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A. RANDOM PROCESS MODEL FOR THE FIRING PATTERN OF

SINGLE AUDITORY NEURONS

The principal consequence of the "all-or-none" law for neural activity is that the

information conveyed by a neural fiber can be completely described by giving the times

at which the events (action potentials) occur. The available mathematical models for

processes characterized by events at distinct times are either limited to stationary sit-

uations (e. g., recurrent event models such as Poisson) or are exceedingly clumsy (e. g.,

crossings through a time-variant threshold of some continuous process such as band-

limited Gaussian). We have been exploring a phenomenological random process model

for nonstationary neural activity which appears both to match experimental data (e. g.,

auditory primary units) and to be analytically manageable.

i. Definition of the Process

The stochastic process considered here can be defined in a way similar to the

usual engineering definition of the Poisson process. Let 6 be a small increment
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of time. We define

Pr [1 event in (t,t+6) Ipast events at tl,t 2 ,t 3 ... ] = g[r(t), tl,t 2 ,t 3... ] 6, (1)

where

t > t 2 > t 3  ... ; (2)

g[" ] is a positive functional on r(t) and the times of the past events t 1 , t 2, t 3 . . ; r(t)

is called the intensity function and may be thought of as the effective drive or stimulus.

We assume that 6 is so small that at most 1 event occurs in each interval of length 6.

That is,

Pr [0 events in (t,t+6) 1 past events at t 1 )t,t t 3 . . .

+ Pr [1 event in (t,t+6) I past events at t , t 2 ,t 3 ... ] = 1. (3)

Although a great deal can be done with a process as general as this, the most interesting

results occur for the particular assumption

g[r(t), t 1 , t 2 , t 3 . . . ] =  r(t) s t r(u) du , (4)

for which r(t) is required to be positive. Here, s[. ] will be referred to as the recovery

function and is intended to reflect the refractory properties of the neural unit. For

simplicity we shall assume that s[ " ] increases monotonically from 0 to 1 as its argu-

ment goes from 0 to oo. The particular form for the argument shown in (4) assumes

that the state of recovery of a neural unit is independent of anything that occurred before

the immediately preceding firing, and that the rate of recovery is faster if an effort is

being made to stimulate the unit. There is indirect evidence that this is a reasonable

assumption, at least for some neurons, but its consequences are somewhat surprising

as we shall see.

2. Transformation of the Time Axis

The simplicity of the particular form (4) becomes apparent if we define a new time

scale, or clock, by the relationship

t
T(t) = r(u) du, (5)

-oo

where t is any time on the original clock, and T(t) is the corresponding time on the

new clock. In terms of the new clock it can be shown that
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Pr [1 event in (T,T+6) I past events at T(tl), 7(t 2 ). .. ] = S[T(t)-T(tl) ] 6. (6)

In other words, viewed in terms of the new clock the process is stationary regardless

of the time variation of r(t). This property accounts for much of the computational sim-

plicity of this process.

We note that if s[x]- 1, the process considered in terms of the new clock is a

stationary Poisson process with rate 1. Actually, for any s[' ], we can define a

second "clock" (which, however, depends upon the actual event times) in terms of

which the original process reduces to a stationary Poisson process with rate 1.

Thus, we would expect that much of the analytical simplicity of the Poisson process

would also apply to the process defined by (4). This is indeed the case as we shall

show by a few examples.

3. Inter-Event Distributions

If we consider a sample function of the process defined by (4) which contains a firing

at a particular time t 1 , the conditional probability density function for the interval T to

the next firing is easy to calculate. This density function is given by

r [TIt l ] = r(T+tl) s 11 r(u) d exp 1 r(x) s r(u) du dx .
1t I1 1

(7)

If, in particular, r(t) is a constant and s[']- 1, then Pr [T tl ] is exponential, as it

should be for a Poisson process. More generally, for r(t) = r = constant

r [Ttl ] 
= rs[rT] exp -r s[rx] dx . (8)

The inter-event distribution of (8) has the interesting property that a change in stimulus

intensity produces only a change in scale, not in shape. Incidentally, with experimental

histograms showing this property, s[ ] can be determined from the equation

rs[rT] = r [TIt(9)

T r [T t1] dT

4. Unconditional Probability of an Event

It is easy to show that the probability of a firing in (t,t+6), not conditional on the past

events, is given by
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r(t) 6
Pr [1 event in (t,t+6)] = (10)

IO exp{- IOx s(u) du dx

Since the denominator in (10) is simply a constant scale factor, the unconditional prob-

ability of a firing is directly proportional to the stimulus or intensity function r(t). This

gives a simple interpretation to the meaning of r(t), independently of s[" ]. In particular,

if the stimulus is periodic and making certain ergodiclike assumptions, we can estimate

the form of r(t) from a histogram of event times measured with respect to the beginning

of each period; for example, a Post Stimulus Time (PST) histogram. It is interesting

that if this model is applicable, individual units may show refractory effects (because

s[" ] < 1 for small values of the argument), whereas populations of such units will show

refractory effects only as a diminution in total activity.

