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A. WORK COMPLETED

1. OPTIMUM SECOND-ORDER VOLTERRA SYSTEMS

This study has been completed by E. M. Bregstone. In May 1963, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

2. STUDY OF PHASE MODULATION WITH A GAUSSIAN SIGNAL

The present study has been completed by J. K. Clemens. It was submitted as a

thesis in partial fulfillment of the requirements for the degree of Master of Science,

Department of Electrical Engineering, M. I. T., May 1963.

M. Schetzen

3. MINIMIZATION OF ERROR PROBABILITY FOR A COAXIAL-CABLE

PULSE-TRANSMISSION SYSTEM

This study has been completed by J. S. Richters. In May 1963, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

4. EXPERIMENTAL INVESTIGATION OF A SELF-OPTIMIZING FILTER

This study has been completed by W. S. Smith, Jr. He submitted the results to

the Department of Naval Architecture, M. I. T., May 1963, as a thesis in partial fulfill-

ment of the requirements for the degree of Master of Science and professional degree

of Naval Engineer.

D. J. Sakrison

*This work was supported in part by the National Institutes of Health (Grant
MH-04737-03); and in part by the National Science Foundation (Grant G-16526).
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5. INFLUENCE OF NORMAL MODES OF A ROOM ON SOUND REPRODUCTION

This study has been completed by D. W. Steele. In May 1963, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

A. G. Bose

6. TRANSIENT BEHAVIOR OF A PSEUDO NOISE-TRACKING SYSTEM

This study has been completed by D. S. Arnstein. In May 1963, he submitted the

results to the Department of Electrical Engineering, M. I. T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

7. EXPERIMENTAL INVESTIGATION OF THRESHOLD BEHAVIOR IN

PHASE-LOCKED LOOPS

This study has been completed by A. G. Gann and the results have been submitted

to the Department of Electrical Engineering, M. I. T., May 1963, as a thesis in partial

fulfillment of the requirements for the degree of Master of Science.

H. L. Van Trees, Jr.

B. A TWO-STATE MODULATION SYSTEM

A simple two-state modulation system was described in Quarterly Progress Reports

No. 66 (pages 187-189) and No. 67 (pages 115-119). This report is a continuation of the

analysis of this system and presents some of its applications.

1. Switching Frequency and Linearity

The block diagram of the modulation system is shown in Fig. XIV-1.

The general expressions for the time average y of the output y(t) and the switching

period were given in Quarterly Progress Report No. 67 (page 116). Those expressions

form the basis from which the dc performance of the system can be predicted. The non-

linearity of the system, defined below, is determined solely by the ratio of the zero-

signal switching period to the time constant of the feedback network. Figure XIV-2

shows the percentage of nonlinearity as a function of the normalized output signal level

with To/T as the parameter. The percentage of nonlinearity is defined as

100 - (Y-KEs)

y

where K is the slope of y vs E as E -- 0. Notice that this definition of nonlinearitys s
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Fig. XIV-1. Modulation system with system parameters indicated.
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Fig. XIV-2. Modulator nonlinearity vs signal output.
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is more stringent than the usual one in which the deviation is divided by the maximum

output. The latter yields low distortion figures for systems that perform well with

respect to large-amplitude signals but may badly distort small-amplitude signals.

For ac signals the time constant T must be short enough so that the feedback net-

work passes the highest signal frequency. If we arbitrarily set -r so that the half-power

point of the feedback network occurs at twice the upper limit of the signal bandwidth

B (cps), we have

BT /T = 4wT B = 4w- ,0 0 f

1
where fo = is the zero-signal switching frequency. Thus, for a given signal band-

width B, this system achieves linearity at the cost of bandwidth.
width B, this system achieves linearity at the cost of bandwidth.

T, /T = 0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NORMALIZED MAGNITUDE OF OUTPUT VOLTAGE SIGNAL

Fig. XIV-3. Switching period vs magnitude of output signal.

The switching frequency of the system increases monotonically with the magni-

tude of the output signal, as indicated in Fig. XIV-3, which shows the switching

period as a function of the output-signal magnitude for dc signals. The curve is

shown for T /7 = 0.5.
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2. The Modulator Used as a Regulator

The modulator can be used as a very simple regulator by taking advantage

of the insensitivity of y to changes in the forward-loop saturation levels. Suppose that

C DELAY Td

T RC = T

y (t)

E0

E AVERAGE

0 x (t)
-8 8

Fig. XIV-4. Regulator. Lower saturation level is set equal to zero to correspond
to the voltage regulator example (see Fig. XIV-7).

we apply a dc reference signal Er to the system shown in Fig. XIV-4. Analysis

of this system for the output 7 yields the expression

In r

E exp(Td/T) - E + Er + 6
y I- O O r (3)

(Er-6)(E -E +6) )

I o exp(Td/T) - (Eo+E+6)(Eoexp(Td/T)- (Er - 6 ) )

Preliminary calculations based on expression (3) and on measurements on an experi-

mental model indicate that variations in the saturation level Eo can be suppressed more

than 60 db at the output y. They indicate that under all circumstances the regulation is

improved by reducing the loop delay Td. Curves showing the regulation as a function of

the system parameters are being prepared.

3. Application to Nonlinear Control

The relay, or bang-bang servomechanism, is commonly used in control applications

in which weight and power dissipation are significant considerations. The block diagram

of such a controller is shown in Fig. XIV-5.
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SIGNAL
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DEVICE
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Fig. XIV-5. Simple relay servomechanism.

Briefly, the design of this system involves a compromise between static error,

dynamic performance, and hunting. Hunting will always be present at the output unless

the forward-loop nonlinearity contains a dead space. If a dead space is introduced, then

sufficient damping, with its associated power loss, must be used to trap the system in

the dead space. The damping requirement can be decreased by increasing the dead-

space interval, but this is done by sacrificing the static error. These compromises are

necessary because the system output (the output of the controlled device) is used to initi-

ate the switching instants. Therefore switching must exist inherently at rates to which

the controlled system responds.

By using the properties of the two-state modulator, it is possible to design a

I---------- -------------------------- ------

II

NETWORK I

F1 I

L----------------------------+ + , ,,CONTROLLED OUTPUTE ,sDEVICE ILOWPASS FILTER

Fig. XIV-6. Nonlinear control system incorporating the modulator principle.
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nonlinear controller that retains the advantages of low power dissipation, light weight,

and, to a certain extent, the minimal settling time property, but eliminates the need

for the dead space and damping usually employed to reduce hunting.

The block diagram of this controller is shown in Fig. XIV-6. The system within the

dotted box comprises the total feedback network around the nonlinear forward loop. This

network is divided into two paths. The result is that the network F l initiates an oscil-

lation in the system at a frequency well beyond the response of the controlled device, and

the over-all system still behaves linearly and has control with respect to load changes.

The advantages of the low power dissipation of the relay servomechanism are preserved

in the present system as long as the input to the controlled device is designed, as it can

very easily be, to absorb no power at the high switching frequencies. In this design the

ratio of the zero-signal switching frequency to the cutoff frequency of the controlled

device can be made arbitrarily large without using active elements in the feedback loop

and without introducing instability with respect to the system output. An analysis and

the properties of this system will be presented in other reports. The application of the

system to the problem of voltage control will be discussed here.

4. Voltage-Regulator Example

As an example of the nonlinear control discussed above, a simple voltage regulator

was constructed (Fig. XIV-7). In this circuit the three transistors represent the non-

linear forward loop in Fig. XIV-6, L and Cf represent the controlled device, and R1,

R 2 , C l1 C2 represent the network Fl. This circuit was designed to supply 1 amp at

SUPPLY VOLTAGE

R2 R1 L, TO LOAD

REFERENCE
VOLTAGE R3

L

Fig. XIV-7. Voltage regulator that exemplifies nonlinear control.
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15 volts to the load. The switching frequency was 100 kc. Measurements indicated bet-

ter than 60-db attenuation of supply voltage variations at the load, and a change of only

0.14 per cent in the load voltage with a change by a factor of two in the load current.

