front. Signifi-
cant progress has been made recently on the bounding of the error performance achiev-
able by means of coding. One of the most important results is new insight into the
interrelation of coding and modulation, and the solution of certain related problems has
already been forthcoming. A considerable amount of further work in this direction is
now in progress.

J. M. Wozencraft

3. Digital Machines and Automata

Work continues on the basic capabilities of digital machines and automata. Two pri-
mary objectives of this work are: to gain a better understanding of the relationship
between a given processing problem and the amounts of equipment and computation time
that it requires; and to achieve description and synthesis of digital processors in the
form of arrays of identical building blocks.

F. C. Hennie III

A. PICTURE PROCESSING

1. THE SUBJECTIVE EFFECTS OF PICTORIAL NOISE

A study has been made of the subjective effects of the class of independent additive

rectangular lowpass Gaussian noises. Three original pictures, varying in the amount

of detail, were used. The general shapes of the isopreference surfaces in c-kl-k 2
space, where a is the rms value, and k 1 and k 2 are the bandwidths of the noise in the

horizontal and vertical directions, respectively, were found to be similar for all three

pictures. In particular: (a) If we keep a- constant and go radially outward from the ori-

gin in the kl-k 2 plane, the objectionable noise will increase, reach a maximum, then

fall off. (b) Noises with vertical streaks are more objectionable than those with hori-

zontal streaks.

The details of the isopreference surfaces, however, depend very much on the origi-

nal picture. Generally speaking, noises that contain frequencies similar to those of the

picture are less annoying.

The agreement among the observers was rather good. They were more in agree-

ment as to the effect of changes in noise power than in noise bandwidths.

If objectionable noise is additive, then we may deduce that for the class of noises

whose power density spectra are symmetrical with respect to both horizontal and verti-

cal frequencies, the weighting function in the integral representing objectionable noise

is similar in shape to the isopreference surface mentioned above.

T. S. Huang
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2. CODING COLOR PICTURES

A computer-simulation study of efficient coding for color pictures has been under-

taken. 1 Two typical color transparencies were resolved into three primaries, sampled

in a square array and recorded digitally on magnetic tape. The computer program

transformed these data into luminance and chrominance quantities, performed certain

parameter modifications, reconverted them into primary-color quantities and wrote

them on an output tape. The parameters that were modified were the effective number

of samples per picture and the number of quantum values each for the luminance and

for the chrominance. The output tape was played back through the recorder-reproducer

to produce images of the coded pictures on the face of the cathode-ray tube, which were

photographed through appropriate filters on color film. The resultant transparencies

were later viewed and compared by a number of observer-s to determine the absolute

and relative quality achievable with the various codes (as affected by the variously modi-

fied parameters). Also, a test was run with a large number of observers to determine

the relative recognizability of objects in one of the pictures when variously coded in

color or monochromatically.

The results show that while the best monochromatic reproduction achievable

in the experimental system requires a transmission rate of 5 bits per sample

(with logarithmic quantization used), the best color reproduction in the same system

(with the same luminance sample density) requires an average of 5. 55 bits per

sample. This is achieved by quantizing chrominance to approximately 1000 values

and reducing the spatial density of chrominance samples to 1/18 of that of lumi-

nance. The results also indicate that the luminance sample density of a color pic-

ture can be reduced by a factor of from 1.5 to 18, or more, and still be equal in

quality to the monochromatic reproduction, the amount depending on the subject matter

and on the criterion used for comparison.

Two major conclusions were drawn from this study. (i) A normal monochromatic

picture can be converted into a full color picture of the same apparent sharpness by

transmitting additionally only a fraction of a bit per sample. (ii) For many purposes,

inclusion of color may result in an over-all lower transmission rate requirement than

would the same picture coded monochromatically; for some purposes, such as recog-

nizing objects, this reduction can be substantial.