5. Interval Distributions

A somewhat more difficult quantity to compute, but one which is of interest for its

relation to experimental measurements, is the interval distribution between events in

cases in which r(t) is periodic. Letting A be the period of r(t), we can show that the

fraction of intervals with durations greater than T o is given by

u+T
r(u) exp { u 0 r(z)dz) s(v) dv du

Pr [T>T ] 0 A r(u)

S0 Adu

6. Applications

Our immediate interest in this random process centers on the possibility

of using it to represent the primary auditory unit data of Kiang and others.1

If this should prove successful (and preliminary efforts indicate that the mod-

eling is at least as satisfactory as that of other models 2), then it would be

interesting to explore the extent to which the nature of the peripheral coding

in the auditory system accounts for certain limitations on discrimination behav-

ior observed psychophysically. For this purpose, it would be necessary to con-

struct the likelihood ratio to test whether particular sets of event times came

from one r(t) or another. This seems to be relatively easy to accomplish for

the particular random process under discussion. Details of this and other appli-

cations will be presented elsewhere.

W. M. Siebert, P. R. Gray
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B. AUDITORY DISCRIMINATION IN THE BULLFROG

From a phylogenetic standpoint the frog represents a unique evolutionary midstage

as life emerged from the sea. To help equip this amphibian for life on land, for the

first time, neural mechanisms permitted airborne sound communication and the ability

to localize sound.2 Within the frog one finds a rudimentary neural auditory system upon

which all higher animals have built. To investigators of audition and animal sound com-

munication, it seems fundamental to ask how well this rudimentary system can perform

and what types of neural coding are involved. Experimental answers to some of these
3-9

questions have recently begun to appear.

The fact that frogs use sound communication seems fairly well established. Anuran

vocalizations based on observational and circumstantial evidence are thought to serve

primarily for the attraction of a mate. 3 The advent of the mating season is signaled by

extensive calling of male frogs in chorus and the females of the species are presumably

attracted to such calling. During this mating cycle, females are silent.

Spectral and temporal analysis of recorded frog calls have revealed that sympatric

species each possess unique calls. 4 - 6 In regions of territorial overlap of two species,

the calls of the males diverge in at least one parameter so as to increase their distinc-

tion. Biologists and naturalists have argued that species-specific calling serves as an

isolation mechanism for the preservation of the species. Such arguments presume the

female to be capable of precise discrimination of calls of her own species from those

of other sympatric species. Reliable experimental evidence, however, of auditory dis-

crimination among anurans is lacking. Many clever attempts have been made but,

because of the behavioral difficulties encountered in these animals, the results have

been inconclusive.

A detailed study of the auditory behavior of one particular frog species, the

American Bullfrog (Rana Catesbeiana), has been in progress in this laboratory for sev-

eral months. The selection of the Bullfrog for study was prompted by recent anatomi-

cal 7 and neurophysiological 8 investigations into the peripheral mechanisms of audition

in this animal. We hope that a behavioral study will, in part, tie these findings together

and reveal in what way a complex, meaningful sound is coded in the nervous system of

the Bullfrog.

Two large terrariums have housed a colony of adult Bullfrogs in this laboratory since
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last summer. In each terrarium gravel, sand, peat moss, various natural and artificial

plants, and shallow ponds were placed in an effort to simulate natural conditions. A

small enclosed loudspeaker was put in each terrarium for presentation of selected

sounds over a laboratory sound system. A microphone within each terrarium permits

monitoring and recording of the activity of the animals during such sound presentations.

By appropriately cycling lighting, temperature, humidity, and feeding conditions,

triggered calling has been achieved by playback of Bullfrog choruses. Laboratory males

typically answer these playbacks with their well-known mating-croak call. Females

also participate in these sessions with "chirps" and "grunts."

