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A. AN APPLICATION OF MICROWAVE FREQUENCY ULTRASONICS TO

THE MEASUREMENT OF THE FERMI SURFACE OF GALLIUM

This report is a summary of a Ph.D. thesis submitted to the Department of Physics,

M.I.T., August 19, 1963.

What is believed to be the first application of microwave ultrasonics to the obser-

vation of magnetoacoustic oscillations in metals is described in the author's thesis.

Difficulties in making single-crystal metal samples suitably thin and flat for this pur-

pose and in bonding them to ultrasonic transducers have been overcome, to make what

had hitherto been considered an impractical use of microwave ultrasonics into a very

powerful one. The large values of qf andWTr easily achieved at such frequencies pro-

vide the principal advantage over radio -frequency techniques.

The theory of ultrasonic attenuation in metals has been reviewed and a general

expression for the electronic contribution to the attenuation in a metal with an arbitrary

Fermi surface at an arbitrary frequency (but below the plasma frequency) derived. For

the free-electron gas this expression reduces to the familiar results of Pippard.

The results of experiments on gallium for 6 different combinations of magnetic field

and ultrasonic propagation directions are reported. Sixty-one series of magnetoacoustic

oscillations are presented, of which 55 are tentatively identified as geometric reso-

nances, and 6 as ultrasonic cyclotron resonances. These results suggest that the Fermi

surface of gallium consists of many separate pieces, some of which are quite small and

some of which give rise to rather high electron (or hole) effective mass. Many of the

pieces seem to be less irregularly shaped than is suggested by the orthogonalized plane-

wave model.

The velocity of propagation of longitudinal ultrasonic waves along the a, b, and c

crystallographic directions of gallium is reported.

A peculiar phenomenon, suggestive of an additional mode of ultrasonic propagation

in metals at microwave frequencies, was observed and a brief discussion is given in

the thesis.

N. Tepley
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B. ULTRASONIC ATTENUATION IN SUPERCONDUCTORS

The scope of the measurements of the attenuation of L-band phonons in thin samples

of superconducting and normal indium, reported previously, I has been extended to

include both the temperature dependence and the magnetic-field orientation dependence.

The experiments were carried out in a standard helium-four cryostat throughout a temp-

erature range extending from slightly above 3.40*K (the critical temperature of indium)

down to 1. 22*K. The L-band ultrasonic rack and the low-temperature station employed

in these measurements are shown in Fig. II-1.

Fig. II-1. L-band ultrasonic rack and the low-temperature station.

The cryostat has been provided with a facility for automatic temperature regulation. 2

A close-up of the temperature regulator is shown in Fig. 11-2. The helium vapor is

evacuated through a thin-walled rubber tube that is contained within a pressure cham-

ber. The reference pressure in this chamber is controlled by a large ballast tank, the

pressure of which may be adjusted to any desired value. The pressure difference
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between the reference chamber and the pump line collapses the thin-walled rubber tube

until the pumping rate is equal to the boiling rate of the helium at the desired reference

pressure. During the course of the experiment, this automatic temperature regulator

is employed to keep the pressure constant over the boiling helium within 0.1 mm Hg,

Fig. 11-2. Automatic temperature regulator.

from 3. 4K to 1. 7K. Under equilibrium conditions, this corresponds to a maximum

temperature fluctuation of 2 X 10- 3 °K at the lower limit of its range. Below 1. 7*K

there is not sufficient gas pressure to collapse the rubber tube, and the temperature

of the system must be regulated by manual adjustment of the pumping rate.

The magnetic field is supplied by superconducting Helmholtz coils. Each coil con-

sists of 800 turns of niobium wire wound upon a brass coil form so that the mean dia-

meter of the coils is 3 inches. The coil form is provided with clamps for mounting the

L-band re-entrant cavities in either of two orientations - H 1I or H L, where q

is the ultrasonic wave vector. The photograph in Fig. II-3 is a view of the supercon-

ducting magnet, and the sketch is a scale drawing defining the orientation of the H and q

vectors with respect to the indium sample. The magnetic field may be determined

within 0.2 per cent by measuring the current to the superconducting magnet with a pre-

cision ammeter.