5. D-C Transformer

Since each transistor in the realization of the modulator acts only as a switch, the

system operates with high efficiency. From Eq. 3, it is possible to obtain any output

voltage less than E - 5. Since the theoretical efficiency of the system is 100 per cent,

we have the possibility of a very simple dc transformer, which works in the direction

of stepping down voltages and stepping up currents, with the property that the power

input equals the power output, and the additional feature that the output is regulated.

Such a transformer was constructed by modifying the regulator of Fig. XIV-7 to obtain

its reference voltage from its input as shown in Fig. XIV-8. This approach offers the

possibility of building dc step-down transformers with efficiencies approaching those

of conventional ac transformers, with the other features of lighter weight, smaller

size, regulation, and adjustable "turns ratio." Thus in certain applications, in airborne

equipment, for instance, there may be advantages in distributing dc instead of ac power.

With ac power it is necessary, in each piece of equipment, first, to use a transformer,

then to rectify, filter, and regulate. All of these operations could be carried out by a

INPUT

+ OUTPUT

Fig. XIV-8. A dc transformer.
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single dc transformer of the type discussed here. It should be noted, of course,

that the dc transformer does not provide isolation and therefore would not suffice

in an application for which it is essential. The transformer shown in Fig. XIV-8

was designed for only 15 watts power. However, it is possible, with existing

transistors and similar circuitry, to construct transformers that deliver hundreds

of watts.

6. Power Amplifier

The application of the modulation system to a dc-to-15-kc power amplifier

is shown in Fig. XIV-9. The amplifier is designed to deliver 15 watts peak

BI
B2

IGNAL -
NPUT --'__TO LOAD

-B 2 -B I

Fig. XIV-9. Circuit of 15-watt power amplifier.

power to a 16 02 load. The mode structure and performance characteristics of

this amplifier will be discussed in future reports.

A. G. Bose
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C. OPTIMUM QUANTIZATION OF A SIGNAL CONTAMINATED BY NOISE

1. Formulation of the Problem

In a previous reportl the problem of designing the optimum quantizer for a specific

input signal was considered. An algorithm was developed by which the parameters

defining the optimum quantizer can be calculated. The result is valid for a wide class

of error criteria.

In many cases of interest, however, the signal is contaminated by noise before

reaching the input of the quantizer. The noise may or may not be statistically indepen-

dent of the signal. Mathematically, the quantizer input x may be written

x = s n,

where s is the signal, n is the noise,

nation of the two variables, s and n.

and

Two

x1 x 2 x3 x 4

is a symbol that indicates some combi-

combinations of interest in communications

y = q(x)

OUTPUT

x =s (n

INPUT

I I .. XN-3 XN-2 XN-1

-1 Y4

-

I Yi

Fig. XIV-10. Input-Output relationship for a quantizer.
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are (s+n) and (s.n). It will be seen from examination of Eq. 4 that any combination for

which a joint probability density of x and s can be defined is an allowable combination.

The nonlinear, no-memory input-output characteristic of the quantizer, Fig. XIV-10,

will be denoted by

y = q(x).

Then from (1) we have

y = q[s O n]. (2)

We desire to design a quantizer 2 that is such that its output y corresponds as

closely as possible, with respect to some error criterion, to the signal s that is the

desired quantizer output. Therefore, we shall take

s - q[s n] (3)

to be the quantization error. The measure of the quantization error, that is, the quan-

tity that we desire to minimize in order to minimize the quantization error, is taken to

be the expected value of some function of the error g[s-q(s@n)], or equivalently,

g[s-q(x)]. Then the measure of the error can be written

= 0d 0 dn {g[r-q()] 5p x,s(,)}. (4)
-00 -00

In Eq. 4, px,s(a,r) is the joint probability density of the quantizer input x and the sig-

nal s.

Equation 4 can be simplified by considering the nature of the input-output character-

istic of the quantizer. The output of the quantizer can take on only a fixed set of values;

that is,

q(x) = Yi Xi- < x < xi,  i = 1, 2, ... , N (5)

where xo is defined as X,, the lower bound of the input signal x. Likewise, xN is the

upper bound of x, X u . (These bounds are not required to be finite.)

Substituting (5) in (4), we obtain the following equation for the "error" in terms of

the quantizer representation values:

N-I

S= I d SV d {g(-yi+) Px,s( ,)}. (6)

i=O 1 1

U i is that set of values of for which the output assumes the value yi+1 . From Eq. 5

we see that U. depends only on the quantizer characteristic and corresponds to the set
1

of values of 5 which are such that xi < a < xi+I. Thus, Eq. 6 can be written
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N-1
C=O Sxi+l d d s{g(4-yi+l)P x,s ,. (7)
i=o 0 i Vi

Analogously, Vi is the set of values of l over which the output assumes the value Yi+l
Referring to Ui , we see that Vi is equivalently that set of values of n which are such
that when the signal and the noise are combined they yield a quantizer input in the range
xi <  < xi+1 . From Eq. 1 we see that Vi will depend upon the nature (or form) of the
combination and upon the upper and lower bounds of the noise. Therefore, V. cannot be

1
explicitly expressed until the combination and the noise bounds are known. For purposes
of formulating the method of determining the quantizer parameters, we shall utilize the
"error" as given in Eq. 7.

Before we proceed with the task of determining the parameters of the optimum quan-
tizer, let us demonstrate the method for determining the V.. We shall consider two

1
examples, assuming in each that Eq. 1 takes the specific form

x = s+ n. (8)

First, let us consider the case in which the noise is unbounded. Referring to Eq. 8,
it is clear that any value of the signal can be transformed into the quantizer input region
xi < < Xi+l and therefore can be represented at the output by yi+1 . Thus, the set Vi
is -oo < 1 < +oo. Then for this particular case, (7) becomes

N-1

xi+1 d, d] {g(-yi+) Px,s () } .  (9)
i= O x i i

As a second example, consider the case in which the noise is bounded with lower
bound np and upper bound nu, that is, n2 < n < nu. From Eq. 8 we see that values of
the signal which are greater than x. - nU can yield a quantizer input in the range xi < ~
since n < nu. Also from (8) values of the signal which are less than xi+ 1 - np can yield

a quantizer input in the range e < xi+1 , since n > np. Thus, the set Vi which is the
union of those values of the signal which correspond to x i < e and a > xi+ 1 is expressed
by the inequality

xi - n < < xi+ - n .

Therefore, for this case (7) becomes

N-
=i+ d i+ di {g(n-Yi+) Px,s(e, 1) } .  (10)
.= C x x. -n
i=0 1 1 U
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2. Determination of the Optimum Quantizer

Equation 7 is an expression for the quantization error for an N-level quantizer.

The optimum quantizer will be specified by specific values of x i and Yk called Xi

and Yk, respectively. The Xi and Yk specify the absolute minimum of (7) subject

to the constraints

(11)

These constraints are imposed only for organizational purposes.

At first, it might seem that the methods of calculus can be used to determine the X

and Yk. However, examination of the critical points of the error surface do not permit

us to conclude that a critical point that is a relative minimum is also the absolute mini-

mum within the region of variation specified by (11). Thus, in order to determine the X.

and Yk we must turn to a more powerful technique, say, one that searches for the abso-

lute minimum of the surface within the region of variation. Bellman's technique of

dynamic programming3,4 is such a technique.