It has been observed that the laboratory animals can precisely discriminate calls of

their own from those of other related species. For example, a comparison of evoked

calling to presentation of Bullfrog, Green Frog (Rana Clamitans) and Southern Bullfrog

(R. Grylio) calls shows the following result: significant calling in answer to Bullfrog

choruses generally begins approximately 10 seconds after and continues throughout play-

back. There has never been calling to Green Frog or Southern Bullfrog choruses. Fur-

thermore, all spontaneous vocalizations (resulting from a preceding Bullfrog playback

or feeding session) are immediately inhibited by either of these two calls. Upon ter-

mination of either the Green Frog or Southern Bullfrog playback, spontaneous calling

begins again approximately 45-60 seconds later. These observations are based on

approximately 50 separate playbacks of each of the three species and show conclusively

that the Bullfrog can indeed discriminate between calls of its own species and those of

the sympatric Green Frog and Southern Bullfrog. Similar calling experimentation has

revealed that the Bullfrog can also discriminate between its call and those of Z7 other

closely related species. Calling on the part of the laboratory animals has never accom-

panied chorus playback of these other species.

Research is now being pursued to reveal exactly what stimulus parameters enable

the Bullfrog to uniquely recognize its call. The main aim of this research is the for-

mulation of a model by which discrimination of the Bullfrog croak occurs. To achieve

this goal, calling studies involving selected operation on Bullfrog chorus playbacks were

made. By tape-recording evoked calling, it was possible to determine the relative

amount of calling in answer to filtered Bullfrog choruses. Figure XVI-1 illustrates

corresponding croak-calling to a 100-second playback of highpass and lowpass filtered

(18 db/octave) Bullfrog croaks (a mating-croak call being defined as a sequence of one

or more croaks). The data presented are based on 200 separate trials. The playback

level within the terrariums was 30 db above the laboratory background noise level. For

highpass filtering, there is a rather steep increase in calling for the cutoff transition

of 400-300 cps. Clearly, energy contained in the low frequencies below 400 cps is

important to the Bullfrog. A sudden increase in calling is also seen in the lowpass

playback as the filter cutoff is increased from 500 cps to 600 cps. For this filtering
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Fig. XVI-l. Evoked calling from laboratory Bullfrogs to playback
of highpass and lowpass filtered Bullfrog chorus.
Playbacks were filtered by means of an SKL variable
electronic filter (Model 302, 18 db/octave). Chorus
playbacks lasted for 100 seconds. Data are based on
200 separate trials.

situation, energy above 500 cps is vital.

The filtering employed in Fig. XVI-1 was not very sharp. To obtain a more precise

measure of spectral properties of the Bullfrog croak, evoked calling has recently been

investigated to a sharply filtered (66 db/octave) 100-cps passband playback of the same

Bullfrog chorus (duration: 100 secs). Although this study is not entirely complete, the

following conclusions are evident: Considerable calling occurs if the center frequency

of the 100-cps wide passband playback lies between 250 cps and 350 cps (the amount of

calling approaches that of the unfiltered playback). A lesser degree of calling occurs

in the range 1050-1450 cps. No calling has ever been observed to playbacks with center

frequency between 50 cps and 150 cps, or 450-650 cps, and only very slight calling

between 750 cps and 950 cps. There has been no calling to playbacks above 1500 cps.

The results of calling to filtered Bullfrog playbacks permit an initial step toward a

discrimination model. If no other frequencies are present, it appears that only low-

frequency energy or high-frequency energy need be present to enable the Bullfrog to

recognize its mating call. If, however, energy in the neighborhood of 500-600 cps is

present, then both low- and high-frequency energy must be present simultaneously.

Pure tone bursts and pulse trains have also been played back to the colony. Pulse

trains of various pulse repetition rates were formed by 0. 1-msec pulses. Both pulse
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trains and tone bursts were presented through an electronic switch (Grason-Stadler) with

envelope rise and fall times of 25 msec. These stimuli were presented once every 2 sec-

onds with a duration of 0.5 second. Such envelope parameters approximate that of a typ-

ical Bullfrog croak.

Pulse trains of 200 pulses per second, or above, and tone bursts of 500-2500 cps

cause the animals to seek refuge in the terrarium ponds. Before playback, very few

animals will be in the ponds. Most of the laboratory Bullfrogs maintain favorite ter-

restrial territories. As soon as playback begins, the animals leave their territories

and "escape" to the water. Within 15-20 seconds most of them have already entered

the ponds. Upon termination of such stimuli presentations, the animals slowly crawl

back out of the ponds to resume their territories.

Playback of pulse trains of 50 and 100 pulses per second and also of 400-cps, and
below, tone bursts do not produce a fear reaction. Rather, the animals remain in their

territories and, in fact, occasionally call back to these stimuli. Significantly, the tem-

poral structure within the Bullfrog croak is characterized by a repetition rate of approx-
9imately 90 per second.