The entire L-band ultrasonic cryostat head is shown assembled in Fig. 11-4. An
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Fig. II-3.

Upper: photograph of the supercon-
ducting Helmholtz coils.
Lower: sketch illustrating the orien-
tation of the H and q vectors with
respect to the indium sample. (The
transducer-sample system has a cir-
cular cross section.)

QUARTZ

TRANSDUCER

ROD

QUARTZ

TRANSDUCER

ROD
HI

Fig. 11-4. Assembled L-band ultrasonic cryostat head.
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exploded view of the L-band re-entrant cavities and a description of the electronic appa-

ratus used for the generation and detection of the ultrasonic pulses has been included in

a previous report.'

1. Energy Gap

The theory of superconductivity proposed by Bardeen, Cooper, and Schrieffer 3 (BCS)

includes a calculation of the ratio of the electronic contribution to the ultrasonic atten-

uation coefficient of a metal in the superconducting state to that of the metal in the nor-

mal state.

a

as= Zf(E),
n

where f(E) is the Fermi function

f(E) = )/k1
e E(T)/kT +1

(1)

and E(T) is the temperature-dependent superconducting energy gap. A graph of the nor-

malized energy gap E(T)/E(O) is shown in Fig. II-5a as a function of reduced tempera-

ture. The normalized superconducting attenuation coefficient of Eq. 1 is represented

.2 o! 0.6 0.8

- -
Fig. II-5. (a) Temperature dependence of

the superconducting energy
gap (after Bardeen, Cooper,

and Schrieffer 3).
(b) Experimental temperature

dependence of d(t)/D(O) in
polycrystalline indium at
28.5 mc (from the work of

Morse5).

0.5
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by the solid line in Fig. II-7a as a function of the reduced temperature T/T . The essence

of the BCS theory is that in certain metals that are cooled below some critical temper-

ature Tc that is characteristic of the metal, it is energetically favorable for the con-

duction electrons in the immediate vicinity of the Fermi surface to condense into quasi

particles, each containing a pair of electrons whose spin and momentum vectors are

equal and opposite. Since the quasi particles possess zero total momentum, they do not

contribute to phonon scattering. The sharp decrease of Eq. 1 directly below t=l reflects

the decreasing fraction of normal electrons.

The experimental procedure is to pump on the liquid helium until some desired temp-

erature is reached, and then to close the valve connecting the automatic regulator bal-

last tank to the cryostat. The automatic regulator will then hold this temperature within
-3

2 X 10-3 K for any desired length of time until the helium has evaporated. The trans-

mitter produces periodic pulses of rf power which are converted into acoustic pulses

by one re-entrant cavity, are passed down the first quartz transducer rod, through the

sample, and through the second quartz transducer rod, and are reconverted into rf

energy in the second re-entrant cavity. After detection, this transmitted pulse is

30 -

20 -

i 

0 1 2 3 4

T K)

Fig. 11-6. Experimental values of the difference D(t) in the
electronic contribution to the ultrasonic attenua-
tion coefficient between the superconducting and

the normal states for indium, 5.72 X 102 cm
thick at 0.91 kmc.

QPR No. 71



(II. MICROWAVE SPECTROSCOPY)

displayed on an oscilloscope beside an rf calibration pulse, which has been injected into

the system in order to eliminate the need for measuring the nonlinear character of the

detection process. While the sample is in the superconducting state, the height of the

calibration pulse is adjusted to equal the signal pulse. The sample is then returned to

the normal state by switching on a current to the superconducting magnet which is suf-

ficient to produce a magnetic field greater than the critical field of the indium at that

temperature. The height of the calibration pulse is then reduced to equal the height of

the signal pulse by use of a calibrated attenuator. Therefore, the quantity that is

recorded is D(T), a measure, in decibels, of the difference in the transmitted pulse

height when the metal sample is switched between the superconducting and the normal

states. The experimental values of D(T) obtained for a disc of indium 5. 72 X 10 - 2 cm

thick at 0. 91 kmc are displayed in Fig. 11-6.

