
XIII. PROCESSING AND TRANSMISSION OF INFORMATION

Prof. R. M. Fano
Prof. R. G. Gallager
Prof. F. C. Hennie III
Prof. I. M. Jacobs
Prof. A. M. Manders
Prof. W. F. Schreiber
Prof. C. E. Shannon
Prof. J. M. ,Vozencraft
Dr. C. L. Liu
M. H. Bender

E.
D.
J.
H.
P.
D.
E.
G.
U.
A.
J.

R. Berlekamp
G. Botha
E. Cunningham
Dym
M. Ebert
D. Falconer
F. Ferretti
D. Forney, Jr.
F. Gronemann
R. Hassan
L. Holsinger

T. S. Huang
N. Imai
J. E. Savage
J. R. Sklar
K. D. Snow
I. G. Stiglitz
W. R. Sutherland
0. J. Tretiak
W. J. Wilson
H. L. Yudkin

A. VECTOR REPRESENTATION OF TIME-CONTINUOUS CHANNELS WITH MEMORY

Analysis of time-continuous channels is usually accomplished by representing both

signals and noise as vectors (or n-tuples) in an n-dimensional vector spacel'2; the

components of the vectors are the coordinates of signal or noise with respect to the set

of basis functions used. For memoryless channels with additive white Gaussian noise,

this results in the simple representation

y x+n, (1)

where x, n, and y are the vector representations with respect to a common basis of the

channel input, additive noise, and channel output, respectively, and the components of n
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Fig. XIII-1. Gaussian channel with memory.

are statistically independent and identically distributed Gaussian random variables.

This report demonstrates that for the class of channels with memory which is defined

in Fig. XIII-1 there exist basis functions such that
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y = [fXlx + n, (2)

where x, n, and y are again the (column) vector representations 3 of the channel input,

additive noise, and channel output, respectively, the components of n are statistically

independent and identically distributed Gaussian random variables, and [ r,'] is a diago-

nal matrix. The important result here is that [A[-] is diagonal and the noise components

are identically distributed, since a representation similar to Eq. 2 is always possible

when these conditions are not satisfied. This diagonalization is accomplished by using

different but closely related basis functions for the representation of x(t) and y(t) in

contrast to the common bases of Eq. 1. In fact, it will be seen later that Eq. 1 is a

special case of Eq. 2 with h(t) = 6(t) and S(w) = constant.

The main results of this report are presented in the form of several theorems.

First, however, some assumptions and simplifying notation will be introduced.

Assumptions

(i) The time functions x(t), n(t), and y(t) are in all cases real.

(ii) x(t) is nonzero only on 0, T and has finite energy, that is, x(t)E Y2 and thus

T
Sx(t) dt < o.

(iii) The time scale for y(t) is shifted to remove any pure delay in h(t).

Notation

(i) The standard inner product on the interval 0, T' is written (f, g)T,, that is,

T'
(f, g)T' = f f(t) g(t) dt.

(ii) The linear integral operation on f(t, t") by k(t, t') is written kf(t, t"), that is,

T
kf(t, t") = k(t, t') f(t', t") dt'.

(iii) The generalized inner product on 0, T' is written (f, kg)T,, that is,

T' T' T
(f, kg)T' = f(t) kg(t) dt = f f(t) k(t, t') g(t') dt' dt.

With these preliminaries the pertinent theorems can now be stated. It is worth noting

that the following results are closely related to the spectral decomposition of linear

self-adjoint operators on a Hilbert space.

THEOREM 1: Let S(w) = N O , define a symmetric function R(7, 7') = R(T', T) in terms
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of the filter impulse response by

R(7', T) =
0

T 1 > T,

and define a set of eigenfunctions and eigenvalues by

Xi i(t) = Rpi(t) 0i =t < T
i= 0,1, ... ..

(Here and throughout this report it is assumed that ci(t) = 0 for t < 0 and t > T.) Then

the vector representation of x(t) on 0, T is x, where x i = (x, i)T, and the vector repre-

sentation of y(t) on the interval 0, T 1 is given by Eq. 2 in which the components of n are

statistically independent Gaussian random variables with mean zero and variance N and
O

O1/70
[£1 =0 .1

The basis functions for y are {(i(t)}, where

h i (t)
6i(t) = i

0

and the it h component of y is

yi = (y, 0 i)T *1

0 < t < T 1

t < 0, t > T 1,

PROOF: First, it must be shown that the i(t) defined by Eq. 3 exist and are a com-

plete basis for representing x(t). Since the kernel of Eq. 3 is symmetric, it is well

known5 that at least one nonzero solution exists. Furthermore, proof that

(f, Rf)T > 0 (6)

for any nonzero f(t)

{(i(t)}. 6 But

(f, Rf)T = 1

E Y2 is necessary and sufficient to prove completeness of the

T ) h(t-) d
f(T) h(t-T) dT dt.