U. F. Gronemann
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B. EXPERIMENTAL FACILITY FOR SEQUENTIAL DECODING

This report presents progress on a study concerning the advisability of constructing

special-purpose digital equipment to work in conjunction with an IBM 7094 computer for

the purpose of aiding the investigation of sequential decoding processes. We hope that

suitable equipment can be developed which will be adaptable to a large class of channels

and modulation processes and will increase the speed with which information bits may

be decoded by a factor of 10, or more, over that possible with computer-simulation pro-

grams.

1. Motivation

The need for an experimental facility for the study of sequential decoding is quite

obvious. For any but the simplest channel, analytic results are hard to obtain because

of the mathematical difficulties that arise. Experimental results can be used to great

advantage in combination with the analytic results that are now available to extend our

understanding of sequential decoding processes to the more complicated channels found

in the real world.

Questions of interest at present are: What and how much information should be saved

at the receiver for each use of the channel? For example, if one of M orthogonal sig-

nals is sent each time that the channel is used, then there will be M signal values (from

the M matched filters) available at the receiver. If all of these values were saved for

use later in the tree-search algorithm, an excessive amount of storage would be required,

and computations involving this many numbers would be complicated. Various alterna-

tives suggest themselves: (a) Save only the information as to which of the M signals

was largest. (b) Save an ordered list of the f largest signals (which one was largest,

which was second largest, and so forth). (c) Save an ordered list as in (b), but also

include the values of the signals. (d) Save the largest signal, plus the sum of the squares

of all of the other signal values. Clearly, the less information retained about each use

of the channel, the lower will be the effective R . Experimental results would deter-comp.
mine just how much R comp. is lowered by each of the suggested decoding procedures.

2. Machine Organization

From consideration of the sequential decoding process as described by Fano,1 we

can break up the proposed special-purpose machine into several parts. (See Fig. XX- 1.)
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FROM CHANNEL
(ANALOG)

FOR (DIGITAL STORAGE) CONTROL
STORAGE (IN 7094) (IN 7094)

HYPOTHESIS DISTANCE
GENERATOR (X i)

(CODER) GENERATOR

Fig. XX-1. Block diagram of sequential decoder.

Assume that the machine is to be working with a real channel, or at least that input

information is in analog form. One section of the machine must abstract from the ana-

log input signal a certain amount of digital information about each use of the channel (that

is, for each baud). The proposed machine (as the design is now formulated) would pre-

pare an ordered list of the 16 largest of the M channel symbols, together with the values

of these 16 signals and the sum of the squares of all M signals. (Remember that the

larger the output of the matched filter, the greater the probability that symbol was sent,

for orthogonal signals on a memoryless channel.) Any part of the prepared list could

be saved in the buffer memory for use later in the tree-search algorithm. A list of the

type just described would allow all of the previously suggested decoding methods to be

tested. We would place a limit of 256 on M.

The next question is the required size of the buffer memory, which would be part of

the memory of the IBM 7094 computer. If the decoder is to work with a channel that

produces bauds "on call," then it need only be large enough to store the information

associated with a number of bauds corresponding to approximately 3 constraint lengths

(in information bits), so as to allow the machine to search back that far. The experi-

mental facility would normally run with an "on call" channel, since this would result in

the fastest decoding rate. Waiting-line behavior could be simulated very easily with such

a channel.

The execution of a search algorithm like Fano's requires two quantities that we may

think of as being supplied by two different sections of the machine.

First is the hypothesis generator, which is a replica of the convolutional encoder;

constraint lengths of up to 100 bits could be handled. The hypothesis generator would

generate the signals corresponding to all of the branches stemming from a node in

the tree. It would be able to handle up to 4 information bits/baud (corresponding to

16 branches/node) and be able to put out up to 16 check bits/node. Information bits plus

check bits then specify one of the M channel symbols, or a series of channel symbols.

The second piece of equipment must generate a number (for each hypothesis signal

at a node) which is the "distance" between the received signal and that particular hypoth-

esis signal. This "distance" (Xi in Fano's notation) is related to Pr (p IX), where p is
1
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the information saved about this baud and X is the particular hypothesis signal. This

equipment must return to the search algorithm control the X of the nt h most likely
hypothesis, where n is a parameter specified by the search algorithm.