Continued calling experiments involving synthesized Bullfrog croaks are in progress.

Attempts at getting the laboratory animals to call back to these synthetic sounds are

planned, and we hope they will lead to a more select discrimination model. A study of
cardiac conditioning to various classes of sounds in the Bullfrog is also being pursued.

The techniques that are being employed in auditory discrimination studies of the
Bullfrog are not believed to be peculiar to this species but rather representative of
anuran behavior in general. To insure this conclusion, calling studies are being ini-

tiated in the Green Frog. These are expected to parallel and complement the Bullfrog
studies.

R. R. Capranica, M. Sachs, M. J. Murray
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C. AN RC MODEL FOR SPONTANEOUS ACTIVITY OF SINGLE NEURONS

Spontaneously active single neurons produce spike trains whose temporal character-

istics can be conveniently described in terms of: (a) an interval histograml of the time

intervals between successive spikes, and (b) a two-dimensional joint-interval histogram

of two successive spike intervals. 2 These measures can be used to differentiate and

characterize various modes of spontaneous activity in actual neurons. Rodieck, Kiang,

and Gerstein2 computed the histograms of neurons in cochlear nucleus of anesthetized

cats, and found typical interval histograms to be: (a) exponential, with a small dead

time, (b) approximately Gaussian, or (c) long-tailed, that is, unimodal and asymmetric,

with tails longer than exponential.

Various mathematical models have been proposed to explain the observed spontaneous

activity of neurons. Kuffler, Fitzhugh, and Barlow3 have suggested that interval histo-

grams of spontaneous spike activity might be described by incomplete Gamma functions.

Viernstein and Grossman, 4 Verveen, 5 and, more recently, Weiss 6 ' 7 have examined

models based on threshold crossings of a random noise with Gaussian amplitude distri-

bution. Gerstein and Mandelbrot 8 have discussed a two-parameter model based on a

random walk "toward" a firing threshold. Unfortunately, none of these models is able

to describe all of the three types of spontaneous activity mentioned above.

In the present report we shall examine another type of model which, in spite of its

simplicity, has not been discussed in published work on this subject. This model incor-

porates the following experimental facts: In its resting state the neuron maintains a

constant potential difference across its cell membrane, the internal potential being

approximately 70 my below the external potential. The membrane polarization can be

changed by virtue of certain chemicals released by afferent neurons. Such chemicals

may either depolarize the membrane - that is, reduce the potential difference - thereby

giving rise to what Eccles 9 terms an excitatory postsynaptic potential (EPSP), or they
may hyperpolarize the membrane to produce an inhibitory postsynaptic potential (IPSP).

These chemicals are found to be released at the synaptic knobs in quantized amounts,

this action causing depolarization and hyperpolarization "pulses" that decay approxi-

mately exponentially in time and along the membrane surface.10 Under certain cir-

cumstances these pulses have been observed with microelectrodes.11 The effects of

successive pulses are cumulative; if the membrane is depolarized beyond a certain

critical value called threshold, a large all-or-nothing action spike which propagates
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without decrement along the neuron's axon, is produced.

These properties of active neurons suggest the following model: The neuron's mem-

brane polarization is assumed to be represented by a single variable called the potential.

The potential may change discontinuously by positive or negative steps of size h, repre-

senting the EPSP and IPSP pulses. The potential also varies continuously by decaying

exponentially toward a fixed value Vo , called the resting potential. If the potential

reaches a positive value V T , called threshold, the neuron is said to "fire," that is, to

produce an action spike, and the potential returns to V .

Under conditions of spontaneous activity, it seems reasonable to assume that the

positive and negative pulses are generated by Poisson processes. Hence, the proba-

bility density P (t) of time intervals of length t between positive or negative pulses

would be exponential:

-R t
P+(t) = Re t

where R represents the average rate of positive or negative pulses. For successive

pulses to be summed, the pulse rates R must exceed the decay rate of the potential

V(t) SPIKE SPIKE

VT

VE

TIME
(a)

V (t)

VE

v

Fig. XVI-2.

I f K TIME

SPIKE

(b)

III I I I ii II I ii 111 1 II Ill I i l i I III

(C)

Neuron potential as a function of time. Neuron time constant
7 = 7T+, cT = 0o. (a) VT > VE mode. (b) VT < VE mode. (c) Train

of positive pulses producing the potential.
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toward its resting state. Figure XVI-2 illustrates a typical path of the potential as a

function of time when all pulses are positive (cf. the depolarization of muscle membrane

under successive EPSP's observed by Del Castillo and Katz lZ).

