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This paper consists of two parts: First, an approximate scaling law is derived that relates the pole-tip
magnetic field of the final-focusing quadrupole to the focal spot size and all the essential heavy-ion beam
parameters (current, atomic weight, emittance, charge state, and velocity). Calculations show that this law
is reasonably accurate for a useful range of parameters and that it is useful in heavy-ion fusion system
studies. Second, a first-order nondispersive focusing system is designed with the space-charge effect properly
included. Calculations show that the first-order distortion of the particle distribution from uniformity is not
important. It is therefore possible, in principle, to design a nondispersive system to bend high-current beams
so that direct line-of-sight neutrons can be avoided.
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1. INTRODUCTION

Heavy-ion accelerators are receiving increased attention as drivers in inertial confine-
ment fusion (ICF)! for commercial energy production because they can have a high
repetition rate (>> 1 Hz),>* high efficiency (up to 40%),? and good reliability over
many pulses. An important requirement for a heavy-ion driver is the ability to focus
kiloampere beams onto a millimeter-size spot (the typical size of an ICF pellet) using
quadrupole magnets. Two aspects of the final focusing system are addressed in this
paper.

First, it is useful to have a scaling law for the focusing system for studies of heavy-ion
fusion (HIF) systems Several authors have attempted to obtain such a scaling law. For
example Garren* obtained a scaling formula for vacuum chamber propagation, and
Lee’® modeled a focusing system without space-charge effects. In this paper, we derive
a scaling law that relates, with reasonable accuracy, the pole-tip magnetic field of the
final-focusing quadrupole to the focal spot size and all the parameters (current, atomic

65



66 D.D.-M. HO and K. R. CRANDALL

weight, emittance, charge state, and velocity) of a high-current heavy-ion beam. For
non-neutralized beams, this law shows that if the beam power on the focal spot is kept
fixed, the pole-tip magnetic field increases as the particle mass increases and as the
charge state and particle velocity decrease. If the ion-stopping range is fixed, this law
allows one to obtain the beam atomic weight that can minimize the pole-tip field.

Second, it is necessary to bend the beam so that direct line-of-sight neutrons can
be avoided. Wollnik® designed bending magnets for a long focusing system; here, we
present the design of bending magnets for a short focusing system. (It is important
to keep the length of an HIF focusing system to a minimum because the longitudi-
nal space-change force causes the ends of high-current beams to expand rapidly.”)
This design is first-order nondispersive, and the effect of space charge is included
self-consistently in our calculation. We also conclude that nonlinear electric fields in-
duced by the first-order distortion of particle distribution from uniformity caused by
the bending magnets are not important.

This paper is organized as follows: Section 2 gives an example of a typical heavy-ion
final focusing system. Then we derive the scaling law and discuss the behavior of the
focusing system, according to this law, as we change various parameters. Section 3 dis-
cusses the dependence of the pole-tip field on the atomic weight and stopping range
of beam particles. Section 4 presents the design of a first-order nondispersive focus-
ing system and discusses the cause and effect of the nonlinear electric field. Section 5
summarizes the results. The appendix gives the ion-stopping formula.

2. DERIVATION OF THE SCALING LAW FOR FINAL-FOCUSING SYSTEMS

Figure 1 shows the configuration of a typical final-focusing system for HIF. This sys-
tem is designed using the envelope code TRACE® for a 10 GeV beam with atomic mass
210, unnormalized emittance 20 mm-mrad, charge state ¢ = 2, and a current of 2 kA.
The configuration shown here represents a waist-to-waist focusing system (i.e., the en-
velope has circular cross section and zero slope at the starting point and at the focal
spot). At the entrance of the focusing system, the beam waist has a 2.88 c¢m radius.
The beam then undergoes radial expansion due to space-charge force and is finally
focused by four large-aperture quadrupoles onto a focal spot with 2.5 mm radius. Ta-
ble 1 gives the magnetic field gradients and the dimensions of the focusing system. The
quadrupoles are numbered Q, through Q,. Four quadrupoles are used because five
would make the system too long and three would make the field gradients too high.
The drift distance L between the focal spot and the exit plane of the fourth quadrupole
is 6 m. This is the reference focusing system referred to throughout the paper. Note
that we have made the maximum excursions of the envelope in = and y directions
roughly equal; this minimizes the second-order chromatic aberration, the third-order
geometric aberration, and the maximum pole-tip magnetic field.