In order to apply this technique, it is necessary to define three sets of functionals:

the error functionals, {fi(xi)}; the transition-value decision functionals, {Xi(x)}; and the

representation-value decision functionals, {Yi(x)}. Each set of functionals has members

for i = 1, 2, ... , N. These three sets of functionals are defined in the following manner:

mm x
yl d

X =X o--x <X o oro1 u
min X x 2

xl Y 2  f1 (x1
) +

X x 1 <x2 <X u 1

min x.
xi-1 i fi-1( i- 1 dg
X i- 1 1Y i-

X X i1 -<-X i 1 U 1

min x

XN-1 N N-1 (XN-1 + d V
X<XN- x< NXu X N-1 N-1

XXN-1XN S N gS
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f l(x1) =

f 2 (x 2 ) =

fi(xi) =

fN(XN) =

SVi-1
,(12)

x o < x 1 < Z x 2 ... < XN 1 < xN'
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X 1 (x) = Xf, a constant;

XZ(x) = the value of x l which corresponds to that in the

definition of the functional f2 (x2), x2 = x;

(13)

XN(x) = the value of XN_1 which corresponds to that in

the definition of the functional fN(xN), xN = x

Y 1 (x) = the value of yl which corresponds to that in the

definition of the functional fl(x 1 ), x1 = x;

Y2 (x) = the value of y2 which corresponds to that in the

definition of the functional f 2 (x2), x2 = x;
(14)

YN(x) = the value of yN which corresponds to that in the

definition of the functional fN(xN), xN = x

Consider these three sets of functionals for a few moments. The key to under-

standing them is understanding the meaning of the separate members of the error func-

tionals (12). The first member of (12) states that for a given region of pxs( ,i) specified

by the boundaries xo and x 1 (recall that Vo is specified in terms of xo and x1 , and

the nature of the noise contamination), we determine the yl that minimizes the

integral

o o
0 0

This yl is recorded as Yl(x), x = x1 and the value of the integral (15) for this value of

Yl is recorded as fl(x 1 ). Thus, if we say that the region defined by the boundaries x0

and x1 is to be quantized, we know that the optimum representation value for this inter-

val is Y 1 (x 1 ).

Now consider the second functional of (12). This functional states that we are con-

sidering the quantization of the signal in the input interval xo < x < x2 , for a variable

x 2 , into two levels. In order to perform this operation in the optimum manner, we

must minimize the quantity
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1l dl
xVo o

(16)dri [g(i-y1 ) px,s ( ,n)] + d
xI V

with respect to x I , y 1 , and y 2 . However, the first of these two integrals when mini-

mized with respect to yl (and it alone contains yl) is simply the first error functional,

fl(x1 ). Then, for a specific x 2 , we must determine the xl and the y2 that minimize

the function

(17)
f l (x1 ) + d V

1I

The x 1 that minimizes (17) is recorded as X2 (x), x = x2 ; the y 2 that minimizes the

expression is recorded as Y2 (x), x = x2 . The value of the expression is recorded as

f (x2 ). Therefore, if the region xo - x < x2 is to be quantized into two levels, we know

from the decision functionals that the optimum transition value is specified by X 1 =

X 2 (x2 ) and that the two optimum representation values are given by Y2 = Y 2 (x 2 ) and

1 = Y(X 1 )

Clearly, discussion of this type can be presented for each of the members of (12).

However, instead of considering every member, let us skip to the last functional in (12).

Here, we are given the input range x ° < x < xN; a variable xN is assumed. We want

to quantize this range into N levels in the optimum manner. This requires that we min-

imize the quantity

S x l

x
0

x
dil [g (t-qYl) Px's( ,)] + d1

(18)dr [g(I-YN) Px,s (S,)]dg N

VN-1

+ .. + xN
xN-1

with respect to the parameters yl, y 2 , .... yN; x l , x 2 , ... , XN-1l This task is not as

difficult as it may seem. Note that the minimum of the first term with respect to yl as

a function of xl is given by fl(x 1 ). This is the only term of (18) involving y l . Thus (18)

can be written alternately as the minimization of

f l (x 1 ) + d~
x V

dr1 [g(7i-yZ) px,s )] + x3 d~
x2 V2

+ ... + d

N-l N-1

QPR No. 70
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with respect to y 2 ' y 3, .. YN; x l , x 2 , ... , XN-1. But the minimization of the first

two terms of (19) with respect to y 2 and xl as a function of x 2 is given by f 2 (x2).

Again, these are the only terms involving y 2 and xl. Thus we can again reduce the

complexity of the expression to be minimized. Equation 19 can be equivalently written

as the minimization of

f 2 (x 2) + d dq [g(q -y2) P x,s ) + d d1 [g(1-y3) Px, ( ]2 2  3 V 3

+ ... +xN d di [g(?-yN) x,s(,?)] (20)
xN-1 VN-1

with respect to y 3 4 y ... , yN; x 2 , x 3 , ... , XN-l

This process is easily continued until we obtain as an equivalent for (20) the mini-

mization of

fN-1(XN-1) + d S  d~ [g(l-yN) xs(~,)] (21)
XN-1 VN-1

with respect to XN_ 1 and yN. For a specific xN, the xN_ 1 and yN that minimize (21)

are recorded as XN(x) and YN(x), respectively, x = x N . The value of (21) for a spe-

cific x N is recorded as fN(xN).

Observe, now, that when xN = X u , we are considering the entire input signal range.

Thus, fN(Xu) is the total quantization error for the optimum N-level quantizer. Then

from the definition of XN(x), the (N-1) transition value is

XN-1 = XN(Xu).

Likewise, from the definition of YN(x) the (N) t h representation value is

YN = YN(XU)

Continuing from our definition of XN-2(x) and YN-2(x), we find that the next tran-

sition value is

XN-2 = XN-1 (XN-)

and the next representation value is

YN-1 = YN- (XN-1 ) c

This process can clearly be continued until finally we have
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which is the last parameter needed to completely define the optimum quantizer.

At present, our research is concentrated on the properties of the error surface. It

is hoped that a knowledge of the error surface properties will simplify the determination

of the parameters defining the optimum quantizer.

J. D. Bruce
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D. MINIMIZATION OF ERROR PROBABILITY FOR A COAXIAL-CABLE

PULSE-TRANSMISSION SYSTEM

We shall consider a particular pulse code modulation system visualized as one

repeater link in a high-speed data-transmission facility. This system is illustrated in

Fig. XIV-11. The criterion used in evaluating system performance is the probability

of error at the system output, calculated by considering as degradations thermal noise

and intersymbol interference from pulses that are no more than four time slots away

in both the past and future. The system input is assumed to be a pulse train s (t-kT),

k = 1, 2, 3, ... . . Each signal si.(t) is zero everywhere except on an interval 0 < t < T.

This set of possible input pulses is assumed to be binary, and the two possible signals

are assumed to have equal energies and to be a priori equiprobable. Successive pulses

are assumed to be statistically independent.

The transmission medium was chosen to be a 22-gauge paper-insulated two-wire

line, 6000 feet long. This is the same type of line actually used in an experimental sys-

tem at Bell Telephone Laboratories.l Also, to obtain solutions to some of the problems

considered, it is necessary to use a rational expression for H(s); thus an approximation

AwWl2  5

of the form H(s) = was assumed, with A = 0.4, l 5.03 X 10 , and
(s+wl)(s+w2
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OVER-ALL REPEATER LINK

NOISE

s(t) I

COAXIAL FILTER MATCHED
CABLE TO CABLE OUTPUT

- INPUT FROM PREVIOUS LINK OUTPUT TO NEXT LINK

Fig. XIV-11. Block diagram of the system.