This model produces a spike train whose interval histogram is difficult to compute

explicitly. The histogram is essentially the probability density of first-passage times

from resting potential to threshold.

It is easy to simulate the model with a simple integrating RC circuit. The capac-

itor voltage into which the positive and negative pulses are fed represents the membrane

potential. The incoming pulses are generated by a discriminator whose threshold level

is set far above the mean of a random-noise signal; thus the density of pulse intervals

will be exponential. These pulses are summed when the RC time constant T exceeds the

mean pulse interval T = 1/R . When the potential reaches the threshold value V T , a

discriminator produces a neuron "spike," and triggers a large negative pulse that

reduces the potential to V . The spike train generated in this way is processed by the
13

same TX-0 program that computes histograms for actual neurons.

We consider first the case in which all incoming pulses are positive (Fig. XVI-2).

With the neuron threshold set sufficiently high the potential will increase to an "equi-

librium" value V E , at which the average increase in potential because of incoming

pulses equals the average decay - that is, VE = T/T+. The potential will fluctuate about

VE because of the fluctuations of pulse intervals about their mean, T+. The neuron

threshold can be set above or below this equilibrium level, thereby giving rise to two

distinct modes of operation:

(i) Threshold above equilibrium (VT> VE). The potential rises to VE and fluctu-

ates about this value until it reaches threshold. This mode would be expected to give

rise to rather long intervals between firings (Fig. XVI-2a).

(ii) Threshold below equilibrium (VT< VE). The potential crosses threshold before

reaching VT. This mode produces more rapid and more regular firings (Fig. XVI-2b).

The interval histograms obtained from the model under these conditions are shown

in Figs. XVI-3 and XVI-4, together with their semi-log plots. The circuit's time con-

stant was directly measured to be T = 180 msec, while the mean interval between

incoming pulses was 1.5 msec. With threshold above equilibrium the spike interval his-

togram is asymmetric, with an exponential tail for long times. With threshold below

equilibrium the histogram approximates a Gaussian shape, but remains asymmetric

owing to an excess of long intervals.

Figures XVI-5 and XVI-6 show joint-interval histograms for both modes; the inten-

sity of the point (tl',t2 ) is proportional to the number of times interval tl is followed by

interval t 2 . As would be expected from the fact that successive intervals are statisti-

cally independent (since after each firing the potential is reset to the same V ), both
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joint-interval histograms are symmetric about 45". The VT > VE plot shows that for

intervals exceeding the mean, lines of equal joint probability density are approximately

straight lines parallel to t 1 + t 2 = 0 - as would be expected for Poisson events. The
VT < VE mode has almost circular lines of equal probability density, which is charac-

teristic of Gaussian interval densities. Thus with positive pulses the model gives

exponential and almost Gaussian interval histograms, but not those with longer-than-

exponential tails.

A more general situation involves both positive and negative pulses of equal magni-

tude h (Fig. XVI-7). We consider first the situation when the mean rate of positive

V (t)

SPIKE
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"I U U TIMESLLLr
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Fig. XVI-7.
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pulses, R+, exceeds that of negative pulses R_; in this case the potential will again have

(R -R )
a positive equilibrium value, VT = h . Figure XVI-8 shows a comparison of the

1/7
histograms for VT > VE with and without negative pulses; the negative pulses are seen

to extend the histogram but not to alter its shape; the tail remains exponential. Simi-

larly, Fig. XVI-9 shows a histogram for VT < VE before and after negative pulses are

introduced; with the addition of negative pulses the histogram's tail approaches an

exponential - probably due to the fact that the negative pulses reduce the equilib-

rium level and bring threshold effectively closer to equilibrium. Thus, when R+

is considerably larger than R , introducing negative pulses does not result in any

new histograms.

The model can also be operated with the rates of positive and negative pulses approx-

imately equal; in this case the equilibrium potential VT = 0. Figure XVI-10 shows an

interval histogram obtained for 7+ = T_ = 1-2 msec and T = 50 msec. The semi-log plot

shows a slight deviation from exponential, in the direction that is characteristic of long-

tailed histograms. This deviation could probably be made more pronounced by further

adjustments of the time constants and perhaps by revision of certain assumptions (as

stated below).

Thus, under the various conditions that we have investigated, the RC model seems

capable of simulating most of the spontaneous spike trains observed in actual neurons.

Within these limitations the results suggest that neurons with quasi-Gaussian histograms

have a higher rate of incoming EPSP's - or a greater predominance of EPSP's

over IPSP's - than those with exponential histograms (if equal threshold levels

are assumed).