0 ]

Thus it suffices to prove that if

T
f f(T) h(t-) dT E 0
0
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then f(t) = 0 almost everywhere on 0, T. Let

T
r(t) = f(7) h(t-T) dt,

0

and assume that

r(t) =
t T

(t-T 1) t > T1'

where z(t) is zero for t < 0 and is arbitrary except that

some Y2 signal through h(t). Then

it must be the result of passing

R(s) f r(t) e - s t dt = e
0

-sT 1
Z(s) = F(s) H(s)

and it follows that Z(s) must contain any zeros of H(s).

nential term by Assumption 3.) Thus

(Note that H(s) contains no expo-

1Wn e -sT 1 Z(s) est
f(t) e st ds,

7r] -jO H(s)

which, when evaluated by residue calculus, yields f(t) = 0 for t < T 1, since the integrand
contains no right-hand plane singularities. Recall that by assumption, T 1 > T. Thus it

follows that any x(t) e Y 2 can be represented as

oo

x(t) = x ii(t)

i=0

0 < t < T,

where x i = (x, ci) and mean-square convergence is assumed.

Second, define Oi(t) as in Eq. 5. Then the signal at the filter output on the interval

0, T 1 is given by

rt = ii= 0Tiit)
i=O

and thus for 0 < t < T1
00

y(t) = r(t) + n(t) = I J i xi i(t) + n(t),

i=O

however,

(, )T 1 = (hi'h )T 1, h4i ) = ( = 6.
T 1T TT
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Thus the final result is obtained:

00

y(t) =0
i=O0

Yi i(t) 0 < t < Tl, (10a)

Q. E. D.
where y = (y, ) =,/T xi + ni, ni = (n, Oi), and nn. = N ij.

Note that Eq. 10a should actually be written as

y(t) = Yi i (t) + rn(t), (10b)

where (Oi, rn)T 1
= 0 (i = 0, 1, ... ), since, in general, the {(i(t)} do not form a complete

basis for n(t). However, r n(t) is, in effect, "outside" the space of signals that can be

obtained from the filter output and thus is of no interest in subsequent calculations.

THEOREM 2: Let H(s) be restricted to be a ratio of polynomials in s (that is, the

transfer function of a lumped parameter network) and define two polynomials in s 2 , N(s 2

and D(s 2 ) by

N(s 2)

H(s) H(-s)- 2
D(s2 )

then the {(i(t)} defined by Eq. 3 satisfy the differential equation

(dPROOF: Le(t)

PROOF: Let

H(s)

- XiD 2 i(t) =0

N+(s)

D +(s)

oo N(s)
h(t) = e s t df,

-0 D (s)

and from Eq. 3 it follows that

T
XiLi(t) =

T oo 00 N +(s) N +(s')

(t') f 00 D+ ( s ) D+ (s')

es(t"-t') s'(t"-t) dfdf'dt" dt'e e dfdf' d'

0 -< t < T <T 1.
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Differentiating both sides gives

=o T 0 o oo N+(s)
t 1 0 N+(s') es(t" - t ' ) es'(t"-t) dfdf'dt"dt',1 0 -o -oD+(s)

XD (- T 
NT

T oo N (s)
o1 D s(t"-t')

i(t,) 1 - D+ (s)
.-o eS

oo N (s) T

(t') 1 s es(t"-t')

f
o es '(t"- t) dfdf'dt"dt'--aO

6(t"-t) dt"dfdt'

SNo N+ (s) es(t-t') dfdt',

which, after further, and similar, manipulations, becomes

iD i(t) = N f (t') e s (t - t') dfdt'
d-o

= d
2) i(t)

0 -< t < T.
Q. E. D.

The functions {(i(t)} and the representation of Eq. 2 have some other properties of

interest. The optimum (matched filter) detector for detecting the presence of x(t) by

observing y(t) only on the interval 0, T 1 makes a decision based on the quantity

y(t) r(t) dt = (y, hx)T = y *r,
1

where r = [4] x and • denotes the usual vector inner product. The probability of error

in this case is determined by E/No, where

oo

(hx, hx) r.x r
E_ 1  r i=0

N N N N

Also, the input energy is given by

(x,x)T = xx = zx x 2

i=0

By convention, ko > k 1 >, X2 >,... Thus it follows that for fixed input-signal energy
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T )i= N -
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the probability of error is minimum (that is, the output-signal energy is maximum) when

x(t) = o(t) 7 More generally, it is known 8 that x(t) = W(t) is the function giving maxi-

mum output energy under the constraints

(x, 4i)T = 00,1 ... j-1

and

(x, x)T = 1.