W02 = 5.03 X 106. This approximation was found to be "good" in both the time and fre-
quency domains by Bell Telephone System engineers when the pulses were sent at a rate
of 1.544 megabits per second. Therefore, the signal period T and the approximation

to H(s) were used exactly as set forth by Mayo. 1

At the cable output, additive noise, denoted n(t), was introduced. This is assumed

to be white Gaussian thermal noise produced by the cable, with available noise power
of kT/2 watts/cps (in a double-sided spectrum), where k is Boltzmann's constant, and
T = 293 0 K = 68 0 F. 2 This thermal noise is assumed to be the only source of noise
present.

The first stage of a repeater is usually some sort of filter to improve the signal-to-
noise ratio going into the detector. In general, we are free to vary the shape of this
filter at will, but, in order to cut down the number of variables involved in this prob-

lem, the filter was assumed to be matched to the cable output pulse x(t). In other
words, the impulse response of the filter is xc(t 1-t) , where

c (t) = fx(t)
xcM 0

0 < t <

elsewhere.

We assume that t1 is very large (in the sense that x(t) = 0 for t > tl) and thus we may

make the approximation xc(tl-t) = x(tl-t). Such a filter maximizes the signal-to-noise

ratio at the output for any given x(t), and hence in the absence of interpulse interference
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it minimizes the probability of error. This is not necessarily the best choice of filter,

however, since other filters giving smaller output signal-to-noise ratios may give less

intersymbol interference and thus smaller probability of error. The filter is followed

by an instantaneous voltage sampler, a detector, and a regenerator.

Since the input signals are binary, equiprobable, and of equal energies, the signals
3

will be of the form s(t) and -s(t) for a minimum error probability at the output. The

detector decision level should be set at zero, under the assumption that the two possible

types of errors are equally harmful. For each problem considered, the optimization

carried out was a variation of the input signal s(t) to determine the signal that resulted

in the minimum error probability.

The first problem considered was to determine the input signal s(t) that maximizes

the output signal-to-noise ratio (thereby minimizing error probability if only the noise

is taken into account) for f T s 2 (t) dt constrained to be E. This problem is equivalent

to that of maximizing the signal energy at the cable output with fixed input energy. Orig-

inally, the problem was considered to be the first step in a perturbation approach to our

original problem, and its solution would minimize error probability when the effects of

intersymbol interference are neglected. We hoped that this solution would not yield a

prohibitive amount of intersymbol interference. This solution would then not differ by

a great deal from the desired solution of the original problem, that of minimizing the

probability of error. The desired solution then possibly could be obtained by pertur-

bation techniques. This was not possible, since the solution of this problem resulted

in an output pulse with such large amounts of interference that intersymbol interference

from only two adjacent pulses was sufficient to cause an error in one of four cases.

The second problem was to determine the signal s(t) with fixed energy E which

would maximize output signal-to-noise ratio, with the constraint that the amount of

intersymbol interference one time slot away from the peak in either direction is a value

K. Then the value of K was varied to obtain the minimum probability of error. By

using simple variational procedures, an integral equation of the form

s(t) = s(u) [Rhh(t-u)+I(Rhh(t-u+T)+Rhh(t-u-T))] du (1)

was derived. In Eq. 1, X and i are Lagrangian multipliers that must be determined,

and Rhh(t) = fo h(a) h(a+t) da. This equation is not always soluble, but in the special

case in which H(s) is a rational function of s, the integral equation can be transformed

into a simple differential equation that is easily solved. 4 The differential equation was

derived and solved. For the two-pole approximation to H(s), the solution is of the

form

s(t) = c 1 e + c 2 e + c 3 cos p 2 t + c 4 sin p 2 t) (2)
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for 0 < t < T, and s(t) = 0 elsewhere. This is the general form of s(t) for the maxi-
mization, and X, p., and the c. were determined from the interference constraint, the1
fixed-input energy constraint, and the boundary conditions on the integral equation.

These were determined numerically through use of the IBM 7090 digital computer at the

Computation Center, M. I. T. Note that the first problem considered (no interference

constraint) is a special case of this one, and follows from Eq. 1 if we set 4 = 0.

A third problem was that of constraining intersymbol interference to be zero at one

and two time slots away from the pulse peak and again maximizing output signal-to-

noise ratio. This constraint can be shown to constrain the interference to be zero for

all time, since we have assumed that H(s) is a two-pole rational function of s. Thus

this problem is equivalent to one investigated by Holsinger.5 Solutions can be obtained

by his methods, which are much simpler than the integral-equation method that one

would otherwise use. For most values of input energy, the solutions of this problem

resulted in lower values of error probability than those found by constraining inter-

symbol interference one time slot away and varying the constraint for minimum error

probability. For low input energies, the previous solutions gave better results, but

this might be due to the fact that error probabilities were calculated by assuming inter-

actions from only four pulses away, while in reality pulses farther away have non-

negligible interference. This will, of course, not affect error probabilities calculated

for the pulse with zero interference, but error probabilities calculated for other pulses

will be somewhat lower than their true values.

The final results were that

(1) Maximizing signal-to-noise ratio without considering intersymbol interference

produces a solution that is unusable in an error probability sense.

(2) Maximizing signal-to-noise ratio while constraining intersymbol interference

one time slot away and then varying the constraint for minimum error probability pro-

duces usable solutions, but in most cases not as good as those for result (3).

(3) Maximizing signal-to-noise ratio while constraining intersymbol interference

to be zero one and two time slots away, which, for the assumptions made about the

cable transfer function, results in zero interference everywhere.

These results are given in greater detail in the author's thesis. 6

J. S. Richters
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E. EXPERIMENTAL INVESTIGATION OF A SELF-OPTIMIZING FILTER

1. Introduction

An experimental verification of the continuous adjustment procedure considered by

Sakrison is undertaken in this report. The adjustment procedure permits design of a

filter system of the form shown in Fig. XIV-12 by the continuous adjustment of the k

coefficients x l , x 2 , ... , xk. The purpose of the adjustment procedure is to search out

and converge to the coefficient setting that yields minimum average weighted error. The

only assumption that we make on the weighting function is that it be convex. The adjust-

ment procedure operates by estimating the gradient of the regression surface being

searched and adjusting the values x., i = 1, 2, ... , k, to move the system error toward

its minimum. Through the function c(t), a known plus and minus perturbation is intro-

duced to the present setting of each of the x . When the errors resulting from these
th

plus and minus perturbations of the i parameter are measured, weighted by the cho-

sen error weighting function, and subtracted, the resultant function, Yi(t)/c(t), is a

random variable whose mean is a difference approximation of the it h component of the

gradient in the direction of the optimum. The function a(t) is a monotonically

decreasing function that is then used to weight the value of the gradient. The param-

eter change is then

t a(T)
xi(t) = x( ) - Y(T) dT.

1 1 0 c (T)

It has been shown I for certain choices of the functions a(t) and c(t) and under our

assumption of a convex error weighting function and under certain regularity assump-

tions on the processes, that the procedure will converge in the sense that

lim E (xi(t)-O 1 ) 2  = 0 i = 1, 2, ... k
t-0o

in which 01 denotes the optimum setting for the coefficient x.. The functions

a(t) = Ka/(at+b)oc and c(t) = Kc/(t+d) satisfy the conditions for convergence if
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Fig. XIV-12. Form of the filter (or predictor or model) to be designed.
(This is D. J. Sakrison's Fig. XIII-3, Quarterly Progress
Report No. 66, p. 192.)

