Particle Accelerators, 1992, Vols. 37-38, pp. 429-437 © 1992 Gordon and Breach Science Pub]ishqrs, S.A.
Reprints available directly from the publisher Printed in the United Kingdom
Photocopying permitted by license only

HILDA: HEAVY ION LINAC ANALYSIS CODET

E. CLOSE, C. FONG and E. LEE

Lawrence Berkeley Laboratory, University of California,
1 Cyclotron Road, Berkeley, CA 94720 USA.

(Received 3 December 1990)

HILDA is a program which estimates the cost and finds an optimal design for HIF induction linac drivers.
It can model near-term machines as well as full-scale drivers. Code objectives are: (1) A relatively detailed,
but easily understood model. (2) Modular, structured code to facilitate making changes in the model, the
analysis reports, and the user interface. (3) Documentation that defines, and explains the system model,
cost algorithm, program structure, and generated reports.

This report describes the structure and features of HILDA. We illustrate its potential by generating a
minimum-cost estimate of an intermediate (30-kJ) facility. The cost estimates are based on near-term

technology and prices.

1 INTRODUCTION

A Heavy Ion Fusion Driver (HIFD) is a complex machine consisting of many
components. In particular, an HIFD that is a linear induction accelerator could
consist of an injector, an induction linac, a drift-compression section, and then a final
focus section just prior to the reactor chamber. A cost estimate can be obtained using
standard engineering cost estimation techniques and tools such as spreadsheets.
However, obtaining results in this way is laborious and time-consuming. Thus it is
not practical to compare the costs of many machines based on different design choices
when the cost is obtained in this manner. Also, the complexity of performing the
calculation makes it difficult to determine what information was used. Ideally we
wish to have a tool that permits easy estimation of the costs of many different HIFD
designs so that the design which yields an optimal cost can be chosen. HILDA is being
developed to provide such a tool.

2 PROGRAM STRUCTURE

HILDA as a program is a closed loop driver. See Figure 1. This very simple but general
structure allows expansion and changes to be made in a simple manner. The program
asks the user what task to perform, performs that task using the required processes,
and then asks the user what to do next. This structure lends itself naturally to a

t This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences,
U.S. Department of Energy under contract No. DE-ACO03-76SF00098.

429

430 E. CLOSE, C. FONG AND E. LEE

A4

——(Perform Next Task)

FIGURE 1 HILDA program structure.

menu-driven program that can interact with the user in a friendly, useful manner.
Also, processes that perform elementary tasks may be grouped together in order that
more complicated tasks can be performed with only one menu selection.

HILDA is being developed on a VAX system using a Macintosh interface. The
program and all sub-modules are written in VAX FORTRAN 77. There are
exceptions to the language standard; for example, variable names are not limited to
6 characters. However, the exceptions are few and adherence to a standard computer
language should allow HILDA to be run easily in many computing environments.
FORTRAN was chosen because of its wide use in scientific computing.

All sub-program modules (“subroutines” in FORTRAN) are considered to be, and
are referred to here as, processes. Each process is passed a message to perform a
task. If the process can perform the requested task, then the values of the process
input variables are used to carry out the request. When the process is finished, the
output variable values are returned, along with an appropriate exit message. Required
data is read from an associated data file and, when requested, an associated output
file is written. Thus, the processes in HILDA consist of a body of code, a set of input
variables, a set of output variables, associated data and output files. A process is
driven by the message it receives when it is invoked. To a large degree, each process
in HILDA is a stand-alone module. No use is made of common, or shared, memory
blocks (“COMMONSs” in FORTRAN). See Figure 2.

This process structure incurs some extra overhead for the programmer. It is
necessary to very carefully structure the task or tasks that a process performs. It is

HILDA 431

Process Template

Summary of Process Task

Input/Output Variables

message,
inl, in2, e«
outl, out2, s«

Constants

External Processes Used

Local Variables

il
HOLID

Executable Statements

Parameter data /

Logic and Equations

FIGURE 2 HILDA process structure.

also necessary to carefully isolate the input variables, the output variables, the needed
data files, and the desired output files. However, once this has been done there are
significant advantages. Many of the processes can be run separately and individually
pre-tested. This permits us to check not only the correctness of the code logic but
also the correctness and applicability of the models used for basic component design.
They can also be used separately to explore and define appropriate design parameter
regions. If it is desirable or necessary, they can be run as parallel processes. The
processes are to a large extent “plug-in” units that can be updated or replaced as

432 E. CLOSE, C. FONG AND E. LEE

the model changes. HILDA processes are built from a template to insure a standard
structure, which also helps in producing good documentation.