To obtain the scaling law, we first relate the beam envelope radius 7, (at the exit
plane of the fourth quadrupole) to the beam parameters and the focal spot radius ro
using the vacuum envelope equation for uniform-density beams with K-V distribution
and with equal emittances and displacements in the two transverse directions. The
equation has the form
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TABLE 1: Reference system parameters for charge-state-2, 2-kA, 10-GeV
beam with atomic weight 210 and unnormalized emittance 20.5 mm-mrad.

Distance from
Quadrupole Magnetic field Quadrupole  quadrupole center to

number gradient (T/m) length (m) waist at entrance (m)
Q -6.29 2.075 15.0375
Q, 10.10 3.250 19.0000
Q3 -12.44 3.250 23.4750
Qq 17.03 1.575 26.8875

pEi T R M
where
_7 ql
=1.278 x 107 ——— .
g Ap(B)?

Here r is the beam radius, s is the distance along the direction of propagation, ¢ is the

unnormalized emittance, A, is the atomic weight of the beam ion, I is the electrical

current, g is the charge state, and [+ is the usual relativistic factor. All units are SI.
Integrating Eq. (1) yields

r0=(g,)

2 1 1 TL
=5 - = In(—=) .
‘ <7"§ r} o To @)

Since r;, >> ro, we can ignore the 1/r2 term.

Following Garren,* we define 6§, = ¢/ro and replace r1, by L6, in Eq. (2). This
approximation is valid since r, is inside the logarithmic term. For example, for the
reference system, r, =~ 2L6,. Therefore, using L8, instead of r;, in Eq. (2) results in
only about 10% error in 8(L). Eq. (2) then becomes

O(L) ~ [62 + gIn(Lbo/r0)]"/* . 3)

Numerical calculations presented in the following paragraph show that

Substituting the beam parameters for the reference system shown in Fig. 1 into Eq.
(4) gives r, = 10.1 cm. This is within 6% of the actual value of r;, = 9.5 cm obtained
from numerical integration of Eq. (1). [Note that for this example, the space-charge
term — the second term inside the bracket in Eq. (3) — is about three times greater
than the emittance term, which is the first term inside the bracket]. As the current is
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FIGURE1: Reference final focusing system for a charge-state +2, 2-kA, 10-GeV beam with atomic weight
210 and unnormalized emittance 20.5 mm-mrad. The solid and dashed curves show the envelope in the
transverse z and y directions, respectively.

increased to 10 kA, the difference between the values obtained from Eq. (3) and that
from numerical integration is still within 6%. However, as the current increases further
to 30 kA, the difference becomes greater than 11%. This is because the approximation
we made for the logarithmic term is no longer valid for very high current. (Thus,
Eq. (4) cannot be used for light-ion beams for which the atomic weight is two orders
of magnitude lower and the current is two orders of magnitude higher.) In contrast,
for beam propagation with charge neutralization, the space-charge term will become
smaller than the emittance term, so Eq. (3) provides an even better approximation of
the actual value. For example, when the current decreases to 0.1 kA, the difference
between the values obtained from Eq. (3) and that from numerical integration is less
than 2%. Eq. (4) is therefore applicable to a wide range of currents at HIF-relevant
parameters.

To relate Eq. (4) to the quadrupole pole-tip magnetic field B,, we model the
reference system by a simplified point-to-point configuration (i.e., the envelope has
zero radius at the starting point and at the focal spot) with thin lenses, as shown in
Fig. 2. The focal length of each lens has the same value L, and the focal length can be
expressed as

_ yAempu

f= qeB'lag

®)

where B’ is the quadrupole field gradient, e is the electronic unit of charge, £1nqg 1S the
length of the magnet, m,, is the proton mass, and v is the particle velocity. The solid
line represents particle trajectory in the z direction (and the dashed line the trajectory
in the y direction); initial and final slopes are at angle 6. Space-charge force is not
included in this simplified model. This approximation is valid since beam envelope size

is large except near the focus and thus space-charge force is not important except near
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FIGURE 2: Final focusing system modeled by four thin lenses of focal length L (indicated by dark vertical
lines). The solid and dashed curves show the envelope in the transverse z and y directions, respectively.

the focus.” To relate the beam radius and angle at the exit plane of the fourth
quadrupole to the beam parameters, Egs. (3) and (4) are applied to the drift space.
In Fig. 2, the maximum envelope excusion is 3L6. The pole-tip field is