Sx(1) - (T) dT e = -fl (t) [x(t) +c(t)]-f 2 (t) x2 (t) +d(t)

2 x2 (T) 2 (T)d e l -fl(t)[x (t)-c(t)]-f 2 (t) x 2 (t)+d(t)

e+ = -fl(t)x(t)-f 2 (t) [x2(t)+c 2 (t)] + d(t)

e = -f,(t) x,(t) - f2 (t)[x2 (t)-c 2 (t)] + d (t)

Fig. XIV-13. Diagram of the continuous
parameters, x 1 and x 2.

adjustment procedure for two

(This is D. J. Sakrison's Fig. XIII-4, Quarterly Progress
Report No. 66, p. 192.)
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1/2 < o - c < 1 and 6 > (1-o.c)/4.

2. A Self-Optimizing Filter

Fant 2 describes the long-term average of speech as being characterized by a 12-db

octave decay over the audio spectrum. He also shows some curves of the actual spec-

trum which suggest that restricting the circuit usage to certain types of messages (that

is, a tactical voice circuit) would result in a power density spectrum that would follow

the 12-db curve on the average but would have significant plus and minus perturbations

from this mean. Such a desired output spectrum is approximately a staircase function

with steps of uneven height following the mean of 12 db per octave slope. Thus an inves-

tigation was made of a "self-optimizing " filter system for separating such an audio sig-

nal from broadband noise. This filter consisted of k third-order lowpass filters spaced

linearly throughout the useful portion of the audio band (250 to 2500 cps contains most of

the useful intelligibility). This system compares the desired output with that actually

being received and adjusts the coefficients of the k filters for minimum mean-square

error by the method just described. The mechanization of the adjustment procedure is

shown in block diagram form in Fig. XIV-13. Although the desired output signal was

used here in carrying out the adjustment procedure, it was done only for convenience:

for the case considered here, the adjustment procedure could be carried out without the

desired signal. 3

3. Experimental Procedure

Experimental work was undertaken to ensure that the adjustment procedure would

lead to system parameter convergence on available analog equipment. In particular,

it was desired to know if the system parameters would converge within a time suitable

for the application proposed and if the adjustment procedure is critically dependent on

any of the adjustment parameters.

A filter system consisting of two lowpass filters combined with variable coefficients

x1 and x 2 was studied in detail for a mean-square error criterion. This criterion was

chosen because it permitted an easy analytical check on the performance of the adjust-

ment procedure. On completion of these studies, checks were made for a system of

4 lowpass filters to ensure that the adjustment procedure still led to the proper results.

The desired output, d(t), is obtained by passing the output of a white noise generator

(having power density spectrum S ) through a filter of the form

K

(jw+ 628)2

This gives the desired approximation of a mean speech spectrum. The input was formed

by adding to the desired output white noise from another generator having essentially a
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a flat power density spectrum of magnitude N.
1

For the mean-square error criterion, the term Y(T) is independent of c(T) and
c(7) i

we need only a(t). The function a(t) was generated by dividing a ramp of the form A't + 2

into Yl(t) and multiplying the output of this operation by integrator gain D so that the

form of a(t) was D/(A't+2).

For purposes of this report, convergence time is defined as the time elapsed

from activation of the system until the last time that the mean-square error

(as found by time-averaging over a suitable interval) falls within 10 per cent

of its minimum value. That region containing all those points having their mean-

square error within 10 per cent of the minimum value is hereafter called the

convergence area.

A' = 1

N - 8.56x 10
- 2

0

3 S = 0.575

AT t= 0

x 1 =x 2 = 6

0 EXPERIMENTALLY
DETERMINED POINT

2
U
z

U
z

2 4 6 8

INTEGRATOR GAIN (D)

Fig. XIV- 14. Convergence time versus integrator gain (D).
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4. Results

Figure XIV-14 shows the convergence time versus the integrator gain, D. From

this figure it is seen that large convergence time is obtained for integrator gains

approaching zero. Settings between one and seven gave suitable convergence with initial

oscillations about the convergence area, the amplitude of the oscillations increasing

with increasing gains. Minimum convergence time was obtained for a setting of D just

less than that value which first results in oscillations.

Figure XIV-15 shows the coefficient setting yielding minimum error, the convergence

El 4.37

1.79

-2 0

6 -- 1.75 0.45 ]

\ , CONVERGENCE AREA

\ \ 2
2 minimum

21.9 x2
\x2

LINE OF MINIMA

0 38.5 -6 8.3 z9.

INITIAL CONVERGENCE
SETTING TIME (SEC) So 

= 0.575

(6, -6) 4.37 N = 8.56x 10
(6, 0) 1.75 A' 1
(6, 6) 0.45
(0, -6) 1.79 D = 2

(0, 6) 21.9
(-6, -6) 38.5
(-6, 0) 8.30
(-6, 6) 29.2

2 0

Fig. XIV-15. Convergence times from various initial settings of x l and x2 .
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area, convergence times from various initial settings of the x i , and the line of minima

(the major axis of the ellipsoids of constant mean-square error plotted against the xi).

It is seen that the system takes very little time to reach the line of minima but takes

the majority of the convergence time to move down the valley along the line of minima.

For instance, if we look at the two points (-6,6) and (0,6), we see that the convergence

time is approximately the same from both points, but that a slightly longer time is taken

by the movement from the initial setting that is farthest from the line of minima. Looking

at the two points (6,0) and (6,-6), we see that the perpendicular distance to the line of

minima is approximately the same, but that for the initial setting farthest from the con-

vergence area the convergence time is approximately one-third longer compared with

the nearer setting.

A seeming deviation from this analysis is present if one considers the points (6,6)

and (-6,-6). There the discrepancy is due to an overshoot when (-6,-6) is the starting

point which does not occur when (6,6) is the starting point. (An example of the con-

vergence process with overshoot is shown in Fig. XIV-16.) The range in convergence

times from 0.45 second to 38.5 seconds is not indicative of the best possible perform-

ance of the system, since all of these runs were obtained with that value of D and A'

which gave minimum convergence time from (6,6).

Figure XIV-17 shows the minimum mean-square error, the experimentally meas-

ured mean-square error, and the mean-square error calculated for the experimentally

determined xi , as a function of noise power with fixed desired output power for a 30-db

range of noise power. Throughout the range the experimental and theoretical results

agree quite closely, and thus indicate the capability of the adjustment procedure to

operate properly over this wide range.

It was found in the four-filter case that the error on completion of optimization is

approximately 40 per cent less than that obtainable with two filters. This is to be

expected, since with more filters we can more closely approximate the spectrum of the

desired signal.

5. Conclusions

We have shown that the adjustment procedure does produce the desired results for

the mean-square error criterion. The time taken to converge can be controlled by

proper setting of the adjustment procedure parameters. Since convergence times of

well under 30 seconds can be obtained with this system and the system does perform

satisfactorily over the required 30-db range in noise power density, it is applicable

for use as an adaptive filter system in a radio communications link in which the back-

ground noise varies widely but remains approximately constant for a quarter of an hour

or longer. Furthermore, it can be shown that the over-all gain in performance over

a fixed filter which can be achieved by even this simple example is of the order of 5 db
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0

S = 0.575 12

D =3

A' - 4

8
NOTE: THE ELAPSED TIME IS

SHOWN BESIDE EACH
PLOTTED POINT
(TIME IS IN SECONDS)

Fig. XIV-16. Typical convergence of the x. (with overshoot).1
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.:. = eMeasured
2

O - eCalculated from x1 experiment

0

0.01 0.1

NOISE POWER (VOLT2 SEC)

Fig. XIV-17. 2 2 ande2
measured eminimum and alcula ted from x. experimentversus1

noise power for S = 0.79 volt 2 sec.O

for a 14-db deviation of the noise power density from the value used for the fixed filter

design.