Similarly, a neuron with a long-tailed interval density would have approximately

equal rates of incoming EPSP and IPSP.

The RC model may be able to generate other histogram shapes - and perhaps pro-

duce more pronounced long-tailed densities - if some of the following assumptions are

revised.

(a) A crucial assumption thus far has been that the interval density of incoming

pulses will be exponential. Other density shapes such as Gaussian have not yet been

investigated, and, when they are, they may yield different histograms.

(b) The sizes of the positive and negative pulses have been assumed to be constant

and equal. Neurophysiological experiments indicate that the effect of a single IPSP

depends strongly on the degree of membrane polarization.13

(c) The assumption of independence of successive intervals - implicit in the auto-

matic return to V after firing - might be relaxed in order to produce different inter-
o

val and joint-interval histograms.

E. E. Fetz, G. L. Gerstein
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D. EXPERIMENTS ON MACHINE RECOGNITION OF CONNECTED

HANDWRITTEN WORDS

1. Introduction

Handwriting recognition, considered as a sample problem in recognition of widely
1-3

variable patterns by automata, has received previous consideration ; however, error

rates previously achieved have been rather high. We approach the problem of searching

for invariants of the handwritten patterns by consideration of the intrinsic movements

that execute the handwriting activity. Recognition is performed on three different levels

by taking into account at each of the higher levels the additional constraints that are

observed.

In this report results are presented for recognition experiments conducted under

various conditions of machine learning for test data consisting of 100 words written by

4 subjects. The test vocabulary consisted of 12 words generated from 9 letters. The
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words were selected so as to form a group in which knowledge of one letter of the word

supplies little information about the other letters. A dictionary consisting of those 59

words that were considered to be likely products of misrecognition was used to eliminate

any nonwords that might be generated by the program.

The program presented identifies handwritten words written with the aid of special

apparatus that enables the recording of the writing as a two-dimensional vector displace-

ment function of time. The words are analyzed, first, by segmenting them into strokes

that are considered to represent the basic units of handwriting movement and, second, by

applying a transformation to convert the stroke description from a vector function of time

to a multidimensional parameter vector. In the space of all possible stroke vectors some

clustering of points is found which corresponds to the particular strokes of every letter.

With the aid of appropriate estimates of the multivariate probability distributions of

stroke parameters conditioned by a particular stroke group, the likelihood of an unknown

stroke belonging to that group can be estimated. Constraints among the various strokes

of a word are found to occur on two levels - within individual letters and among the let-

ters that are known to form a word of the language. The intraword stroke constraints

are used to select, from the set of all possible sequences of strokes that correspond

with some minimum likelihood to the experimentally determined strokes, those that con-

stitute possible letter sequences. If a dictionary of the words of the language is avail-

able to the machine, it can eliminate nonwords and thereby arrive at the word that it

considers most likely to be represented by the handwritten word.

2. Methodology

a. Segmentation

A representation of handwritten words by means of the spatial coordinates x and y

was first suggested by Frishkopf. 2 It has been shown previously by Eden and Halle 4

that handwriting can be characterized as a sequence of basic strokes connected according

to a rule. That formalization, however, did not specify algorithmic procedures for

recovery of the basic strokes from handwritten words. This deficiency can be overcome

by the formulation of an operational definition of a stroke or the segmentation points

between strokes. Under the assumption that the pen velocity is a continuous vector func-

tion of time, a segmentation point is defined as one for which the velocity component

along the y coordinate has zero value. The segments so delimited can be considered

as meaningful units of the handwriting if replacement of individual segments by using

different input samples does not distort the word so formed beyond human recognition.

A word is taken to mean a connected sequence of letters with an interpretation in a par-

ticular natural language. Obviously, such words must be in the vocabulary of the human

observer. Another significant advantage is that the segmentation of a word into a stroke
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sequence is a refinement of the segmentation of the word into letters, an operation suc-

cessfully executed by humans, but one for which no acceptable algorithmic solutions

have been presented.

b. Stroke Identification

In order to classify individual strokes into categories so that the information of

membership in the respective categories for the strokes constituting the word is suf-

ficient to recover the letter sequence, we transform the topological description of the

stroke into a numerical representation. Such a representation may be obtained by

means of a set of parameters that, on the basis of an appropriate model of the gener-

ating system, can serve to regenerate the stroke under consideration. The particu-

lar model utilized in this work was described as Model B in our previous report. 5