B, = (3L +68)B' , (6)

where § is the spacing requirement for neutron shielding between the beam envelope
and the magnet. The typical value of § is 0.1 m; this value will be used throughout this
paper.'? Combining Egs. (3), (5), and (6), we obtain a relation for B,, for our simplified
model:

cAymyp By €0\?2 7 ql Lo, /2
— SOy =0 ) _ 2" n(=0 (7
B, 0¢Limag {3L [(7‘0) +1.278 x 10 RIE ln( o ) +6 @)

This functional dependence of B, on beam parameters should apply to realistic
systems as well, since space charge acts mainly near the focus, regardless of the
quadrupole structure. However, because of various approximations used in the sim-
plified model from which Eq. (7) was obtained (e.g., quadrupoles are modeled by thin
lenses with equal focal strength, and a point-to-point configuration is used), the value
of By, given by Eq. (7) will differ from the actual B, by some multiplicative factor. To
obtain this factor, we compare the value of B, obtained from Eq. (7) with that ob-
tained from TRACE for the reference system shown in Fig. 1. We have found that the
same multiplicative factor applies to systems similar to Fig. 1 for a variety of condi-
tions, as we will show.

In the simplified model shown in Fig. 2, the maximum envelope excursion occurs
at both the second and third lenses. However, we need only consider the value of
B, at the third quadrupole, since numerical calculations always show that the third
quadrupole has a higher B, than the second. Using Eq. (7), we find that B, at the
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third quadrupole of the reference system is 2.19 T, whereas B, = 4.3 T from numerical
calculation. Thus the scaling law with the correct multiplicative factor is

1.96CA(,’ITL ,3’)’ o 2 _ qI L90 1/2
B, = — <l Ml ) 1. 7 In( =22 5
b= et (3 (TO) H1218x 1077 -0 n( - )|+

©)
To check the accuracy of Eq. (8), we compare B, obtained from Eq. (8) with that
obtained from TRACE by varying various beam parameters of the reference system.
(When a parameter is varied, all other beam parameters are kept fixed unless stated
otherwise.) As the parameters are varied, four constraints are imposed. First, all
lengths in the focusing system are the same as in the reference system except the
distance between the waist and the entry plane of the first quadrupole. Second, the
maximum excursions of the envelope in the = and y directions are adjusted so that
they are roughly equal. Third, the beam power on the focal spot [which is proportional
to Ay(I/q)3?] is kept fixed. Fourth, the beam envelope radius a at the entrance of the
focusing system follows the relation

~ [ 9 9
=N\ 2%, ©)

where the average applied force per unit mass from the magnetic FODO channel'!

7 23—277 2721.2
ko = T n°l°kg

and the usual quadrupole strength constant

BI
[Bp]

Here 7 is the fractional occupancy of quadrupoles, [ is the half period of a FODO
structure, and [Bp] is the magnetic rigidity. Eq. (9) is obtained by balancing the space-
charge term and the external focusing-force term in the envelope equation with a
being the average beam radius in a FODO channel. Emittance term is omitted here
since the beam is space-charge dominated in a FODO channel. We assume that B’, 7,
and [ remain unchanged when various beam parameters are varied. Consequently,

ko =

acx/g/ké .

Under the above constraints, we then vary several parameters, one at a time. The
value of Ay is increased from 210 to 420 (corresponding, e.g., to using molecular ions)
while decreasing I by a factor of 2 from the reference system to keep the same incom-
ing beam power at the focal spot constant. The emittance is decreased by a factor of
2. The charge state g is decreased from 2 to 1 (so that the current drops by a factor of
2). By reducing the particle velocity from the reference velocity vg, kinetic energy is
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TABLE 2: Values of B, obtained from Eq. (8) and from TRACE

B, from  B,from  Distance between Waist
Eq. (8) TRACE waist and first radius

(T) ) quadrupole (m) (cm)
Reference system 43 4.3 14.0 2.88
Values of parameters
under variation from
the reference system
Ap=420(I=1.0 kA) 6.3 6.4 21.5 2.88
£=10.25 mm-mrad 4.0 3.8 13.0 2.88
¢=1(I=1.0kA) 6.3 6.4 21.5 2.88
K.E. = 5GeV (v=v9/v2) 6.7 6.8 14.0 3.42
ro=1.5mm 4.7 4.7 18.5 2.88
I=1.0kA 3.5 33 16.0 2.04

reduced to 5 GeV and current is increased by a factor of 2. The r( is decreased from
2.5 to 1.5 mm, and finally the current is decreased from 2 to 1 kA. (When current
varies, the beam power varies accordingly. The total beam power is kept constant by
varying the number of beams.) Table 2 gives the value of B, obtained from Eq. (8) and
from TRACE for the focusing system under the variation of the above parameters. The
values are within 6% of each other, and thus Eq. (8) provides a reasonably accurate
approximation of the focusing system. All the data in Table 2 correspond to focusing
the beam onto a 2.5-mm-radius focal spot except when stated otherwise.