A detailed description of these results has been given in the author's thesis.4

W. S. Smith, Jr.
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F. STUDY OF PHASE MODULATION WITH A GAUSSIAN SIGNAL

1. Introduction

The problem of determining the power density spectrum of a randomly phase-

modulated sinusoid has been of interest not only in information transmission but also

in the study of the problem of many coupled oscillators. Wiener has studied this prob-

lem and has derived the spectrum in closed form for a modulating signal that is a

Gaussian process. He obtained this result by using the set of orthogonal functionals

that he derived, the "G-functionals."

Since the publication of his work, no experimental testing of the theory has been

carried out. Therefore from the results obtained by Schetzen2, 3 an experiment was

prepared in which the power density spectrum of a phase-modulated wave was studied

by using the Wiener derivations.

Wiener has shown I that it is possible to obtain a power density spectrum with a dip

in it if the modulating signal is the white Gaussian noise response of a quadratic filter.

It is shown here that it is possible to obtain a dip in the spectrum by using a linear

filter.

2. Theoretical Determination of the Power Density Spectrum 4

Figure XIV-18 shows the general phase-modulation system. The input to the system,

x(t), is white Gaussian noise with zero mean and a power density spectrum Dxx(w) = 1/2Tr.

The system with impulse response h(t) is a linear time-invariant system, and the sig-

nal s(t) is therefore a Gaussian signal. The amplifier m is merely used to adjust the

rms level of g(t). The oscillator output, f (t), is phase-modulated by g(t).

F (t)

AMPLIFIER

Fig. XIV-18. Phase-modulation system.
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By the definition of phase modulation, if f (t) = cos c t, then

fo(t) = cos (w t+g(t)).

We shall investigate the power density spectrum of f (t). If we define a time signal

v(t) = ej g ( t ) , then LP00(T), the autocorrelation of f (t), can be written in terms of vv(T),
the autocorrelation of v(t),

(T) -= j T (T) + e W (T (2)

Using the set of G-functionals and the techniques developed by Wiener,1 we can put

oo(T) into a form that has an easily derived Fourier transform. The easiest way to do

this is to express g(t) in terms of x(t). With respect to Fig. XIV-18

s(t) = 0 h(t-o-) x(c) do-. (3)

Let us normalize h(t) by letting

h(t) = kc(t)

where k2 = 00 h(t) dt. By defining b = mk, g(t) can be written-00

g(t) = b S o
-oo0

4(t-.) x(o-) do-.

1
Wiener has expanded W (7), the autocorrelation of v(t), in terms of the G-

functionals:

-b2 4 b2n oo

(7) = e
n=O0-o

Because of the special form of this expansion, it can be simplified. Defining

0() = S

we obtain

vv(T) = exp -b2[ 1- (T) ].

Since ivv(T) is pure real, (2) can be written

1
ooT() = w(T) cos WcT .
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1
The spectrum of () is merely the spectrum of (7T) centered at the frequencieso00 4 vv

c

In order to simplify measurements, as well as calculations, it is desirable to set

wc = 0. This is merely a shift of the spectrum to a center frequency of w = 0. Notice

that this forces the spectrum of oo(T) to be symmetric. We then have

1
0o(7) = T vv(7). (10)

The desired power density spectrum, oo(jw), is the Fourier transform of oo (T).

This can be written by expressing vv (T) as a sum and interchanging the order of the

sum and the integral,

1 -b bZn 1'o(j) - e -'
00 2 n! 2 oo

n=0

(T) e - j dT.

Since 4'(-T) is an even function in T, it can be represented as follows:

Akesk

k=-oo

€(T) 
k00

Ake-sk T

k=- o

for T >- 0

(12)

for T < 0.

Defining 4,1 (T) = 49(7T) for T >i

otherwise, we have

€4€(T) = P 1' (-) + 4'c2(T)

and

0 and 4€2 (T) = i4'(T) for T < 0 and both functions zero

(13)

n (7T) = (T) + ( ) .

Defining 1 n)(s) and Tn)(s) as the

tively, we can write

exponential transforms of 1n (T) and 2 n (T), respec-
41 42bb

k1 k .. Akn

n)( Co Cs)
k =-oo k =-o

00o

k =-oon

n

if Re (s) > Re

i=1(-s -s -. . -s
( ki)

n)

(15)
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and

Co (-1)AAk ... Ak

S.k kn

kn=-oo (s+sk +Sk +..'+skn

n

if Re (s) < Re (ski)

i=1

(16)

Notice that the conditions on Re (s) are satisfied if the Fourier transform % (7) exists;

this existence is assured by the Wiener theorem. 5

In order to interpret these sums, it is convenient to relate them to an example. This
example is the one that was used in the actual experiment and will be discussed in par-

allel with the rest of the derivation.

Let the only nonzero values for Ak in the expansion of Lpi(T) be those for which
k = +1 and k = -1. We then have

s_ T

S-1A1 I 
s)

1 

0;

T7>

7 T<0.

From Eq. 15

(17)

1

k =-1I

1

kl=-1

Ak 1  A1

1 - k

s-s k1

s -i _

k Ak 2 k AIA 1  2A1A_1 A_ 1A_1

k=-1 ( -) s - 2si s - s_ s - s
k2=-1 s-skl-sk 2

(18)

(19)

These two expressions, T1 (s) and 12)(s), are shown in Fig. XIV-19 in which the

poles and residues (in parentheses) of each of the terms in the respective expressions

are plotted in the s-plane. Notice that s 1 and s 1 are chosen to be a complex-conjugate

pair, which they must be for a real autocorrelation function; this fact is represented by

defining

s1 = -a + jo; S-1 = -a - jWo.

Notice that it is possible to consider T(2)(s) the result of a two-dimensional convo-

lution of Il)(s) with 1l)(s) in the s-plane. The term two-dimensional convolution is

meant to imply that the coordinates of each pole in the s-plane are found by a one-

dimensional convolution along the respective coordinate.
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The quantity 3)(s) is found to be

A 3A A 3A A 3

(3) 1 1 -1 1 -1 +
(s-3s )  s-2s+ + +
(s-3s1 ) (s-2si-si) (s-s 1 -2s 1)

A 3

-1

(s-3s_l)

(21)

which again can be recognized as the two-dimensional convolution of 91 )(s) and 91 (s)

in the s-plane.
(n)

In general, the expression n1 (s) is the result of a two-dimensional convolution of

TM1)(s) with T n-1)(s).

Im

(A1) X j 1

(A_ 1) x

s- plane

-Io

Fig. XIV-19. (a) Pl)(s).

(b) W(2)(s).I

s - plane

Re

-i 20

The representation of T.)(s) in the s-plane can be derived from kin)(s ) by noticing

that each of the poles appears at a point in the s-plane that is symmetric about s = 0

and the residue of the pole is the negative of the residue of the respective pole of ~P1n)(s),

as can be seen from Eqs. 15 and 16.

QPR No. 70

mi2

j2 0

(A2) x

(2A1 A_ 1 )

-2a -a

(A_ 1)2 X

229

I



(XIV. STATISTICAL COMMUNICATION THEORY)

Although the example shown has only two nonzero Ak , it is easily seen that the tech-
nique, including the two-dimensional convolution, is valid in the general case.

Rewriting Eq. 11 in terms of the exponential transform, we have

002n
1 -b 2 ,2 n nS-b(s) =  e-b (T) + () e - s T dr (22)

Ifoo(s) = e-b ( nI' ) (s)+ (n)(S . (23)00 2 5 n! 1L 1  2

n=0

Since I n)(s) and \(n)(s) have already been derived, Eq. 23 corresponds only to summing

with the given weighting.