Strokes are classified into their respective categories by means of maximum-

likelihood estimates based on the assumption that the individual parameters describing

members of any stroke category have multivariate normal distributions with possibly

unequal covariance matrices for the different categories. Mathematically, the prob-

ability density pi(X), where X is from the category Tri , is given by

1 - 1 1
Pi(X) = (exp -- (X-)'V xi ,

(2 W)P/2 1/2

where p is the number of dimensions of the parameter vector X, V. is the covariance
1

matrix of the parameters for the category Tri , and iTi is the vector of parameter means
1 6

for the category Tr.. Subject to these assumptions, it can be shown that the optimal
1

recognition procedure is to calculate the likelihood function

1-
(X) M= -(X-il)'V. (X--L) - log V.

1 1 1 1 e 1

for each stroke category and select that category for which this function is maximized.

Since at this level of the recognition program we expect a rather high probability of

classification error, we establish a likelihood threshold level, eliminating from further

consideration only those stroke categories that fall below this level.

In order to reduce the number of possible abstract stroke sequences corresponding

to any handwritten word which are preserved for further consideration, it is important

to minimize the number of different stroke categories. This minimization is carried

out by starting with the finest possible partition of the stroke space that would be

obtained by assigning each stroke of each letter to a different category and merging all

topologically similar categories while preserving the unique decodability of stroke

sequence into letter sequences. Where different forms of particular letters are found
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to consist of different numbers of strokes, such variations are recognized by the repre-

sentation of the letter by several variants having different abstract stroke representa-

tions.

c. Letter Identification

By constructing a table of letter variants with their corresponding stroke sequences,

we permit the mechanization of the stroke-to-letter sequence transformation, as well

as eliminate from further consideration all stroke sequences to which no letter sequences

correspond. No information about constraints between successive strokes is available

to the program other than the information about which strokes may follow each other

within any letter. In calculating the letter likelihood estimates, the conditional proba-

bility that the stroke s. follows the stroke s. is assumed to be proportional to the prob-

ability of the stroke s., given only the parametric representation of that stroke, if, in

fact, such a sequence is possible, and zero otherwise. The exact probabilities are

obtained by renormalization over the stroke sequences with nonzero probability.

Letter sequences are generated by considering, in turn, all possible ordered stroke

sequences that may be generated from the stroke categories exceeding the likelihood

threshold. The strategy used is to start with the first member of the first stroke set,

attempt a continuation with the first member of the second set, and continue until either

an uncontinuable sequence is found or the last stroke of the word is reached. For uncon-

tinuable sequences the last stroke selected is dropped and the next member, if there is

any, of the same stroke set is considered. If no continuation is found, one more stroke

is deleted and the process is continued from that point.

d. Word Recognition

The letter sequences found by the above-mentioned procedures in most cases will

specify nonwords. Our attention is focused on misreading one word for another and,

therefore, the information that all possible inputs are words of the language is made

available to the computer. This step is also essential if comparison is to be made with

human performance in such recognition tasks.

Nonwords are eliminated as they are generated by allowing the letter-sequence gen-

erator program continuous access to a dictionary. This facility speeds up the recog-

nition program considerably by preventing the complete development of letter sequences

that are determined to be nonwords by consideration of the first few letters. If more

than one word can be generated from the strokes that are found to exceed the likelihood

threshold, the likelihood of each is determined from the letter-sequence likelihood by

renormalization over all words so generated. This procedure implicitly assumes an

a priori probability distribution for the input words such that the word probability is

equal to the reciprocal of the number of dictionary entries if the word is listed in the
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dictionary, and zero otherwise.

The experiments described here were carried out with a limited dictionary containing

only those words that the experimenter thought would be likely results of misrecognition.

Other experiments are now being carried out with words generated from the complete

lower-case alphabet and a dictionary of the 10,000 most frequently used words in the

English language.

3. Results and Conclusions

The experimental system for the study of handwriting data has been described pre-

viously. 5 The 100 handwriting samples were segmented into strokes and these strokes

were classified manually into 42 categories according to the letters from which they

originated. A typical handwriting sample is

illustrated in Fig. XVI-11. Groups of topo-

logically similar categories within which dif-

ferentiation was not necessary for unique

letter specification were merged so that the

final partition consisted of 24 stroke cate-

gories, 12 upstrokes and 12 downstrokes.

