
II. MICROWAVE SPECTROSCOPY*

Prof. M. W. P. Strandberg J. G. Ingersoll S. Reznek
Prof. R. L. Kyhl J. D. Kierstead W. J. Schwabe
Dr. J. M. Andrews J. W. Mayo J. Shah
A. Fukumoto H. J. E. H. Pauwels S. Sterling
R. Huibonhoa A. Teich

RESEARCH OBJECTIVES

Our major emphasis is now focused on studies of the metallic and semiconducting
states. This extremely broad area is one of current worldwide interest and investigation.
Our specialized interest lies in interactions within the electron "plasma" and between the
electron plasma and the lattice phonons. We now have considerable experience and facil-
ity in the generation and use of microwave phonons (coherent sound waves in the kilomeg-
acycle frequency range), and, in particular, sound-attenuation measurements in metals
and superconductors will be an important activity. Other studies in the microwave fre-
quency range include surface impedance measurements (both phonon and electromagnetic
impedance) and investigation of phonon amplification mechanisms in semiconductors.
Related studies at optical frequencies in which a gas laser is used continue.

This program represents a continuation of the shift away from electron paramagnetic
resonance in crystals which was our major interest during the past several years. A
problem in paramagnetic cross relaxation which must be resolved before we can leave
this area of research is described in this report. Apparatus for paramagnetic resonance
measurements in solids and gases is still operative and is being used by our own per-
sonnel and by members of other laboratories.

M. W. P. Strandberg, R. L. Kyhl

A. ULTRASONIC ATTENUATION IN SUPERCONDUCTING METALS AT RADIO

AND MICROWAVE FREQUENCIES

This report is a summary of a Ph. D. thesis submitted to the Department of Physics,

M. I. T., October 28, 1963.

Ultrasonic attenuation by conduction electrons in soft superconductors has been stud-

ied as a function of temperature, magnetic field, and frequency. A derivation is presented

of the electronic contribution to the ultrasonic attenuation coefficient a of metals in the
n

normal state, which follows closely the kinetic approach of Pippard except that quanti-

ties involving the product of the ultrasonic frequency w and the electronic mean-free

time T are not neglected. The same results as those obtained by Pippard are obtained

for all cases in which a is sufficiently large to be observable. The quantum theory of
n

superconductivity is worked out in detail by following the original Bardeen-Cooper-

Schrieffer (BCS) derivation, 2 except for the introduction of the improved mathematical

devices proposed by Bogolyubov 3 and Valatin. 4 In particular, the statistical operator of

Valatin serves to simplify the calculation of as/an which is worked out for the case in

which the phonon frequency is less than the superconducting energy gap. An analysis of

ultrasonic attenuation in superconductors in the intermediate state is presented, based

*This work was supported in part by Purchase Order DDL BB-107 with Lincoln Lab-
oratory, a center for research operated by Massachusetts Institute of Technology, with
the support of the U. S. Air Force under Contract AF 19(608)-500.
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upon the assumption of an average magnetization throughout the volume of the metal.

Particular attention has been paid to the phenomenon of supercooling; in this research a

modified form of the mathematical model of Faber 5 was followed.

Experiments were carried out at 0.165 Gc, 0.910 Gc, and 9.17 Gc. Analysis of the

temperature-dependent data at 0.910 Gc indicates a close agreement with the BCS theory.

The magnetic-field dependence of the ultrasonic attenuation coefficient supports the con-

clusions of the theoretical treatment, thereby indicating an effective demagnetizing coef-

ficient of the sample that exhibits the proper orientation dependence, and yielding critical

field values whose temperature dependence is in close agreement with the data of other

investigators. The temperature dependence of the supercooling phenomenon exhibits the

same sort of behavior that is anticipated from theoretical considerations, and the con-

clusions regarding the size of the nucleation centers that trigger the phase transition are

numerically consistent with the values obtained by Faber, who employed a different

experimental method. The frequency dependence of an agrees qualitatively with the pre-

diction of Pippard. It was not possible to observe ultrasonic attenuation at 9.17 Gc; this

is attributed to the fact that the sample faces were many wavelengths out of parallel at

this frequency. Recommendations for further research are offered.

J. M. Andrews, Jr.
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B. CROSS RELAXATION IN RUBY

In 1962, certain experimental paradoxes in our measurements of cross relaxation

in typical ruby maser crystals were reported.1

More accurate measurements have been made and have disclosed the nature of some

of the discrepancies. Our original results on 0.05 per cent ruby near 270 orientation,

4400 gauss, for which 2, 3, and 4 quantum levels (Chang-Siegman notation) are equally

spaced, are shown in Fig. II-1. These results are consistent with those of other experi-

menters, except for the presence of additional time constants as shown. At low temper-

atures and low chromium concentration, we have T 2 < T12 < T 1 ; we are referring

to the time constants for spin-spin relaxation, cross relaxation, and spin-lattice relax-

ation, respectively. The effect of spin-spin relaxation was observable, although not

plotted in Fig. II-1. If we "burn a hole" in the inhomogeneously broadened ruby
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0.05% RUBY T12  resonance lines with a magnetron pulse, the

l00 msec - ,1, ,,,'1 hole fills in within a few microseconds, and

we might assume that thermal equilibrium

is established within each energy level in a
1Omsec -

time of that order.