As mentioned, one of the design goals is that the model and algorithms used to
obtain a cost estimate be accessible for review. Hence, a programming design choice
was made that the HILDA program document (the write-up) should in itself define
HILDA and its processes. Therefore, as each process is created and inserted into HILDA
it is actually placed in the program document. It is then downloaded from the
document into the computing environment, compiled, and linked to produce the
executable code. That is, the document generates the code. This requires programmer
discipline, but a consistent adherence to this convention insures that HILDA is
documented as it is created. It insures that the processes in the document are actually
executable. It also allows us to use the extensive formatting capabilities of modern
word processors. As a result, good documentation of the processes and algorithms
is produced.

3 DATA STRUCTURE

For a cost estimate to be understood and believed, it is necessary that the data used
in designing the components be readily available. For example, the process that
designs an iron-core focusing magnet needs knowledge of the types of materials
available, along with their densities and costs. Thus, one of the HILDA design goals
is that the design data be on files that are accessible and readable both by people
and by HILDA I/O utilities. It is also necessary that we can change this data, and
preferably without modifying the actual process that uses the data. Hence, the data
files are ASCII text files. The information in these files can easily be updated using
a text processor, or by small HiLDA I/O utilities. If it should be desirable to do a cost
study in which this data is actually the variable of interest, then small modules can
be provided to automatically update the files and then invoke the cost optimizing
algorithms. These data files are also available for generating reports that define the
optimized design. The use of message driven processes permits us to read these files
only when the data is needed, e.g., at the beginning of the search for an optimum
and not during the actual optimization process.

4 OUTPUT FILES

As noted above, a processor can generate an associated output file. This file contains
all the input variable values, all the output variable values, all the associated data
information and all appropriate intermediate values. For example, the process that
designs the beam acceleration modules returns only the dollar cost of the module.
However, the output file contains all the information needed to define that module:
the size of the components, their weights and individual material costs, the materials
used, etc. When appropriate, each process can also write a summary file of the
algorithms it uses. These output files can then later be used to generate a report that

HILDA 433

presents the total design of an optimum-cost HIFD. These files are also ASCII text
files that are readable both by people and by the HILDA utility routines. The use of
message driven processes allows us to write the output files only when desired, e.g.,
after an optimum has been determined and not during the optimization process.

5 BEAM TRANSPORT/ACCELERATION OPTIMIZATION ALGORITHM

An HIFD that is based on a linear induction accelerator is shown schematically in
Figure 3. We have, in the example below, asked for a minimum-cost design (MCD)
of the focusing quadrupoles and of the acceleration modules in the induction linac
section. It is not our intent in this short paper to present in detail the algorithms
that are used. The HILDA document is meant to provide that information. We will
simply sketch how the program determines such a design.

For the machine station at which we wish to find a MCD, we furnish the ion mass
A [amu], ionization state g, total beam charge Q[C], number of beams N, cumulative
voltage in VIMV], undepressed tune o,[deg], and normalized emittance ¢[m — r].
We then specify a parameter grid over which a search will be conducted. A point in
this grid defines the local variables: voltage gain AV[V], beam radius a [m], focusing
lattice half-period L[m], focusing packing fraction . Note: in the example the beam
radius is fixed to one beam size.

$/AV

)
Injector jeed Linac Final Focus Interface -

Induction Linac

module module module

Minimum
Cost Module

FIGURE 3 HILDA estimates the induction linac module cost.