In order to relate D(T) to Eq. 1 it is necessary to extrapolate the measurements to

T=0*K, and to obtain the temperature dependence of the normal attenuation coefficient.

a (T) D a (0)

an (T) D() a nT(3)

The short-term stability of the apparatus was sufficient to determine D(T) within a few

per cent by averaging approximately 10 measurements. The mean-square deviation was

usually around 0. 3 db but sometimes rose as high as 0.5 db. It was not possible, how-

ever, to determine an (0)/an(T) accurately in these experiments. The strong tempera-

ture dependence of the dielectric constant of liquid helium above the X-point requires

continual adjustment of the apparatus as the temperature is lowered. This and other

factors contribute to a long-term instability of the apparatus.

The temperature dependence of the normal attenuation coefficient an(T) is caused by

the variation of the mean-free path of the conduction electrons as a function of temper-
4ature. From the initial work of Bbmmel on lead it can be seen that, at 27 mc, a (T)

rises rapidly as the temperature is lowered from 10 0 K to 4°K. Below 4°K it approaches

a constant value determined by impurity, grain boundary, and geometric boundary

scattering. Since it is the ratio of the electronic mean-free path to the ultrasonic wave-

length that is important in ultrasonic attenuation, it is evident that at higher frequencies

this transition should begin at a higher temperature.

The complicated dependence of an(T) upon sample and frequency makes it difficult

to ascertain the effect of this quantity upon our interpretation of the D(T) measurements,

but it is possible to obtain an estimate of the upper limit. To this end, we define

a quantity d(T) for the metal in the normal state which represents the devia-

tion in decibels of the transmitted pulse height at any temperature T from that

at absolute zero. This quantity is related to an(T)/an(0) by the following

equation.
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d(T) a (T)
= 1- (4)San(O)

and Eq. 3 becomes

0.9 -

0.8 -

0.7 -

THEORETICAL CURVE FOR O) = 1.75kT

0.5 -

0.4-

0.3 -

0.2 -

x

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2
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Fig. 11-7. (a) Normalized superconducting attenuation coefficient.
Experimental temperature-dependent data have been
superimposed according to Eq. 5, with d(t) = 0, upon
a plot of Eq. 1, with .(O) = 1.75 kTc

(b) Logarithm of the data of (a) as a function of inverse
reduced temperature. The asymptotic value of the
curve serves to fix the absolute value of the super-
conducting energy gap at absolute zero.
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as(t) D(t)
a(t) = 1 - D(0)-d(t)"

Here, as a matter of convenience, we have expressed the functional relationships in

terms of the reduced temperature t=T/Tc* The temperature dependence of d(t)/D(0) has

been extracted from the data of Morse on polycrystalline induim at 28. 5 mc. It is

plotted in Fig. II-5b. The magnitude of d(t), as well as the position of the knee at which

d(t) becomes constant, is likely to be different for our experiment. The most rapid varia-

tion of d(t) occurs near t= 1, and it has been possible to establish from our measurements

INDIUM HIq

9 MAGNETIC FIELD INCREASING

O MAGNETIC FIELD DECREASING

200 300 5D 0 s 100

MAGNETIC FIELD (GAUSS - MAGNETIC FIELD (GAUSS)

(0) (b)

INDIUM HIq

, - 0.9177

* MAGNETIC FIELD INCREASING

O MAGNETIC FIELD DECREASING

MAGNETIC FIELD (GAUSS)

(c)

MAGNETIC FIELD (GAUSS)

Fig. 11-8. Attenuation of L-band ultrasonic pulses in indium as a func-
tion of external magnetic field. (a) t = 0. 441; (b) t = 0. 766;
(c) t = 0.9177; (d) t = 0. 9927.
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that Id(t) I < 3 db at t= 1. This means that d(t)/D(0) for our experiment is probably not

larger than 2 or 3 times that shown for Morse' s data in Fig. II-5b, a fact that could

affect our measurements as/an by 10 or 20 per cent, at most, within a small region of

temperature above t=0. 9. Below this temperature, the effect diminishes rapidly to a

negligible value at t=0. 6.