S IT The new surprising result is that the cross

Imsec relaxation is not properly describable by a

time constant, but that equilibrium among
2--

I- 2 the three not quite equally spaced levels is
iosec - 1 3 3 approached approximately as t - 1/2 with time.

4- 4 4 We must have a distribution of cross-relaxation
4 4

Iosec270 ORIENTATION 330 ORIENTATION times. The crystals are of laser quality and
5000 4000 3000

GAUSS show no evidence of inhomogeneous effects in

spin-lattice relaxation so that it does not seem
Fig. II-1. Relaxation time of ruby possible to ascribe the effect to inhomogeneity

3-4 transition near 30'
orientation. Frequency, in magnetic field or c-axis wander. Thus it
9 Gc. appears that the cross relaxation proceeds

between quantum levels that are not them-

selves in thermal equilibrium. It is true that one chromium site in the lattice differs

from another in the disposition of nearest neighbors and of aluminum nuclear spins,

but the observed microsecond time constant should average over the sites. Probably

we have an interesting example of nonergodic behavior. The resulting theoretical

puzzle is being analyzed.

R. L. Kyhl
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C. ENERGY CONSERVATION OF HYPERSONIC WAVES IN SEMICONDUCTORS

Amplification of sound waves in semiconductors through interactions with electrons

drifting under the influence of a D. C. electric field and having velocity vd greater than

the velocity v s of the sound wave was discovered some time ago. I 2 As a coupling

mechanism one may either have piezoelectric coupling or deformation potential coupling.

Experiments have been successful on piezoelectric materials (CdS) at frequencies at

which it is possible to work at room temperature, that is, up to 600 Mc. 3 ' 4 For higher

frequencies it is necessary to work at liquid-helium temperature. The lack of
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piezoelectric semiconductors with appropriate conduction properties at these tempera-

tures makes it necessary to use the deformation potential coupling, which is much weaker

than the piezoelectric coupling, but becomes more important as the frequency increases.
14 -3

Experiments at 9 Gc on n-type InSb of carrier concentration 10 cm performed in

our laboratory have not been successful thus far. We might mention, however, that

theoretically an amplification of 10 db/cm is expected at power densities described by

10 amp/20 mm2 and 10 volts/cm. We computed also that in GaAs (piezoelectric) ampli-

fication of 70 db/cm should be possible at slightly higher power densities. But we would
14 -3

require very pure samples (10 cm ). We do not know whether or not these are avail-

able.

The coupling mechanism between a sound wave traveling in the z direction and

drifting electrons can be described one-dimensionally by the equations:

D = EE + P

T = cS + F,

in which D is the electric induction, E the electric field, T the stress, S the strain,

E the dielectric constant, and c the elastic constant. P is a (longitudinal) polarization

and F a stress on the lattice. P and F are the coupling terms and are related by energy

relations. It is known that in piezoelectric semiconductors P = eS and F = -eE, in

which e is the piezoelectric constant. A rather simple theory2 has been formulated for

this kind of coupling at lower frequencies. The deformation potential is described by

P = -(CE/q)(SS/az), in which C is a constant and q the electronic charge. We have

found that F has to be -(CE/q)(aE/az). This expression provides a theory for the

deformation potential which is analogous in formalism with one given by White 2 for the

piezoelectric coupling. It leads to the important result that amplification through the

deformation potential coupling in a given material under given conditions is more impor-

tant than through piezoelectric coupling at w > cr = vs eq/EC, the ratio being (/w )r)

For InSb this critical frequency should be <10 Gc, with e < 0.025 C/m 2 ; for GaAs, pie-

zoelectric amplification is 25 times stronger at 10 Gc; for CdS, 3600 times.

In trying to derive an expression for F, we developed some energy conservation

principles, which may have some didactical value. If a sound wave travels through a

conducting crystal, the energy appears under different forms: electromagnetic energy,

acoustical energy of the lattice, kinetic energy of the electrons and heat (incoherent

acoustical energy of the lattice). We shall try to find the relations between these dif-

ferent forms of energy. We use the following notation: E, H, D, B, E, , international

symbols for electromagnetic fields; J, current density; P, polarization; T, stress;

S, strain; c, elastic constant; F, coupling stress; v, velocity of the electrons; vd
drift velocity of the electrons; u, velocity of the lattice; u D , displacement of the lat-

tice; mc, effective mass of the carriers; q, electronic charge; p, resistivity or
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specific weight; N, carrier density; N o , density of donors; E F , Fermi energy; f, den-

sity of particles per unit volume in position and velocity space; T, relaxation time. All

fields have a D. C. term and an A. C. term of the form exp j(wt-kz).