I 00(s) can be represented by plotting the poles and residues of each of the respec-

2ebtive terms in the s-plane.of ' I 0oo(s) - Ze are plotted for values of n from 1 to 4. The higher terms are easily
obtained by the two-dimensional technique and by multiplying the result by b n/n!. The
term for n = 0 corresponds to an impulse at w = 0 and is omitted.

The power density spectrum of f (t) is the Fourier transform of oo (T), or I, oo(JO)
This expression is obtained by replacing s by jw in P oo(s) and then multiplying by 1/r

to conform to the common definition of the Fourier transform.

o (j 1) = 1 1 -b 2  I b n) n) )
00- "oo e w) = 2(Tjr+ I,2 (j •) (24)

n=0

,P oo(jw) can be obtained from s-plane representation. Except for a multiplicative con-

stant, 0 0oo(jw) can be obtained by taking the reciprocal of the vector from the pole of a
term of oo(s) to the point s = jo times the residue of that pole and summing these

results over all poles.

Notice that this is quite different from the normal s-plane technique of finding the
product of the vectors from the zeros divided by the product of the vectors from the

poles. An attempt was made to find 'I 0 0 (s) as a ratio of products of the form (s-si)/(s-sj).
This attempt was not successful in the general case, because of the complexity arising

from the infinite number of poles.

In any specific case it is not necessary to complete the sum in Eq. 24 because the
factor b2n/n! approaches zero rapidly as n becomes large. The size of n needed
depends on thal b d the value of b and the degree of accuracy desired in NP (JW).prouc ofth vctos ro th zro diidd b te rodctofthevetos fo00h
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Because of the simplicity of Eq. 24 it is a relatively simple matter to program a

computer to calculate the sum for any arbitrary filter autocorrelation function. This

program is now being developed at the Computation Center of the Massachusetts Insti-

tute of Technology.

3. Experiment

a. Experimental Procedure

The block diagram of the experimental system is shown in Fig. XIV-21.

The sinusoid fc(t) is phase-modulated by s(t) which is the output of a shaping filter

whose input is white Gaussian noise. The output of the phase modulator, fl(t), has a

spectrum centered about the frequency of fc (t). In order to facilitate measurements of

the spectrum it was desirable to center this spectrum about zero frequency, which is

equivalent to setting the frequency of fc(t) equal to zero. This was accomplished in

WHITE GAUSSIAN

NOISE GENERATOR
s (t)

f (t)

SMULTIPLIER

Fig. XIV-21. Experimental system.
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practice by multiplying fl(t) by fc(t) and eliminating the double-frequency components

with a lowpass filter. The power density spectrum of fo(t) was measured by passing

fo(t) through a narrow-band filter and measuring the output on a true rms meter.

b. Implications of the Theory on Design

In order to verify the theory experimentally it was necessary to synthesize a filter

that was such that when the response of this filter to white Gaussian noise was used as

a signal to phase-modulate a sinusoid, the resulting power density spectrum would be

easily recognizable. In order to keep the calculational difficulties to a minimum, it was

desirable to use a filter with only two nonzero values of A k in the expansion of the auto-

correlation of its impulse response, as in the example used in the theoretical derivation.

The resulting power density spectrum of the phase-modulated wave can then be obtained

from Fig. XIV-20 by taking the reciprocal of the vector from a pole to the frequency

under consideration times the residue at that pole and summing these results over all

poles. From Fig. XIV-20 it can be seen that if the ratio of w /a is large and if b is

chosen to be approximately one, the dominant terms at w = 0 will be from the poles at

s = ±2a and the dominant terms at w = wo will be from the poles at s = ±a + jwo Under

these conditions, it is possible to have a power density spectrum that has a dip between

W= 0 and w=

Since this power density spectrum has the property of being easily recognizable and

has implications in the study of coupled oscillators, as shown by Wiener and Schetzen, 2

a filter was designed to give this dip.

In order to make the dip in the power density spectrum prominent, it is desirable to

have the magnitude at w = 0 approximately the same as the magnitude at A = O . In order

to satisfy this condition, the following relation must be satisfied:

b 2 A 2b 4 A A
1 1 - . (25)

a 2! 2a

It will be shown that the magnitudes of Al and A_- are approximately 1/2. In that

case

b z 2. (26)

The symbol, b, is the product of the normalization constant of the filter and the gain

of the phase modulator. The instantaneous phase of the phase-modulated signal under

consideration can be expressed as Eq. 5. Since x(t) is defined as white Gaussian noise

with zero mean and a power density spectrum of 1/27r, the mean of g(t) is zero and the

variance of g(t) is equal to b 2

According to Eq. 25 it is desirable to have b = 2, which implies a variance of 4 in

the phase of f (t). This then puts a difficult design constraint on the phase modulator,
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since the phase must be able to swing plus or minus three times the standard deviation.

The phase modulator must swing ±3 X 2 X 57.3 degrees or a total swing of approximately

700 degrees. If the value of the power density spectrum at w = 0 is allowed to be one-
fourth the value at w = o , b could be reduced to 1, which would reduce the necessary
swing in phase to 350 degrees. Most phase-modulation systems in use have a linear

swing in phase of less than 90 degrees. Since a value of b greater than 1 was desired,
a phase modulator had to be constructed with a swing of at least 360 degrees.

The autocorrelation function of the impulse response of the-filter should have poles
located at s = ±a ± j 0o . If the Fourier transform of a filter is H(jw), then the Fourier

transform of its autocorrelation function is I H(jw) I 2 It is easily seen, then, that the
desired filter has poles at s = -a ± j o . A filter with these poles is easily constructed
by a parallel connection of a resistor, an inductor, and a capacitor. The input to the
filter must be a current and the output a voltage.

c. Component Parts

The major part of this experiment was the design and construction of the phase
modulator because of the range required. The description of the phase modulator is

explained in detail in the author's thesis, 4 together with a description of the other com-
ponent parts, which are shown in Fig. XIV-21.

d. Operational Data

The frequency of the sinusoid f (t) in Fig. XIV-21 was 1500 kc. The modulating signal,
g(t), was bandlimited so that there were no frequency components above 20 kc. The
phase modulator could operate at well above this frequency.

Figure XIV-22 shows the experimental plot of the phase angle of the 1500-kc
sinusoid versus the input-modulating voltage. The curve is very linear. It is
at all points within 0.8 per cent of the best straight line drawn through the
points. The curve levels off after ±3.5 volts as a result of Zener diodes used
in the construction. 4

Because of the design of the phase modulator, the output signal is free of amplitude
modulation.

The rms value of the input voltage was adjusted to be 1 volt. Since the cutoff voltage
of the phase modulator is 3.5 volts, 99.9 per cent of the time the input voltage was in
the linear range of the phase modulator. For this reason the probability density of the
phase could be considered to be pure Gaussian.

The shaping filter had a resonant frequency of 8.3 kc and a Q of 13.5. For that
reason the spectrum of the Gaussian noise generator which was level between 20 cps
and 20 kc was considered white for the purposes of this experiment.
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Fig. XIV-22.
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2 3
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Phase angle of sinusoid versus input modulating voltage.

4. Comparison of Theoretical and Experimental Results

The system function of a parallel RLC circuit as described in section 3 is merely

the impedance. The system function, H(s), therefore is

s/C
H(s) = 22 s 1

RC LC

(27)

1/"Y- /2 2
By defining a = 1/RC, wo = 1/4, d a , the normalized autocorrelation

function of the impulse response of the system, L%,(T), is

+ j exp[-(a-jId)ITI] + 1w d a-jwd exp[-(a+jwd) I TI].