In the light of these considerations, we shall delete d(t) from Eq. 5 and superpose

the data expressed in Fig. 1I-6 upon a theoretical curve obtained from Eq. 1. This func-

tion has been evaluated for the superconducting energy gap E(0)=1. 75kTc predicted for

all superconductors in the BCS approximation. 3 The comparison of our data with the

BCS theory is shown in Fig. II-7a. The extrapolated value D(0) was obtained by fitting

all of the experimental points D(t) to Eq. 1 for temperatures less than t=0.9. Points

at higher temperatures did not fit welL. A possible cause may be the exclusion of the

unknown d(t) function. At low temperatures D(t) approaches 21 db, and it becomes

increasingly difficult to make accurate measurements. Consequently, another run was

made with the effort concentrated in a region 0, 35 < t < 0. 65. These additional points

are shown by crosses in Fig. II-7a. Each of these points consists of an average of 9,

or more, separate measurements of D(t). The mean-square deviation was usually 0.3

db, but sometimes rose as high as 0. 5 db. The scatter of the points at the lower temp-

eratures reflects the increased difficulty of making measurements as D(t) approached

its maximum value.

The measurements for t < 0.6 are especially important for a comparison with energy-

gap theory, and a much more sensitive evaluation of the data can be obtained by plotting
-1In(as/an) as a function of t - . This is shown in Fig. II-7b, in which both the theoretical

curve and the position of the experimental points depend upon the choice E(0) = 1. 75kT .c
The asymptotic value of this curve serves to fix the absolute value of the superconducting

energy gap E(0). Scatter of the experimental points blurs the determination of E(0) within

a region that is =± 10 per cent. A choice of E(0) outside of this region, however, does

not lead to self-consistency.

2. Magnetic-Field Data

The magnetic-field dependence of the ultrasonic attenuation in the indium sample was

measured at four temperatures between 1. 50*K and 3.400 K with H II q. These meas-

urements are shown in Fig. 11-8. As the magnetic field is increased, the onset of the

intermediate state is denoted H (t); the end of the intermediate state, that is, the begin-

ning of the normal state, is denoted Hc(t) . If H is increased to a value somewhat larger

than Hc(t) and then reduced, the normal state persists for values of H < Hc(t) until the

magnetic field reaches some value H (t). At this point the ultrasonic attenuation

decreases suddenly, with an infinite slope, to some value that is characteristic of the

intermediate state of the superconductor. This is an example of the "supercooling"
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Table II-1. Summary of temperature-dependence of magnetic-field data.

Figure
t No. Orientation He(t) Hc(t H(t) H (t) n a  Accuracy

.389 not shown H 1 q 174 235.7 - 240 .26 - good

.441 II-8a H II q 110 224 210 228 .51 .12 fairb

.621 not shown H 1 q 126 167 - 174 .25 - good

.766 II-8b H II q 65 111 100 117 .41 .19 fairb

.9177 II-8c H II q 38 64 51 45 .41 .36 fairb

.9927 II-8d H 11 q 1.4 4.25 1.75 4.24 .67 .83 fairb

aAverage values: HII = 0.50, 0.255.

bValues obtained by extrapolation of the curves of Fig. II-8.

effect in a superconductor - actually a misnomer, since the process is carried out at

constant temperature. The name, of course, derives from the analogy to the super-

cooling of a gas below its liquefaction temperature. The sudden drop in the ultrasonic

attenuation at Hi(t) justifies to some extent the procedure of obtaining the experimental

values for Hk(t) by means of a vertical extrapolation. The quantities He(t), Hc(t), and

Hk(t) obtained from the graphs are shown in Table II-1 as functions of reduced temper-

ature and magnetic-field orientation. These have been labeled "fair " in the accuracy

column. Their interpretation should be viewed as qualitative only, and they do not rep-

resent the ultimate that can be achieved by using our experimental method.