The last section of the sequential decoder is the search-algorithm control. This sec-

tion is concerned with the decision making and bookeeping required for the execution of

the algorithm. We have left this part of the machine as a program in the IBM 7094 com-

puter to anticipate changes in the algorithm, changes to make use of two-way strategies,

and changes to allow various amounts of information to be printed out concerning the

behavior of the decoder, the amount depending on the particular experiment being run.

The sequential decoding system described briefly above has been designed in detail,

and it has been estimated that it would be able to decode approximately 3500 nodes per

second. This speed is calculated for the case of an "on call" channel and a tree struc-

ture of one baud per branch. It is almost independent of alphabet size and number of

branches per node. This speed is in excess of 10 times the speed of an entirely pro-

grammed decoder working with the same input channel.

3. Channel Simulation

For the equipment that has been designed, the channel is required to deliver one

baud in M microseconds (M is the number of channel symbols). The outputs of the

matched filters are converted to 7-bit binary numbers. Thus, in effect, the channel

delivers 7 megabits/second to the decoder. This rate is substantually larger than IBM

tape machines can handle, so we must eliminate the possibility of generating a channel

output at some distant location, recording it on tape, and then at a later time playing it

back into the decoder. We are lead to the necessity of designing "on-line" channel

simulators. Investigations are being made into the equipment necessary to simulate

channels of interest. Designs for coherent and incoherent detection of orthogonal sig-

nals in white Gaussian noise on constant and Rayleigh-fading channels have been com-

pleted thus far.

C. W. Niessen

References

1. R. M. Fano, A heuristic discussion of probabilistic decoding, IEEE Trans.,
Vol. IT-9, No. 2, pp. 64-74, April 1963.

C. AN ERROR BOUND FOR FIXED TIME-CONTINUOUS CHANNELS

WITH MEMORY

The author has previously demonstrated that the channel in Fig. XX-2 can be repre-

sented by the vector equation

QPR No. 72 198



(XX. PROCESSING AND TRANSMISSION OF INFORMATION)

y = [iJ x + n, (1)

where x, y, and n are column vectors representing the channel input, output, and addi-

tive noise, respectively, the matrix [N-] is diagonal, and the components of n are sta-

tistically independent and identically distributed Gaussian random variables. This report

H (s)

Re s > 0
n(t)

n(t) GAUSSIAN WITH SPECTRAL DENSITY N(w) Fig. XX-Z. Gaussian channel with memory.

max IH (j) 
=  

1
f

max N () 
= 

1
f

presents an upper bound to the probability of error for this channel based on the repre-

sentation of Eq. 1 and a slight generalization of a bound derived previously by Gallager.2

1. Vector Dimensionality Problem

Before proceeding with the derivation of the error bound, it is necessary to consider

in detail the dimensionality of the vectors involved. In deriving the representation of

Eq. 1 it was shown1 that the basis functions used in defining x are complete in the space

of all £Z2(0, T) signals, that is, in the space of all finite-energy signals defined on the

interval [0, T]. Since it is well known that this space is infinite-dimensional, 3 it follows

that, in general, the vectors, as well as the matrix, of Eq. 1 must be infinite-dimensional.

In many cases this infinite dimensionality is of no concern and mathematical operations

can be performed in the usual manner. An attempt to define a "density function" for

an infinite-dimensional random vector, however, leads to conceptual, as well as mathe-

matical, difficulties. Consequently, problems in which this situation arises are usually

approached 4 by assuming initially that all vectors are finite-dimensional. The analysis

is then performed and an attempt is made to show that a limiting form of the answer

is obtained as the dimensionality becomes infinite. (If such a limiting result exists, it

is asserted to be the desired solution.) This approach is used in the following deriva-

tions in which all vectors are initially assumed to be d-dimensional. If desired, the

number d can be considered to be arbitrarily large but finite. For this case, however,

it will be shown that for minimum probability of error, the vectors will be constrained

to be finite-dimensional. This constraint arises because the X. approach zero for large
1

"i", and it gives an indication of the useful dimensionality of the channel.