1. Electromagnetic Energy

We have D = EE + P. From curl E = -8aH/at and curl H = (EE+P) + J, after dotat
multiplication with -H and E, respectively, we obtain in the usual manner

( EE2 CH 2'\a
-div (EXH) = + ?+ E * ~+ J E. (1)

It can be shown that for sound waves the A. C. part of div (EXH) can be neglected.

2. Coherent Motion of the Lattice

For simplicity we treat the problem one-dimensionally. We have T = cS + F. From

aT/az = pa2 uD/at2 , with u = auD/at and S = auD/az, we obtain

au aT as au
at az at - az

After multiplication with u and T, respectively, we obtain

a-(pu + ( cS2) + F = a(uT). (2)

3. Kinetic Energy of the Electrons

Let us first give an introductory calculation based on the equation of motion.

dv mc (v-u)
m c  = -qE - T (3)

in which v is the average velocity of the electrons. We assume that T is independent

of the thermal velocity of the electrons. The assumption of completely inelastic scat-

tering is related to the assumption v << vth. This equation also assumes that the wave-

length is large compared with the mean-free path, since we have not taken an integral

of E over the trajectory of the particle. After taking the dot product with Nv = Nu +

N(v-u), we obtain

d 1 2 m N(v-u)2 mu J
N-mv = E J--N(v-u) Nu

dt2 T -q

qT

We made use of the expression J = -Nqv, we omitted the index c of me, and we replaced
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m/N q2 T by the resistivity p. The left-hand side of this equation can be transformed

to _L ((mv 2 N ) + V (mv 2Nv) by making use of the facts that v = v(r,t) and thus

dv/dt = (av/at) + v (a/ar)v, that N = N(r,t), and that the continuity equation for the

number of particles is aN/at + V • (Nv) = 0. Equation 4 thus becomes

at y2N) + myv N = E J - p(J+Nqu) 2 + mu (J+Nqu). (5)at 2 2 qT

The interpretation of (5) is as follows: The rate of increase per unit time of the energy

density, plus the power flow from a unit volume, is balanced by the energy taken from

the electromagnetic energy minus the energy lost to the scattering centers in incoherent

and coherent form. The last term of the right-hand side of (5) can be understood by

writing it as u - Nm(v-u)/T, which is the product of the velocity of the scattering cen-

ters and the force exerted on them by the electrons.

Given Eq. 3, one can derive (5). Its interpretation is correct if v should be the real

velocity of the electrons, not its average. We therefore develop a more exact calcula-

tion based on the Boltzmann transport equation in the presence of the sound wave and

the D. C. electric field.

af af -qE f fs - f

+ v -  +  (6)t r m 8v (

with f = f(r,v,t) = perturbed distribution,

fs = equilibrium distribution centered around the velocity of the scattering centers

and adapted to the local electron density given by

fs = fo [v-u(r,t), EF(r,t)].

We now define

electron density, N = ff d 3 v

current density, J = -fqfv d 3 v = -NVq

pressure tensor of electron gas, P f mvvf d 3 v.

After integration of (6) over v-space, we get

N+ (N v) = N- = 0. (7)at T

We have assumed that T and the force (-qE/m) are velocity-independent. After mul-

tiplication of (6) with v and integration over v-space, we get

a P qE Nu + J/q
S (N) + V (-N) = (8)at m m 7

We made use of
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a (fv.) 8v.

E. v. d v E. d v - E f d v

= 0 - E i  f6 d3v = -E.N.

We shall now transform and linearize Eq. 8 in the perturbation. The index 0 will indi-

cate the unperturbed quantities. We assume that f fv2 d 3 v = f fv2 d3 v for i = 1, 2, 3,
3 i 3

and that f fv.v. d3v = 0 for i # j. This implies that the electron gas cannot exert shear
1 -2 2

stresses; we also have neglected v with respect to v , which is a second-order error.

If we assume that this average f fv 2 d 3 v is only dependent on the local position of the

Fermi level, and not on other properties of the perturbation, we may set

P 1 23
P - fv2 d v = #(N), (9)
m 3

so that V • P/m = VP/m = c'(N) VN. We now give an example of linearization:

Nv = (N +n)(v+v ) = (N o+n)v = Nov + ...