In a later run, the magnetic-field orientation was changed so that H I q. No

magnetic-field plots were made during this run; rather H and H were determined as

accurately as possible by repeated observation. The main purpose of this measurement

was to obtain a check on the calculated ratio of the field of the superconducting magnet

to the applied current. The agreement was found to be well within 1 gauss, the approx-

imate resolution of the measuring technique. These experimental values are labeled

"good " in the accuracy column of Table II-1 and probably represent about the best accu-

racy that can be obtained from this particular experimental configuration.

An interesting demonstration of the sensitivity of the ultrasonic technique can be

seen in the interpretation of the data in Fig. 11-8, taken at t=0. 9927. At this temp-

erature deviations from the parabolic law are negligible, and the theoretical value of

the critical field is 4. 24 gauss. Observations of the attenuation were made for both
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positive and negative values of the magnetic field, and the resulting plot is not sym-

metric about H=0O. The asymmetry suggests a residual magnetic field of -1. 35 gauss,

which is probably caused by a combination of the earth' s magnetic field and the small

magnetization of the surrounding experimental apparatus. When this residual field is

subtracted from the observed critical values, an experimental value Hc(0. 9927) = 4.25

gauss results.

3. Phase Transition

A theory of the phase transition in superconductors has been worked out by Faber 6

and is based upon a simplified model specifying the conditions under which a supercon-

ducting nucleus is able to grow in the normal metal. Faber's work has indicated that

nucleation occurs at certain flaws in the metal which are not related to surface condi-

tions, impurity content or crystal boundaries. It is convenient to define a quantity 0

which is a measure of the degree of supercooling. Recalling that the magnetic energy

is quadratic in H, we define a quantity H that is the value of the magnetic field at the

point at which nucleation occurs, and we have

H (t)

Hc(t)

NORMAL SUPERCONDUCTING

METAL DOMAIN

I. 2r .

Fig. 11-9. Interphase boundary A between a superconducting domain
of radius r and the normal metal. (w denotes the super-
conducting order parameter and H is the external magnetic
field. Actually, A << r.)

The quantities 0(t) calculated from our data have been included in Table 11-1.

Faber assumes that the flaws are domains in which the surface energy parameter

A is negative. The quantity A may be identified as the width of the interphase boundary,

and, according to a concept that is due to Pippard, this width is finite because the edge

of the superconducting phase does not coincide with the edge of the normal phase. (See
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Fig. II-9.) A further simplifying assumption of Faber is that A(r) is a negative constant

for r < a, varies linearly from 0 to its maximum positive value for a < r < b, and is a

positive constant for r > b. It is assumed that b >> a, A. From Fig. II-9 it is evident

that A = -X, where the coherence length is the region in which the gradient of the

Gorter-Casimir order parameter w(t) is large, and X is the magnetic-field penetration

depth. Both vary as (1 - t4)- 1/2, so that

A(t) = A(O) (1-t4 - 1 /2. (7)

The analysis of Faber is carried out by writing down the Gibbs free energy of a section

of the normal metal which contains a spheroidal volume of superconducting metal. By

setting dG/dr < 0, a condition that allows the domain to grow is obtained.

2A(t) (t)+ (8)
4(t) = (1-n)i .. + n, (8)

where n is the demagnetization coefficient, and r is the minor semiaxis of the spheroid.