2. Random-Coding Bound

Let x 1 , ... , x M be a set of M d-dimensional code words (that is, x I ... xM are the

vector representations, with respect to the set of basis functions defined by the channel
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and noise, of a set of M signals of T-sec duration) for use with the channel of Fig. XX-2.
Let the a priori probability of each code word be 1/M and assume that maximum-
likelihood detection 4 is used. Then, given that x. is transmitted, the probability of error

is given by

Pj(e) = y P(y x.) C(y, x.) dy, (2)

where

_1 : P(yx j) <P(ylx i)  some i € j}.

Equation 2 as given is mathematically intractable. A useful upper bound to Eq. 2 is
obtained by first upper-bounding C(y, x.), and then averaging the result over a suitable

-- J
ensemble of code words.

An obvious inequality is

C (Y x) {xk a, p 0,k= 1 P x(y xj)

kj

since the right-hand side is always greater than zero, and is not less than 1 when
P(y x) P(y lx.) for some i * j. Thus

]j -- 1 M
Pj(e) <y P(y X.) 1-aP P(Yl )a dy. (3)

- k= I
kfj

Let each code word be chosen according to a probability measure P(x) and average both
sides of Eq. 3 over this ensemble of codes. Now, let

Pj(e) = Pe < P(ylx) -ap )a P( dy. (4)

- - k= 1
k~j

Here, the bar denotes averaging with respect to the ensemble of codes. Equation 4 can

be further upper-bounded by noting that zP < zP for 0 < p < 1.5 Introducing this inequal-
ity into Eq. 4, and recalling that the average of a sum of random variables equals the

sum of the individual averages, gives

e Y
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By straightforward but tedious differentiation, it can be shown that with p fixed the

right-hand side of Eq. 5 has an absolute minimum for variation of a when a = 1/(1+p).

Thus

P <-TE(R, P) p)l, (6)
e

where

E(R, p) = E (p) - PR

1l+p

(p) = -- ln P(y x)1 / ( 1+ p ) P(x) dx dy
0 T

In M
R -

T

This bound will now be applied to the channel of Fig. XX-2. For convenience, let

the noise variance in Eq. 1 be normalized to unity. Then

P(yJx) = - exp 1 (y. - . xi)2 , (7)

iEI Nf--L

where the set I is, at this point, an arbitrary collection of d non-negative integers.

Furthermore, let P(x) be chosen to be

P(x) = 1 exp[ - I(x2/). (8)

(a) This form of P(x) results in a mathematically tractable expression for the error

exponent of Eq. 6.

(b) It is known 6 that this choice for P(x) leads to maximum average mutual informa-
Z

tion between the x and y vectors when the values of x i are specified. Furthermore,

maximization of the resulting mutual information with respect to the x. yields a mean-
1 

I

ingful definition of capacity for this channel.

(c) When the resulting exponent is specializedo o the case considered by Shannon, 7

it is within a few per cent of his exponent, which is n t his eoe w s the best known.

Finally, assume an average power constraint on the ensemble of codes of the form

.c= ST. (9)
EI

iEI

Substituting Eqs. 7 and 8 in Eq. 6 gives, after evaluation of the integrals,
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E(R, p, a)- 2T n 1 + -- /- pR, (10)
iEl

where

=Z( 2 2o

For fixed R, maximization of Eq. 10 over p, a, and the set I gives the desired random-
coding error exponent. For convenience, let this maximization be performed in the
order I, -c, p.

Maximization over the set I is easily accomplished by recalling 1 that the X. are by
1

assumption ordered so that k0 >l .' ' Thus, the monotonic property of In x for x > 1
implies that E(R, p, a) is maximized over the set I by choosing I = {0, 1, ... , d-1.

The maximization over a is most readily accomplished by using the properties of
convex functions 8 defined on a vector space. For this purpose, the following definitions
and a theorem of Kuhn and Tucker 9 (in present notation) are presented.

