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The ISIS proton synchrotron requires improved horizontal and vertical orbit corrections when the space charge
tune depressions are sufficient to move some single particle betatron tUBes, but not the coherent tunes, across an
integer resonance. Image effects are studied in an attempt to explain the observations.
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1 INTRODUCTION

At ISIS, the tunes are split by half an integer around the integer 4, and the maximum
incoherent space charge tune depressions are "'-'0.4 in both planes. The performance at
these space charge levels is very sensitive with respect to the horizontal and vertical closed
orbit corrections, and in particular, to the fourth harmonic corrections.

.The transverse space charge forces are directed towards the centre of charge of a beam so
the closed orbit excitation terms should not directly affect a single particle's motion around
its beam centre. Thus, if the equations of betatron motion are written with respect to the
centre of charge, and if the effect of image forces is neglected, the equations should show
no dipole error excitation and there should be no effect on crossing an integer resonance.
The beam centre, itself, is affected, but not significantly until the coherent tune approaches
the integer.

Image effects change this picture. Coherent image effects occur when a beam is not at the
centre of its vacuum enclosure, and the resulting forces are not, in general, uniform along
an axis of displacement. Incoherent image effects occur for both centred and off-centred
beams, with the forces varying across the beam cross-section. The magnitude of the image
forces, and their effect when crossing an integer resonance, are the subject of this paper.

2 BETATRON EQUATIONS

The following nomenclature is introduced, and an approximation then given for the single
particle betatron equation:
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Xj is the transverse betatron motion of the j-th particle,

Xc is the transverse betatron displacement of the beam centre,

xj' is the second derivative of X with respect to fJ(= s/R),

s is the path length measured along the synchrotron orbit,

R is the mean radius of the machine,

Q is the unperturbed betatron tune in the (x, s) plane,

8Qj is the direct transverse space charge tune depression of the j -th particle,

F (fJ) are the closed orbit excitation terms,

Fcj (fJ) is the coherent image excitation term for the j-th particle, and

Fij (fJ) is the incoherent image excitation term for this particle.

xl' + Q2Xj = 28QjQ(xj - xc) + Fij(fJ)(xj - xc) + F(fJ) + Fcj(fJ)xc (1)

Similar equations may be written for all beam particles, and an average taken:

X~ + Q2xc = 0 + F(fJ) + (Fcj«())}xc (2)

Subtracting (2) from (1), setting Fc«()) = (Fcj (fJ)), and including the Fij «()) effect in 8Qj,
gives:

(Xj - xc)" + Q(Q - 28 Qj )(Xj - xc) = [Fcj (fJ) - Fc«())]xc (3)

If the coherent image terms are neglected, the right hand side of equation (3) becomes
zero, and there is no effect on (Xj. - xc) when crossing an integer resonance, as discussed.
If the terms are included, their magnitude is of interest. It may be shown that Fcj «()) has
the form of a constant plus terms in y2, y4 ... , where y is the transverse particle motion
orthogonal to x. Improving the closed orbits reduces the excitation terms in (3), and is the
probable reason why ISIS requires improved closed orbits when operating at maximum
intensity.

3 APPROXIMATIONS FOR COHERENT AND INCOHERENT IMAGE TERMS

A first approximation is due to Laslett, l who treats the beam as a line charge between two
infinite parallel plane conductors. The resultant field is Ec for a coherent displacement,
xc, and Ei for incoherent motion, Xj, with Ec and Ei determined from an infinite series of
images:

Ec = [1l'2 /4h2]AXc

Ei = [1l'2/ 12h2]A(xj - xc)
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where h is the half spacing of the parallel plates, and 'A is the line charge density of the
beam.

These may be compared with the direct incoherent space charge force, E, for a beam of
elliptical cross-section of semi-axes, a and b, and of uniform transverse density (the factor
1/41l'80 for MKS units is omitted from the expressions):

E = [4/b(a + b)]'A(xj - xc)

Ec/ E = [b(a + b)/ h2][1l'2 /16]xc/(xj - xc)

Ei/E = [b(a + b)/ h2][1l'2 /48]

Coherent and incoherent image coefficients, ~1, and 81, respectively, are then defined:

~1 = [1l'2/ 16] = 0.617

£1 = [1l'2/48] = 0.206

(4)

(5)

A better approximation is to take a beam of finite size between the parallel plates, and
though actual beams have elliptical cross-sections, a rectangular beam ofuniform transverse
density is of interest as it results in analytical solutions for the image terms. The following
central image coefficients, for such a beam, of half width, a, and half height, b, are obtained
by an extension to the previous method of summing an infinite series of images:

~1 = [1l'h/4a] [coth (1l'a/2h) - cosech (1l'a/2h)]

£1 = [1l'h/4a][(2h/1l'a) - cosech (1l'a/2h)]

(6)

(7)

The formulae are identical to those published elsewhere for the case of a zero height
beam. Further image coefficients may be obtained for the y-extremities of the beam:

~e = [1l'h/8a] [coth(1l'a/ h) - cosech(1l'a/ h)]

£e = [1l'h/8a][(h/1l'a) - cosech(1l'aj h)]

(8)

(9)

In the limit, as (a) tends to zero, it may be shown that equations (6) and (8) both reduce
to equation (4), and similarly, equations (7}and (9) reduce to equation (5). Taking a value
of (hja)2 = 2, from ISIS, gives the following coefficients:

~1 = 0.560; ~e = 0.447

£1 = 0.179; £e 0.128

These indicate a significant variation of the coherent and incoherent, x-direction, image
forces along the y-axis of the beam.
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Furthermore, in the y-direction, there are additional image forces, and it may be shown
that these orthogonal forces contribute some incoherent, non-linear self focussing. The field
along the major (or minor) axis of the beam may be written, for constants nand m:

El-y = -x~(n(Yj - Yc) + m(Yj - Yc)2 + ... ) (10)

Neglecting the higher order forces, a transverse incoherent image term may be defined, of
the form:

(11)

4 COMPUTATIONS

The interiors of the ISIS chambers do not have the previously assumed parallel plate
geometry. They are square or rectangular and the ISIS beam cross sections are circular
or elliptical. Detailed computations are then required to find the space charge fields.

Results have been obtained by C. Prior2 for a circular beam of uniform transverse density
and radius, a, in a square cross section chamber, of half side length, d, with (dja)2 = 2.
The computer program uses a Poisson solver based on finite element techniques, with the
mesh as shown in Figure 1.
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FIGURE 1: Computer mesh for horizontally displaced beam in ISIS.
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Using image coefficients to represent the results, these are:

~1 = 0.595; ~e 0.306

81 < 0.075; 8e = 0

255

(12)

The coherent image coefficients are not very different from those derived in Section 3,
except for a greater variation along the y-axis of the beam. On the other hand, the incoherent
image terms, 81 and 8e , for the circular beam, are reduced and are significant for £1 only,
for large x amplitude particles; £..L becomes the important incoherent term.

These representative image terms for ISIS may be used to estimate the scale of the effects
for some incoherent crossings of the resonances, Qx = 4 and 2Qx = 8.

5 IMAGE EFFECTS ON CROSSING AN INTEGER RESONANCE

For the case of ISIS, the relevant motion is in the horizontal plane, now designated as the
(x, s) plane, and so is given by the incoherent betatron equation for (Xj - xc):

The terms on the RHS are considered separately, and are given here very approximately
in terms of 8Q, the average over the appropriate range of s, of the peak incoherent tune
shift:

[Fcj(B) - Fc(B)]

F..L «())

0.5Q 8Q[~1 - ~e]

2.5Q 8Q[Yc/d]2

(14)

(15)

5.1 Effect ofHorizontal Closed Orbit Errors on Horizontal Motion in ISIS

The excitation term, [Fcj «()) - Fc«())]xc, is finite for some particles due to the variation
with y of the coherent image forces. It is a maximum for those particles with maximum
horizontal and minimum vertical betatron amplitudes, or vice-versa, and is, approximately,
for ISIS:

0.5Q 8Q[~1 - ~e]xc ~ (4.39)(0.2)(0.289)xc ~ 0.25xc

The maximum value for the incoherent tune shift is 8Qj rv 0.4, sufficient for a particle to
cross the resonance, Qx = 4. ISIS has n (= 2) such crossings, of random excitation phase
as the closed orbit changes continually. Assuming a linear rate of change for the tune per
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turn, 8Qj/N = (0.4/1000), the maximum additional motion for a peak fourth harmonic
closed orbit deviation, Xc, of 1 mm, is given by the integer resonance crossing formula: 3

5.2 Effect ofVertical Closed Orbit Errors on Horizontal Motion in ISIS

The effect is largest for those particles with maximum horizontal amplitudes (see later).
The excitation term for ISIS is approximately:

A fourth harmonic component ofthe vertical closed orbit, yc, becomes an eighth harmonic
component of y;, and hence leads to some excitation of the second order resonance,
2 Qx = 8. The full bandwidth of the resonance for ISIS may be written:4

2rr

!:le = f (fJx/rr) (4.4(Ycld)2) exp 2i [J-tx - (Qx - 4)] dO / R

o

/).e ~ 8.8(yc/d)2/ Q

/).e ~ 10-3 for (yc/d)2 = [1.414/45]2/2

Here fJx and /-Lx are the lattice horizontal fJ and phase shift parameters, respectively, and
the factor 2 in the denominator is the scaling for the eighth harmonic. Finally, the growth
in the horizontal betatron amplitude of some particles, when crossing the resonance, may
be related to the bandwidth, /).e, by:4

If the same values for N, nand 8Qj are introduced as in 5.1, it may be seen that a 4%
growth in the maximum betatron amplitude of some beam particles is expected at ISIS for
a 1.414 mm peak fourth harmonic vertical closed orbit deviation.

5.3 Observations at ISIS

ISIS operates with the natural value of chromaticity, so there are momentum dependent tune
shifts in addition to the space charge tune shifts. The lowest tune values are reached by some
particles of maximum positive momentum increase, and these may experience the largest
horizontal betatron growth on resonance crossing. There is some experimental confirmation
of this for, at the highest intensities achieved, particle beam loss is not completely contained
at the beam loss collector system, but is also found on some outer machine radii at other
azimuths. Loss is reduced by fine tuning of the closed orbits over the acceleration cycle.
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Image effects are significant on ISIS at space charge levels where there are some incoherent
tune crossings of the Qx = 4 and 2Q~ = 8 resonances. Improved closed orbits in both the
horizontal and vertical plane are required to reduce the effects.
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