Special categories were assigned to writing

segments found connected onto, but not

forming part of, the first and last letters of
Fig. XVI-11. Sample of handwritten

word used in the rec- many words. Twelve component parameter
word used in the rec-
ognition experiment. vectors were used for all experiments except

one, the eight previously discussed 5 being

augmented by parameters giving the total x displacement, the total y displacement,

and initial and final x velocities. The variables were selected without any a priori

information about their relative usefulness in an attempt to provide the system with as

much useful information as possible about the strokes. In Experiment IC, in order to

examine the effects of a reduced parameter set, recognition was attempted by using

only 5 parameters corresponding to the variables of Model A of our previous report. 5

A partial test showed no significant improvements if the complete covariance matrix

was used instead of the variances alone. For this reason, and also to save storage and

computation time, all covariances were arbitrarily assumed to be zero.

Six experiments were carried out with the recognition rates given in Table XVI-1.

A composite confusion matrix for all experiments is given in Table XVI-2.

We observe that although Experiments 1A and 1B result in identical recognition

rates, the set of words incorrectly identified is not the same. This shows that in a few

cases the use of upstrokes may help or hinder correct recognition. Theoretically, since

each letter can be assigned a unique sequence consisting of downstrokes only, the
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Table XVI-1. Results of handwriting recognition experiments.

Percentage
Experiment Strokes used correctly

Number Learning Set Test Set for recognition recognized

lA all strokes all strokes all strokes 91

IB all downstrokes all downstrokes all downstrokes 91

IC all downstrokes all downstrokes all downstrokes 68
5 parameters only

2A subjects A, B subjects C, D all strokes 69
subjects C, D subjects A, B

2B subjects A, B subjects C, D all downstrokes 56subjects C, D subjects A, B

3 50 samples - 50 different all downstrokes 83
all subjects samples - all
and words subjects and

words

information contained in the upstrokes is redundant once the downstrokes are specified.

However, if the downstrokes are not known with certainty, the use of upstrokes as well

may improve recognition. By considering the results of Experiments 2A and 2B in com-

parison with those of Experiments 1A and IB, we see that the relative usefulness of the

upstrokes depends on the extent of our ability to recognize the downstrokes reliably. The

significant saving in computation time resulting from the sole use of downstrokes led us

to use them alone in further studies of the behavior of the recognition system.

Significant differences among the various subjects' writing, such as size, slope,

speed of execution, and shape of letters, prevent a ready generalization of parameters

over the writings of different subjects. A comparison of the results of Experiments 2B

and 3 shows the importance of exposing the machine in the learning phase to samples

written by the people whose writing it will encounter in the test phase. In the absence of

such learning, recognition, of course, will deteriorate. We may note that the appropriate

parameter statistics do give a numerical representation to a subject's handwriting and

therefore, given the parameters of a particular handwriting sample and the statistics

for a number of subjects including the writer, the machine presumably can identify the

writer of the sample. Other experiments are now being carried out to test how well

the machine can adapt its representation of the strokes to those of a new subject if it

is given initial statistics compiled from the writing of others and tested with a sample

sequence written by the new subject.

The information obtained about the strokes by using the complete set of 12 parameters
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I1A 1B 1C
Entries in rectangles refer to several experiments as follows '

Numbers in parentheses give number of different samples of that word in input data.

No word recognized.
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is somewhat redundant. From Experiment 1C we observe that using less than one-half

of the parameters results in only a 25 per cent deterioration of the recognition rate.

Clearly, not all parameters are equally useful, but since the contributions from the

several parameters are not additive, any simplification by a reduction in the number

of parameters would require an exhaustive search procedure. The variances serve as

normalizing factors in calculating the contribution of each parameter to the stroke like-

lihood measure, but other than that all parameters are weighted equally. This proce-

dure, although valuable in general, may fail to resolve particular confusions such as

those between the letters e and i correctly. In such cases it may be useful to have

a list of likely confusions, together with information about which parameters would be

most useful in resolving them.

We may note that the test vocabulary was intentionally selected to limit the infor-

mation supplied by the word context. These words are particularly difficult to recog-

nize because the misrecognition of one letter is likely to generate a different word. The

complete dictionary is on the average much less clustered, that is, a substitution for

one letter is less likely to generate a new word, and therefore recognition rates for

more general data should be higher.

The main aspect in which the program's performance now differs from that of

humans is that it does not use any form of "Gestalt" recognition of complete characters.

One may say that it occasionally fails to see the whole word by looking at it only one

stroke at a time. The program indicates the places where possible ambiguities may

exist by likelihood ratios of the most likely words which are nearly one. It has not

been endowed with facilities to locate the source of the confusion and attempt to resolve

it. In other respects the results of misrecognition by the machine are precisely the

same as those of humans when further deterioration of the writing samples takes place.

P. Mermelstein
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