Figure 3 shows the behavior of B, as A4, &, g, v2, 7o, and I vary, as calculated
from Eq. (8). Figs. 3(c) and 3(d) indicate that B, increases as q and v? decrease. This
is because when g decreases, the efficiency of the quadrupole magnets decreases faster
than the space-change force near the focal spot. When kinetic energy v? decreases
(and current increases in order to keep the beam power constant), the efficiency of the
quadrupole magnets decreases and the space-charge force increases. Consequently,
By increases in both cases.

3. DEPENDENCE OF Bp ON THE ATOMIC WEIGHT AND STOPPING RANGE
OF BEAM IONS

One parameter of relevance to HIF is the stopping range R of the target material
for the incoming beam, which determines the radiation conversion efficiency.'? For a
fixed R, there exists a relation between B, and A, which allows one to minimize B,, by
varying Ayp. To derive such a relation, we first plot the incoming particle velocity and
energy versus Ay for various beam ions, as shown in Fig. 4. The stopping material for
Fig. 4 is beryllium at 300 eV with R = 0.125 and 0.06 g/cm® These curves are plotted
using Eq. (A.6), given in the Appendix. For the same stopping range, particle current is
increased as Ay decreases so that the beam power is conserved. For example, compar-
ing Pb and Kr (4, = 210 and 84, respectively), we see that the velocity for Kr is about
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FIGURE 3: Pole-tip magnetic field vs. (a) ratio of beam atomic weight A, to reference atomic weight Ao
(=210); (b) emittance; (c) beam charge state; (d) square of the ratio of the beam velocity to the reference
beam velocity (corresponding to a 10-GeV beam with A,=210); (€) focal spot radius; and (f) beam current.
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FIGURE 4: Incoming beam velocity and energy vs atomic weight for stopping ranges of 0.125 and 0.06
g/em? in beryllium at 300 eV and 0.7 g/em?.
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10% less than that for Pb, whereas the energy for Kr is about one-third that for Pb,
all for R = 0.125 g/cm?. Consequently, if Kr is used, the current must be about three
times that of the Pb beam.

As the current and atomic weight change, the normalized emittance changes

according to
En 0C T4/ Azb ) (10)

where T is the transverse temperature of the ion source. If we assume that the
extractor voltage and the extraction gap width of the source are fixed, then the current
changes according to I « r2/q/Ap, which is the maximum available current from a
planar diode limited by space-charge effect, as given by the Child-Langmuir law.'® The
unnormalized emittance therefore varies as

VI
g X W (11)

if the source temperature is fixed. Using Eq. (11) and taking into account that A;, I,
and v change according to the range relation given in Fig. 4, we plot B, vs A} using
Eq. (8) in Fig. 5. In this figure, the beam parameters are the same as those for the
reference system at A, = 210 with R = 0.125 g/cm?. Based on the parameters of the
reference system, all the beam parameters along the curves are varied according to
Eg. (11) and the range relation in Fig. 4. All data in Fig. 5 correspond to focusing
a beam with ¢ = 2 onto a 2.5-mm-radius spot with the same beam power as for the
reference system. Two cases, R = 0.06 and 0.125 g/cm?, are presented. For each case,
beams with no charge neutralization I = I, and with 50% neutralization in chamber
I = 0.5, are plotted. (The curves with charge neutralization are obtained simply by
reducing I in Eq. (8) proportional to the amount of neutralization.) In this figure, the
value of B, corresponding to low atomic weight is less than the actual B, because the
approximation made for the logarithmic term in Eq. (2) breaks down for such beams
at high currents, as mentioned earlier.