For our sample it turns out that A/r and n are both very small. Anticipating this

0.2 0.4 0.6 0.8

Fig. II- 10. The degree of supercooling as a function of reduced
temperature. Experimental values have been super-
imposed upon a plot of the theoretical prediction of

Faber. 6
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result, we have

A((t) ( t4 -1/
r

Our data for (t) have been fitted to Eq. 9 by setting 2A(0)/r = 0. 15, as shown in

Fig. II-10. The best experimental value for the interphase surface-energy parameter

for indium is A(0) = 3.40 X 10 - cm. 8 These considerations lead to an estimate of the

initial size and shape of the superconducting domains as our indium sample passes from
-4

the normal into the intermediate state: diameter, Zr = 9.0 X 10 cm. The fact that

n z 0 reveals that the intermediate state consists of long rods whose average direction

is parallel to the magnetic field. These results are in close agreement with those of

Faber whose work was based upon measurements of the Meissner effect in long bars

of tin.

4. Critical Field

The temperature dependence of the. critical field is given approximately by the

-0.01

-0.02 - i*

0.6

Fig. II-11. Experimental deviation of the critical field of indium from

the parabolic law after Shaw, et al. 1 0 Our Hc(t) values

from Table II-1 have been superimposed upon this curve.
The points x were carefully determined from repeated ob-
servation. The points * were obtained from the curves of
Fig. 11-8 and are only approximate.
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PARABOLIC LAW

BCS THEORY

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

- - - t 
2

Fig. 11-12. Temperature dependence of the critical field. Solid curves
are the theoretical predictions according to Bardeen, Cooper,

3 9
and Schrieffer, and Gorter-Casimir. Our experimental val-
ues have been superimposed.

parabolic law of the Gorter-Casimir two-fluid model. 9

Hp (t) = H(0 ) (1-t 2 )

The deviation of indium from this law has been measured by Shaw, Mapother, and

Hopkins.10 The solid curve of Fig. II-11 shows their experimental results. The devia-

tion Hd(t) is defined by

Hd(t) = H c(t) - H p(t). (11)

Our experimental values of Hc(t) listed in Table II-1 are superimposed upon the solid

curve of Fig. II-11. The points denoted X are the very carefully determined values

from the H I_ q run.

The BCS theory of superconductivity predicts a deviation of H from the parabolic

law. 3 The theoretical results are shown in Fig. 11-12. Our experimental data have

been superimposed upon this curve also. Although most of our results are reasonably

consistent with the experimental work of others, it can be seen that the deviation from
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the Gorter-Casimir theory is not as large as the BCS theory predicts. The single point

indicating the large deviation at t2 = 0.84 also shows up as a large deviation in Fig. II-7a

at t = 0.92. This was the first point to be measured after the helium transfer, and it is

likely that the cryostat had not reached thermal equilibrium. Thus the temperature

determined from the vapor pressure of the helium may not have been equal to the temp-

erature of the sample. Postulating a sample temperature of t = 0. 87 brings both points

into close agreement with the theoretical curves.

5. Demagnetization Coefficient

With the new superconducting magnet, it has been possible to study the orientation

dependence of the demagnetization coefficient that is proportional to

H
n= He, (12)

c

where He(t) denotes the value of the magnetic field at the point at which the sample enters

the intermediate state. The demagnetization coefficient 41rn is related to the orientation

of the external magnetic field with respect to the geometry of the sample, but the more

refined measurements of the H 1 q run indicate that it is independent of temperature.

Strictly speaking, the demagnetization coefficient is defined only for ellipsoids in which

the magnetization is independent of position, and its application to our sample (Fig. II-3)

is not rigorously justified. Nevertheless, it is interesting to compare our values with

the theory. A theorem of the magnetization of macroscopic bodies states that the sum

of the demagnetization coefficient around three mutually perpendicular axes is 4wr. Thus

3

Sn. = 1. (13)

i=1

The average of the experimental values of n taken from Table II-1 yields

2.+ i= 01. (14)

The agreement is somewhat fortuitous, in the light of the large deviations of the nll val-

ues in Table II-1. We can conclude, however, that the interpretation of the first knee

He(t) of the a vs. H curves of Fig. II-8 as the onset of the intermediate state is prob-

ably correct.

J. M. Andrews, Jr.
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