In the notation of the example discussed in section 2, Al =

(28)

A-1 2 1 -j a
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s1 = -a + jwd, and sl = -a - jwd'
As stated in section 2, the power density spectrum of the phase-modulated wave,

fo(t), is obtained by means of Fig. XIV-20. This is obtained by taking the reciprocal

of the vector from a pole to the frequency under consideration times the residue at that

pole and summing over all poles. Consider one of the poles in Fig. XIV-20 and its mir-

ror reflection across the imaginary axis. If a vector is drawn from each of these poles

to a point on the imaginary axis, both vectors will have the same imaginary component

and the real components will be negatives of each other. Because of this fact and since

the residues of these poles are the negative complex conjugates of each other, the sum

of the contributions from this pair of poles will be twice the real part of the contribution

from either one of the poles. For this reason it is possible to consider only one-half of

the poles, say the poles in the left-half plane, by taking twice the real part of each con-

tribution.

Figure XIV-23 shows the notation used to designate the contributions from each of

the specific poles. The sum contribution from the poles at s = ±na + jmwd is labeled

CUnm and the contribution from the poles at s = ±na - jmwod is labeled CLnm. CU11

is therefore the sum contribution from the poles at s = ±a + jwd or twice the real part

of the contribution from the pole at s = -a + jwd

S2 a 
b2  b2 A 2  a+ (W-W d]

1 1 -b1 1 1 -b d
CU11 -- e 2Re = e (29)

(jw+a-j d) a + (w-d)

The contribution from the poles at s = ±a - jwd is

2 [2a

b4  2 2a 1- + -d (w-co)
1 1 -b 2  2-! A1 -b 2 b4  dd
I-b 1 1 ebb d

CU22 =- -e 2Re jw+ 2aej2w Ze 4
S2 + a - j2d 4a2 + (-d) 2

(31)

The contributions from other poles are derived in the same manner and will not be listed

here.

The number of poles to be considered in any one case depends on the accuracy

desired in *oo (j) and in the values of b, a, and wd.
001
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Fig. XIV-23. Notation used to designate contributions from each of the specific poles.
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The value of b is the standard deviation of phase of fl(t) in radians. The measured

rms value of the signal, s(t), applied to the phase modulator in this experiment was

1.05 volts. The standard deviation of the phase can be obtained from the phase versus

voltage curve, Fig. XIV-22. The slope of this curve is 105 degrees per volt. There-

fore the standard deviation is (1.05). (105) = 110.3 degrees or 1.926 radians, and the

value of b used in the calculations is 1.926. The measured Q of the filter was 13.5,

which yields a value of 27 for the ratio wd/a. The measured resonance of the filter

was 8.3 kc; therefore wd z 2r 8.3 X10 3 radians per second and a = 1.930X103 nepers
per second.

With these values of b, a, and wd used, the contributions from the various poles

were calculated for some specific frequencies. The variable used in these calculations

is f, where w = 27f. These results are shown in Table XIV-1. Only the contributions

from the largest poles are shown. The contributions from the other poles were too

small to be of interest in the range of frequencies under consideration. The sum of

these contributions, labeled CT in Table XIV-1, is plotted in Fig. XIV-24 as a solid

line. It is important to notice that the values of b, a, and wd chosen do, indeed, pro-

duce the desired dip in the spectrum between c = 0 and o = d".

The experimental measurements were made by applying the phase-modulated sig-

nal, fo(t), to a narrow-band filter. The filter was tuned to the desired frequency and

the output of the filter was measured on a true rms meter. The square of this meas-

urement was recorded.

Even though the meter had an effective time constant of approximately 5 sec, the

meter reading fluctuated back and forth a distance that was a sizable percentage of the

average. In order to overcome this result of finite time integration, the meter reading

was averaged by eye over several minutes. The results of these measurements are

shown as bars superimposed over the theoretical curve in Fig. XIV-24. The length of

the bar indicates the range in which the true average could lie on the basis of the meas -

urements and the center is the estimated average value. Since the amplitude of the mod.

ulated sinusoid was not one, and since the gain of the narrow-band filter was not one,

the absolute magnitude of the series of measurements was not known. For that reason

the experimental curve was multiplied by a constant that seemed to yield the best over-

all fit to the theoretical curve.

Figure XIV-24 shows that the experimental data follow the theoretical curve very

closely. It can be seen that both the experimental and the theoretical curves have the

desired dip between w = 0 and w = cd. It can be noted further that the dip occurs at the

same place in both curves and that relative heights of the peaks also agree. In fact,

there are only a few minor departures of the experimental curve from the theoretical

curve.

Some possible explanations for these minor departures might be errors arising from
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Table XIV-1. Contributions of the poles in Fig. XIV-23 at various frequencies in units

of 10 - 9 watts per rad/sec.

F CU11 0L11 C022 CU20 CL22 CU31 CL31 C012 CU4O CU51 cL51 CU62 CU6o cu71 0U80 O T

0 0

500 o

1000 1

1500oo 1
2500 3
3500 6
4500 13
5500 30

6500 83
7000 167

7500 435
8000 18148
8300 3743
9000 656
9500 264

10500 91
11500 47

0

0

o
0

-1

-1

-1

-1

-1

-1

-1

-1
-1

-1

-1

-1

-1
-1

-2 3476
-2 2092

-2 953

-2 500
-2 198

-2 104

-2 64
-2 143
-1 31
-1 27
-1 23

0 20

0 19

1 16
2 14

5 12
10 10

-2 17 17 0 1497 20

-2 20 15 0 1284 22

-2 2 13 0 901 26

-2 28 11 1 602 30

-2 41 9 1 292 42

-2 62 7 2 16 61

-2 101 5 3 104 95

-2 187 4 4 71 160
-2 414 3 6 52 299

-2 682 3 7 45 118

-2 1187 3 8 39 571
-2 1920 2 10 35 708

-2 2149 2 11 32 740

-2 1402 2 14 27 623

-2 836 2 17 25 473

-2 350 1 25 20 256

-2 186 1 38 17 149

20

17
15
11
11

9

7
6

5

4
4

3
3
3

2

382

356
295
230

135
83
55
39
28
25

22

19

18
15

14

11
10

8
9

11

12
17

23

314
54

87

109

132
148

152

139
118

77
50

62 5495

59 3873
53 2288
45 1470
30 774

20 539
14 493
10 606

8 1016
7 1195
6 2133
5 4723
5 6880
4 2911
4 1781
3 868
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Fig. XIV-24. Theoretical and experimental curves.

the finite time averaging and possibly a value for b, the rms phase deviation, that is

slightly in error and affects the spectrum greatly. Another possible explanation of the

departures might be that the noise source is not a true Gaussian source. Even though

lower-order moments are those of a true Gaussian source, departures in the higher-

order moments would cause experimental errors.

It would be interesting to measure the power-density spectrum by using other values

of b. As observed, a higher value of b would make stronger use of the higher moments

of the noise waveform. Departures of the higher-order moments from those of a true
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Gaussian wave would increase the discrepancy between the measured spectrum and the

theoretical calculation because the latter is based on a true Gaussian source. These

measurements could be used for checking the higher moments of a Gaussian source.

In many current studies, the power density spectrum of ej ( t ) , where 0(t) is a non-

linear operation on a Gaussian process, is of interest. The theoretical calculations in

these studies become very complicated (see, for example, the calculations of Schetzen 2

in which the operation is the sum of a linear and a quadratic operation). The power den-

sity spectrum in these complicated cases could be obtained very easily by using the

phase modulator described in the author's thesis.4 The linear filter could be replaced

by the desired nonlinear filter and the power density spectrum could be measured as

described here.

J. K. Clemens
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