Figure 5 shows that for R = 0.125 g/cm? without charge neutralization, B, is
minimum at about A, = 145. This would be the operating point to minimize B,,. For
the same stopping range, beam energy decreases as A, does. To get the same power,
we must increase particle current. Hence the beam envelope at the entrance of the
reactor chamber increases as A, decreases. Consequently, if there is no need to use
the lowest B, then one would choose large 4, to minimize the beam envelope. In any
case, one would probably avoid using any ion to the left of the minimum A,, because
both B, and beam envelope increase to the left of this point. If the maximum pole-tip
field is around 5 T,'° then the case for R = 0.06 g/cm?® without charge neutralization
cannot be used. One must either increase R, or introduce some charge neutralization,
or increase the number of beamlets to bring the minimum B, required to 5 T or less.

For a typical ICF reactor capsule, the power requirement is roughly 10% to 10 W,
More than one beam is therefore needed, and this affects our estimate of the beam
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FIGURE 5: Pole-tip magnetic field vs beam atomic weight for stopping ranges of 0.125 and 0.06 g/cmz.
All data correspond to focusing a beam with g=2 onto a 2.5-mm-radius spot with the same beam power as
for the reference system.

envelope size at the exit plane of the fourth quadrupole, obtained using Eq. (4).
Langdon'* has simulated multiple beam propagation in a chamber followed by fo-
cusing on a spot with 3-mm radius. In this simulation, seven beams were used. Each
beam had parameters similar to those in the reference example shown here, and seven
beans gave a total power of 2 x 1014 W. The simulation results showed that the effect
of seven beams interacting with each other at and near the focal spot is to enlarge the
beam envelope at the exit plane of the fourth quadrupole by about 15% over single-
beam propagation. Thus, to estimate the multiple-beam effect on the scaling law, one
can just multiply Eq. (8) by a factor of 1.15.

4. FIRST-ORDER NONDISPERSIVE FINAL-FOCUSING SYSTEM

For HIF, beam bending is necessary in the final-focusing system to avoid the direct
neutron line-of-sight problem. The bending magnets must be designed so that the
system is first-order nondispersive to avoid degradation in focal spot size due to
momentum spread AP from the reference momentum Py. The design of a first-order
nondispersive system based on the reference system is presented in this section. Our
emphasis is on demonstrating the feasibility of bending high-current beams, rather
than on presenting a detailed engineering design.
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Assuming that the bending occurs in the z plane, the single-particle equation of
motion in the z direction is

vy (k- 1y, - _14AP
"’ + <k ksg + ,02):1: = ) (12)

where the primes represent the derivative of the quantity with respect to s, kz and
ks are the quadrupole and space-charge forces per unit mass, respectively, and p is
the radius of curvature of a particle in the magnetic field of a bending magnet. In Eq.
(12), the space-charge force is linear, and this assumption is valid because the particle
distribution is nearly uniform inside the envelope (except near the focal plane) as
confirmed by simulations.” The solution to Eq. (12) is

z(s) = cz(8)xo + sz(s)zy + D(s)AP/ P, (13)

where c; and s, are the solutions of the homogenous part of Eq. (12) and the subscript
zero refers to initial conditions at the waist. The dispersion is given by

5 ¢y 51 8g
D(s) = —sa(sy) / Zds +ey(sy) [ Zds (14)
o P o P

where s is the distance from the waist to the focal spot. The requirement for a first-
order nondispersive system is D = D’ = 0 at the focal spot.

To design the nondispersive system, we modify our reference system by adding
three bending magnets, arranged as shown in Fig. 6(a) for a 3.3-kA beam. We then
use TRACE to perform an optimization with six constraints at the focal spot. (These
constraints are that the envelope sizes in the x and y directions equal the spot radius
and have zero slope, and D = D’ = 0.) Fig. 6(b) displays D and D’ as functions of s.
Table 3 gives the magnet strengths and the dimensions of this system.

For low-current beams, the design of a first-order nondispersive system is complete
at this point. For high-current beams, however, radial electric fields generated by
space charge are an important consideration in focusing. Bending magnets induce
nonuniformity in the particle distribution. Consequently, nonlinear electric fields are
generated; we now estimate the importance of these fields. The displacements Az of
a particle due to momentum spread is D(AP/P,). Fig. 6(b) shows that the maximum
value of D is 0.25 m. Thus, if we assume AP/Py = +0.01, the maximum Az is +0.25
cm. To simplify the discussion, we assume that the beam envelope has a circular cross
section. The particles having AP/ Py = £0.01 will move a distance +0.25 cm from the
particles with AP/P, = 0, at the location where maximum Az occurs (see Fig. 7). In
Fig. 7, the electric field is nonlinear where the three circles do not overlap each other.
As shown in Fig. 7, these areas have a width of 2Az = 0.5 cm. This is smaller than the
envelope, which has a minor radius of about 30 cm at the location of maximum D. The
nonlinear electric fields therefore affect only a small fraction of the beam particles, and
this effect can therefore be ignored.
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FIGURE 6: First-order nondispersive final focusing system for charge-state-2, 3.3-kA, 10-GeV beam with
atomic weight 210 and unnormalized emittance 20.5 mm-mrad. (a) Layout of the system. (b) Dispersion
and its derivative vs distance.