DEFINITION 1: A region of vector space is defined as convex if for any two vectors a
and P in the region and for any X, 0 < X < 1, the vector Xa + (1-X)P is also in the region.

DEFINITION 2: A function f(a) whose domain is a convex region of vector space is
defined as concave if, for any two vectors a and P in the domain of f and for any X,
0<< 1,

Xf(a) + (1-X) f(P) < f[Xa + (l-X) ].

From these definitions is follows that the region of Euclidean d-space defined by the
vector _a, with

d-l
2 2

i. >.0, and C. = TS,
1 1

i= 0

is a convex region of vector space, that ln x is a concave function for x > 1, that a sum
of concave functions is concave, and thus that E(R, p,_f) is a concave function of a-.

THEOREM 1 (Kuhn and Tucker): Let f(c) be a continuous differentiable concave func-
d-1

tion in the region in which q- satisfies o . = TS and i >0, i= 0, 1 .. d-l. Then a
i= 0

necessary and sufficient condition for a to minimize f is

af(a-)
A for all i with equality if and only if a-. 0.

o-=a

Here, A is a constant independent of i whose value is adjusted to satisfy the constraint
d-1
I .= TS. It follows that the i maximizing Eq. 10 must satisfy
i= 0
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8E(R, p,o)
-2T<A

T 1+)

all i = 0 ..... , d - 1

2
with equality if and only if a. > 0.

Thus

i= 0, 1, ... , N - 1
r1 1

T(1+ p )

0

(11)

i=N... d-l

where N is defined by

XN- 1 > BT(P) >- N

and

1 & -p

BT(P) 2TA(l+p)2

The value of BT(P), and thus N, is chosen to satisfy the constraint

N-i

i= 0

ZT-. = TS,

which yields

N-I
ST -1

1 + p
I i= 01 ~o (12)

BT(P) N

Substituting Eqs. 11 and 12 in Eq. 10 gives

N-1 X
E (R, ) T In ---- R. (13)

i=O BT(P)

Maximization over p is accomplished by using standard techniques of differential

calculus. Since N is an implicit function of p in Eq. 13, there is a possibility that

E'(R, p) might not exist for values of p and N, such that BT(P)= XN . It can be shown,

however, that E'(R, p-) = E'(R, p+) for all p. Thus the final result is

ET(P) = BT(P) R(1) <R <R(0) = CT
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where
N-I

R(p) = In i (BT(P )
i=0 BT(P) (1+ p ) 2 2
i= 0 T

N-1

ET(R) = -L
i= 0

In - R
B (1)

0 <R < R(1).

A bound that is in some cases more useful, and in all cases more readily evaluated,

can be derived by considering Eqs. 14-16 for T -oo. It can be shown by a generalization

of a result derived by Jordan,10 and other arguments too long to be presented here, that

the resulting form for the exponent is

p ( 2 S
E(p) = ( B(p) 

H(jw) j2
R(p) = in N) B df -

Sw N(o) B(p) (

IH(jw) 2
E (R) = In df -RYW N(w) B(1)

R <R < Cc

pS
2 2 B(p)

1+p)

0 < R < R ,cc

where

C = R(0)

R = R(1)c

1

B(p)

W =+

S

1(1+P)

N(w)
+ IH(jw) I2 df

r ~2

IH(jw) I2

N(w)

A convenient method for interpreting the significance of B(p) and W is illustrated

in Fig. XX-3. This is the well-known "water-pouring" interpretation discussed by
6

Fano and others for the special case of channel capacity. Pertinent properties of the

exponents of Eqs. 14-16 and that of Eqs. 17- 19 are presented in Fig. XX-4 in which the

notation of the latter exponent is used.
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E (R)

SLOPE = -i

SLOPE -p

R (nats

W W I UW
2

Fig. XX-3. Concerning the interpre-
tation of B(p) and w.

Fig. XX-4. Error exponent for channel of
Fig. XX-2.