434 E. CLOSE, C. FONG AND E. LEE

For the given set of station variables (4,q, O, N, V, 0,,¢) and at each point
(AV,a, L, n) of the parameter grid, HILDA calculates dynamical quantities and de-
termines whether they meet design criteria for beam transport. If it is determined
that the beam cannot be transported, then a message to that effect is issued and the
next point in the grid is examined. If the beam can be transported, HILDA proceeds
to design a focusing quadrupole for the beam. Certain design constraints must be
met. For example, the quadrupole must fit in the space available and the focusing
fields must be of reasonable strength. If such constraints cannot be met, then a
message is issued and HILDA skips to the next point in the grid. If a quadrupole can
be designed, the quadrupole beam spacing and size along with its cost are returned
and HILDA proceeds to use the spacing and size in the design of an acceleration
module. Again, component design limits are observed. For example, the core winding
height to width ratio should not be too large, pulser voltage limits should be observed,
the quadrupole should fit into the acceleration module, etc. A failure to find an
acceptable design causes a message to be issued and a new grid point to be examined.
If an acceleration module can be found, then its cost is returned. HILDA records the
total cost of the components obtained at the current parameter grid point. It then
proceeds to examine the next grid point. The process described above is repeated for
all grid points.

Each time a cost is found, it is recorded. At the end of the scan HILDA returns to
the grid point producing the MCD and uses those parameters to recalculate the
design. For this MCD it records in an appropriate log file: the cost obtained, and
the values of all intermediate input, output, design data, and calculated results.
Reports can be generated using the data in this file. If desired HILDA can also record
in this file summaries of the process algorithms used in the design, i.e. the model
equations that produced this design. This file provides an audit trail that allows for
independent verification and checking of the obtained design. This audit trail also
permits the user to check the data and design criteria actually used; it is all too easy
to accidentally furnish an incorrect value for some particular data item.

6. A 30 kJ NEAR-TERM MACHINE

As an example we use HILDA to obtain MCD estimates of a 30-kJ near-term machine.
This is an intermediate facility intended for technology development and study of
beam physics issues, not a power driver. Hence, it has a low repetition rate (0.1 Hz),
moderate-life-span components (10° pulses), pulsed iron quadrupole magnets (1.0 ms)
for beam focusing, and beam currents that lightly load the pulsers (<20 A/beam).
The cost estimates are based on near-term technology and prices.

The transported beam is singly charged potassium (38.9 amu) with an undepressed
tune of 72 degrees and a normalized emittance of 2.89 x 10~ % meter-radian. For the
length of the machine there are 21 beams and the beam radii are fixed at 8.0 cm. The
total beam charge is 0.0003 C. We choose 5 stations starting at 6.5 MV and ending
at 100 MV. For each of these stations HILDA finds parameters that give a MCD for
the focusing magnets and the acceleration modules.