TABLE 3: System parameters with bending magnets for charge-state-2, 3-kA,
10-GeV beam with atomic weight 210 and unnormalized emittance 20.5 mm-mrad.

Distance from

Quadrupole Magnetic field Quadrupole quadrupole center to
number gradient (T/m) length (m) waist at entrance (m)
Q —6.5282 2.075 15.3415
Q, 8.3625 3.250 19.3040
Q3 -10.6399 3.250 25.5953
Qq 17.0689 1.575 29.0078
Distance from bending
Bending Bending Radius of magnet center to the
magnet number angle (deg) curvature(m) waist at entrance (m)
B, 2.0000 35.2 13.1895
B, -1.9798 35.2 22.4622
B; 1.2807 35.2 31.0887
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FIGURE 7: Schematic of the envelopes of particles with AP/Py=+6, 0, and —§ at the location where
maximum dispersion occurs. The nonlinear electric field occurs in the regions of width 2Az.

5. CONCLUSION

We have derived a scaling law for final focusing systems for high-current heavy-
ion beams. This scaling law is useful in heavy-ion fusion system studies. For non-
neutralized beams, it shows that if the beam power on the focal spot is kept fixed, the
pole-tip magnetic field increases as the particle mass increases and decreases as the
charge state and kinetic energy increase. If the ion range is fixed, the relation between
pole-tip field and beam atomic weight can be obtained from the scaling law. Using
this relation, together with other information, the most appropriate beam atomic
weight can be determined. We have presented the design of a first-order nondispersive
focusing system, with space-charge effect properly included. This system can avoid
the direct neutron line-of-sight problem. Calculations show that the nonlinear space-
charge electric field induced by the bending magnets is insignificant. In principle, a
nondispersive system can therefore be designed for bending high-current beams so
that direct line-of-sight neutrons can be avoided.
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APPENDIX: ION-STOPPING FORMULA

We define ( = ps, where p is the density; all units in this appendix are cgs. The ion
range R in g/cm2 is then given by

Rz/OEO(%)_ldE , (A1)

where Ej is the energy of the incoming ion. The rate of energy loss with respect to ¢
. 15,16
is
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Here m, is the electron mass, v, is the electron thermal velocity, and the function

G(z) = erf(z) — werf'(z), where erf(x) is the usual error function. The target material

has atomic weight Ar, atomic number Zr, and average ionization Z. The beam ions

have velocity v and effective charge Zg, which, for cold matter, has the form!’

Zg = Z[1 — 1.034exp(—4.57 x 10902 709%8)] | (A3)

where Z is the atomic number for the beam ions. For beam ions whose velocity
is high with respect to that of target electrons, Eq. (A.3) should give a reasonable
approximation to Zg for hot matter. The expression for Ap is

Ap =2m?/1, , (A4)

where I, is a geometric average of the effective excitation and ionization potentials of
the bound electrons and is given approximately by 10Z eV.!® The expression for A
is

Ap =~ mev? [hw, A5
P

where w,, is the plasma frequency.

If beryllium is used as target material at a density of 0.7 g/cm® and a temperature
of 300 eV, we have 2m.v?/I,, ~ mev?/2hw,. This is why the decrease of the range of
the incoming ions as the temperature of the target material rises is less important for
low-Z than for high-Z material. At 300 eV, Zr ~ Z for beryllium, and thus the term
proportional to In Ap can be ignored. Eq. (A.1) then becomes

Zo

A P

R=3.0x 10—22—’; 231 — 1.034 exp(—4.7¢Z~°%8)]| "*[2G(2) In 26.82%) \dz ,
1

(A.6)

where z = v/v. and 2y = vg/ve, With vy the initial beam velocity. In evaluating the
above integral, we get G(z) = 1 for z > 1. Note that the contribution from z < 1 is
smaller than that from z > 1, if the initial velocity of the ion is much greater than v,;
hence, the contribution to R from = < 1 can be ignored.