3. Random-Coding Bound for S << 1

In this section an asymptotic form for the bound of Eqs. 17- 19 is determined for the

condition S - 0. For convenience, it is assumed that K(f) H(jw) 2/N(w) has a lowpass

characteristic. It will be clear from the derivation, however, that an identical result

holds for the general case. Consider the bound for 0 < p < 1. By expanding Eq. 17 in

a Taylor series about S = 0, it follows that E(p) becomes approximately

dE(p) S _ )Z

E(p) E(p) S=0 + d S=0 S (

Likewise,

dR(p)
R(p) ~ R(p) S=0 + S.

S= + dS
S= 0

S
2

(20)

Using the lowpass assumption for K(f)

gives

dR (p)

dS S=S= 0

and also assuming that K(0)= 1, K(f)< 1 for Ifl> 0,

K'(W) dW p /2

K(W) S=0 (1+p)

The assumptions on K(f) imply, however, that for S - 0

B(p) = K(W)

and

S

2(1+p)
Sldf,

BP) K(f)
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which leads to

dW 1 B(p)

2(1+p) WK'(W)

Combining this with Eq. 21 gives

1
R(p) S.

2(1+p)

Finally, solving for p from Eq. 22 and substituting in Eq. 20 gives the desired exponent

E(R) = C 1 - 1/2

where

C = S/2

R c = S/8.

A similar analysis gives

E(R) = C -a

R R .< C

c

This exponent is presented in Fig. XX-5 and has several noteworthy features.
(i) It is independent of both the channel filter characteristics and the shape of the

E (R)

Fig. XX-5. Error exponent for S << 1.

N- I

R (nats)

noise spectrum. This fact may be interpreted physically in terms of Fig. XX-3 in the
following manner. When S is "sufficiently small," the water-pouring interpretation
shows that the ratio fH(jw) 2 /[B(p)N(w)] is "almost" unity and, furthermore, that
IH(jw) 2 /N(w) is "almost" constant for f E W. Thus to a first-order approximation
Eqs. 17 and 18 become

E(p) I 1+p 2 R R < Cc
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and

H(jw) 12  S S
R (p) N(w) B() 1 df ) 0 l p

(1+p) 2(l+p)

which, when combined, yield Eq. 24.

(ii) It agrees precisely with that found by Shannon 7 for the analogous case in his

problem, and is also identical to a bound found by Gallager11 for "very noisy" discrete

memoryless channels. Thus this bound could in some sense be considered to be a uni-

versal bound for "very noisy" channels.

The application of Theorem 1 and the theory of convex functions to this problem was

brought to the author's attention by Professor R. G. Gallager.

J. L. Holsinger

References

1. J. L. Holsinger, Vector representation of time-continuous channels with mem-
ory, Quarterly Progress Report No. 71, Research Laboratory of Electronics, M. I. T.,
October 15, 1963, pp. 193-202.

2. R. G. Gallager, A simple derivation of the coding theorem, Quarterly Progress
Report No. 69, Research Laboratory of Electronics, M.I.T., April 15, 1963, pp. 154-
157.

3. R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience
Publishers, Inc., New York, 1953).

4. C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon Press,
New York, 1960).

5. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (Cambridge Uni-
versity Press, London, 1959), Theorem 190.

6. R. M. Fano, Transmission of Information (The M.I.T. Press, Cambridge,
Mass., and John Wiley and Sons, Inc., New York, 1961), Chapter 5.

7. C. E. Shannon, Probability of error for optimal codes in a Gaussian channel,
Bell System Tech. J. 38, 611-656 (1959).

8. H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathemati-
cal Physics No. 47 (Cambridge University Press, London, 1958).

9. H. W. Kuhn and A. W. Tucker, Nonlinear Programming, Second Berkeley
Symposium on Mathematical Statistics and Probability (University of California Press,
Berkeley, 1951), p. 486, Theorem 3.

10. K. L. Jordan, Jr., Discrete Representation of Random Signals, Technical
Report 378, Research Laboratory of Electronics, M.I.T., July 14, 1961, Appendix B.

11. R. G. Gallager, Examples of Upper Bound to Pe (unpublished notes).

QPR No. 72 207