In the same way (8/at)(J/-q), '(N) VN, qEN/m, Nu, and J/-q are replaced by N oa/at,

c'(No) VN, qEN /m, N u, and N V, respectively. Thus from Eq. 8, after multiplica-

tion with m/N , we obtain

av 4' (No)
m- + m VN = -qE + (u-v) m/T. (10)

at N
o

Dot multiplication of (10) by Nv and multiplication of (7) by m4'(N o ) N/N 0 and adding

the results gives

N av2 m'(N ) ltN2 ]  mN u
-m N VN) N + N (N) + = E J - -u) 2  u(J+Nqu).
2 at N LT2 t qT

We now define

1 24'(N) = 2T'

22 2and neglect third-order, so that Nav /at = N aV /at. Then we get

8 --2 mvT N + V N N = E J - p(J+Nqu) + (J+Nqu). (11)
at o 2 4 N O  2N 0  qT

The various terms in (11) are of second order in the perturbation except the second and

the third terms of the right-hand side. If we set N = N + n, we get
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2
8ta mv

4
a
at

2
V mv T N NV

2N

2 Tmy

2

2
myvT

= 2 V.
2

2
mvT

N+ 2

0( N +

The first-order part of (11) thus, in fact, is

2
my T (aN

2 at o

4. Energy Balance

From Eqs. 1, 2, and 11 we derive Fig. 11-2. The electric field and the coupling

S - aSQ
az

S Q=Q HEAT FLOW

- mu (J + N qu) p (J + Nqu)2

_2aN mv +
t 0o 2

2 2
mvT N
4No

S - askeke z8z

t J.E

em 8 E2

at 2
H

2

2
S a Sem
em az

ac t

S -aSS
as

2
mvT

ke 2

S =ExH
em

Ss = -(uT)$

Fig. II-2. Energy balance for sound waves in semiconductors showing
energy storage and power flow.

QPR No. 72 20

n2)

2N o

2-
2nV + nv

N
O

N
NG

N O

SkeO
ip

d.c P )



(II. MICROWAVE SPECTROSCOPY)

<V. SQ>

2 >

< V • Ske >

*E >+ <J . E >
o ac ac

<V.S > = -J * E
em o o

<V.S >
S

Fig. 11-3. Energy balance for sound waves in semiconductors
in a stationary situation.

stress F have been split into a D. C. and an A. C. part. Figure II-3 illustrates a sta-

tionary alternating situation, in which < > means the time average over one period.

The term <V7 Sem > is split into V - (E XH o ) and the contribution of the A. C. parts.

The former is equal to JoEo, as can be easily understood by considering a simple con-

ducting wire; the A. C. parts can be proved to be negligible for a sound wave. We note

that < V - Ss > is negative for attenuation, and positive for amplification. At each small

circle, we have a balance.

5. Applications

a. Equations of State: Piezoelectricity and Deformation Potential

Figure II-3 shows that

ac at u (J+Nqu .

If we neglect the second term on the right-hand side, we obtain

F as\ (12)
Eac at

In the piezoelectric case we have D = EE + P, with P = eS. It can easily be seen that
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(12) is satisfied if and only if Fac = -eEac. There is no physical reason why this equa-

tion should be valid only for the A. C. components; thus F = -eE, and the equations of

state thus are

D = EE + eS T = cS - eE.

We can verify the statement that FaS/at = -EaP/at, so that we can say that instantane-

ously the energy taken from the acoustical wave through the coupling force F shows up

in the electromagnetic energy as the energy set free by the depolarization of the "piezo-

electric" charges.

In the deformation-potential case, we have D = EE + P, with P = -(CE/q)(aS/az).

By considering sinusoidal fields, we can again verify the conclusion that (12) is satis-

fied if and only if Fac = -(CE/q)(aE/az), so that the equations of state are

D = EE - (CE/q)8S/az T = cS - (CE/q)aE/az.

In this case it can be verified that FaS/at = PaE/at = (PE) - EaP/at, so that the pre-

vious statement about the instantaneous energy transfer is no longer true. Figure II-2

is only approximate.

b. Attenuation Constant

From Fig. 11-3, we see that the energy taken from the sound wave is given by

Q F Fac = a P + m (J+Nqu) = J E + i<Ei-(J+Nqu . (13)
acat>/ a at <m /

If all fields are now of the form u = uo exp j(wt-kz), with jk = a + jp, we get

2a Re 2)=Q (14)

from

-Ss Fac = Q and S -(uT).
V7 s= acat s

The attenuation, a, is caused by the factor F in the equation T = cS + F, and thus in

pau/at = aT/az. If we calculate a by a first-order calculation, we use formula (14)

but calculate Q and uT* in the unperturbed situation. Thus from pau/at = cas/az,

T = cS, and as/at = au/az, we get v2 = c/p and S= u/vs

Thus for a we obtain

Q Q
2 Re u - pl l (15)

(2
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with Q given by (13).

of a.

This is the equation used in published results for calculations

H. J. E. H. Pauwels
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