Finally, it should be noted that (a) when T 1 = oo, Eq. 3 reduces to the well-known 9

and studied 1 0 integral equation involved in the expansion of a random process with auto-

correlation function 6(7-7') = R(7, 7') = R(7-7'), and (b) when R(7, 7') is defined as

o00

R(7, 7') = R(7-T') = f h(t-7) h(t-7') dt
-00

and h(t) is specialized to h(t) = (sin 7rt)/7rt, then the f{i(t)} are the prolate spheroidal
11

wave functions studied by Slepian and Pollak.

The following theorem specifies basis functions for nonwhite noise and T 1 = 00. For

physical, as well as mathematical, reasons the following conditions are assumed.

f I0H() 2 df < oo

-oo
-OO

o00 IH(jw)12

L .df < oo.
-oo S(w)

THEOREM 3: Let the noise of Fig. XIII-1 have a spectral density S(W), define two

symmetric functions K(7-7') and K1(7-7') by

00 IH(jw)1 2

K(7-'r') = f exp[jw(7-7')] df
-oo S(w)

and

K 1 1 exp[jw(7-7')] df,
-oo S(w)

and define a set of eigenfunctions and eigenvalues by

Xii (7) = Ki(7) 0 < 7 < T. (11)

Then the vector representation of x(t) on the interval 0, T is x, where x i = (x, i ) , and
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the vector representation of y(t) on the interval 0, o0 is given by Eq. 2, in which the com-
ponents of n are statistically independent, identically distributed, Gaussian random
variables with mean zero and variance unity, and [4ri] is given by Eq. 2. The basis
functions for y are {(i(t)}, where

h p(t) t > 0
ei(t) = hi(t) t

t < 0 (12)

and the ith component of y is

cO o00

yi = f y(t) f K 1(t-t') 
0 i (t') dt'dt -(y, K1 0i

-0 0

PROOF: Under the conditions assumed for this theorem, the functions {4i(t)} of
Eq. 11 are simply a special case of Eq. 3 with T 1 = oo and R(7, 7') = K(7-7r'). Thus they

are complete and the representation for x(t) follows directly. By defining 0i(t) as in
Eq. 12, the filter output r(t) for t > 0 is given by Eq. 8, and thus y(t) is given by Eq. 9,
but

(6i, K j)W = (h1i, Klh j) ? Kj)T j i = 6..

Thus y(t) is given by Eq. 10a for which

Yi = (y, K1 i)oo =Xi xi + ni'
and

n i = (n, K 1 i) oo

with

n.n = (n, K .l ei ) (n, K 0.j )

001 00 00 00

--o f n(t-t') f K 1 (t-t") i(t") dt" f K1 (t'-t"') O.(t"') dt"'dtdt'
00 00 0 0

00 00 00 00
f f0 dt" dt"'0i (t)0j(t') f f 61 n(t-t') Kl(t-t") Kl(t'-t"') dtdt'

f fo i(t)0 j(t') K 1 (t-t') dtdt'

= (0i, K1 j)0o = 6ij

Note that since K1 i(t) is in general nonzero for t < 0 the inner product for yi and n imust be over the doubly infinite interval. Q. E. D.
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THEOREM 4: Let H(s), N(s 2), and D(s 2 ) be defined as in Theorem 2, let S(w) be the

spectrum obtained by passing white noise through a lumped parameter filter, and define

2
N (s )

S(W) = N(s)
D (s ) 2 2

n( ) S = - to

Then the solutions of Eq. 11 satisfy the differential equation

N Dn  i(t) - XiD d2] N n  L i(t) = 0.

PROOF: This follows directly from Theorem 2 with T 1 = oo. Q. E. D.
12

A final property of the expansion of Theorem 3 is as follows. It is known that the

optimum detector for detecting the presence of x(t) by observing y(t) over the doubly

infinite time interval makes a decision based on the quantity

oo

f y(t) q(t) dt,
-00

where

o X(w) H(w)
q(t) = X eJWt df.

-0 S (W)

In vector notation this quantity becomes

0oy(t) q(t) dt = (y, Klr) = y r = y [ ]x.
-00

The "generalized E/N " for this case is

SIX () 2 IH(w) 2  2
f ) df = (r, K r)o = r r= Xix 2 ,

i=O

and, since the input energy is x x = i', it follows that again x(t) = co(t) is the opti-

i=0
mum signal to be used to minimize the probability of error for fixed input energy.

Other results have been obtained on expansions for colored noise with a finite-time

observation interval and for a class of { (t)} that are again time-limited after passing

through the filter.

The author would like to thank Dr. Robert Price, Lincoln Laboratory, M. I. T., for

his careful reading of this report.

J. L. Holsinger
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