HILDA

TABLE 1

Costs at Minimum Point of the Scan Grid: Station 1-5

435

Station 1 2 3 4 5
Cost [$/AV] 2.18E + 00 1.25E + 00 7.25E — 01 3.38E — 01 2.69E — 01
Cumulative volt. [MV] 6.50E + 00 241E + 01 S.S1E + 01 791E + 01 1.00E + 02
Voltage increment AV [V] 2.00E + 05 2.80E + 05 6.00E + 05 2.00E + 06 3.00E + 06
Half period [m] 9.00E — 01 1.60E + 00 1.80E + 00 1.99E + 00 2.09E + 00
Packing factor [1 SOOE-o01 5.00E — 01 4.00E — 01 5.00E — 01 5.00E — 01
TABLE 2
Associated Calculated Values: Stations 1-5
Station 1 2 3 4 5
Charge per beam [C] 1428E — 05 1428E—05 1428E—05 1428E—05 1428E —05
Beta * gamma [1] 1.892E — 02 3.648E — 02 SS514E—-02 6.607E —02 7.433E — 02
Gamma mc?/myc? [] 1.000E + 00 1.000E + 00 1.001E +00 1.002E + 00 1.002E + 00
Beta v/c [] 1.892E — 02 3.645E — 02 S5.506E —02 6.593E —02 7413E —02
Mag. rigidity [T-m] 2291E+00 441SE+00 6.67SE +00 7.998E + 00 8.998E + 00
Depressed tune [deg] 7.202E + 00 3983E+00 3.016E +00 2.844E + 00 3.107E + 00
Ave. beam size [m] 6.218E — 02 6220E—02 6.167E—02 6.114E—02 6.167E — 02
Perveance 1.632E — 03 5205E — 04 4.048E — 04 3224E—-04 2973E — 04
Beam current [A] 6.700E + 00 1.529E + 01 4.109E + 01 5.630E + 01 7.394E + 01
Pulse width [s] 2368E—06 1.037E—-06 3862E —07 2819E —07 2.146E — 07
Acc. gradient [V/m] 2222E+05 1750E+05 3.333E+05 1000E +06 1.428E + 06
Volt seconds [V-s] 4737E — 01 290SE —01 2317E—-01 5.638E —01 6.439E — 01
TABLE 3
Quadrupole Design Parameters: Stations 1-5
Station 1 2 3 4 5
Cost, quad array [$] 2438E + 05 2429D + 05 3.027D + 05 3.298D + 05 3.497D + 05
Fe, quad array [kg] 7.390E + 03 7.363D + 03 9.174D 4+ 03 9.996D + 03 1.059D + 04
Beam spacing [m] 3463E —-01 3.073D—01 3.330D—01 3.169D —01 3.183D — 01
Vacuum pipe wall [m] 3.300E — 03 3.300D — 03 3.300D — 03 3.300D — 03 3.300D — 03
Cooling, etc. [m] 1.I00E — 02 1.100D — 02 1.100D — 02 1.100D — 02 1.100D — 02
Wire center [m] 1.268E — 01 1.258D — 01 1.265D —01 1.261D —01 1.261D — 01
Wire thickness [m] S5167E —03 3.125D — 03 4.473D — 03 3.630D — 03 3.706D — 03
Iron thickness [m] 4370E—-02 2622D —02 3.773D —02 3.052D —02 3.177D — 02
Aperture radius [m] I.100E — 01 1.100D — 01 1.100D — 01 1.100D — 01 1.100D — 01
Field gradient [T/m] 8.144E +00 4.967D + 00 7.070D + 00 5.758D + 00 5.875D + 00
Pole tip field [T] 1.033E + 00 6.251D —01 8.947D —01 7.261D —01 7.412D — 01
Iron outer radius [m] 1.731E - 01 1.536D — 01 1.665D — 01 1.584D —01 1.591D — 01
Overhang length [m] 9516E —02 9.439E — 02 9490E —02 9.458E — 02 9.461E — 02
Magnet iron length [m] 6403E —01 9.887E — 01 9.098E — 01 1.189E + 00 1.239E + 00
Fe vol. of 1 quad. [m**3] 4.309E — 02 4.294E —02 5.350E —02 5.829E —02 6.180E — 02
Iron density [g/m**3] 8.165E + 03 8.165E + 03 8.165E + 03 8.165E + 03 8.165E + 03
Fe weight, 1 quad. [kg]l 3.519E +02 3.506E + 02 4.368E + 02 4.760E + 02 5.046E + 02
Cost, 1 quad [§] 1.L161E + 04 1.157E + 04 1441E + 04 1.570E + 04 1.665E + 04

436 E. CLOSE, C. FONG AND E. LEE

A
Y

%

\

LR

COOLING ,etc. GAP

VACUUM

FIGURE 4 HILDA quadrupole.

Results of these calculations are given in Tables 1-3. In Table 1 we show at each
station the dollar cost per voltage increment, the corresponding cumulative voltage
of the beam, and the values of the search grid parameters that produced this MCD.
In Table 2 associated calculated values are shown for each station. In Table 3 we
show a table of the quadrupole design parameters for each station. In Figure 4 we
show a schematic drawing to which the quadrupole parameters in Table 3 can be
related. A design parameter table and associated figure also exist for the acceleration
modules, but they are not shown here due to space limitations.

At each station the MCD values were found by calculating the design cost for the
parameters (AV, a, L, n) taken from a specified grid of allowable values. At some
points limits were exceeded and those points were excluded. For example, the
magnetic field at the pole tip exceeded 1.5 T. At others a cost was obtained, but it
exceeded the cost in the tables. A log file of the run was kept and it would be easy
to investigate solutions near the minimum. For example, the tables show that it is
reasonable to require the quadrupole packing fraction # to be 0.5 throughout the
machine. The MCD value of 0.4 obtained at station 3 is really not necessary and
HILDA could easily find the MCD for # fixed at 0.5. The cost would be close to the
0.4 case.

HILDA 437

7 CONCLUSION

HILDA is presently a useful tool for cost estimation. As experience is gained and as
more details are included in the cost model it should be easy to update the program.
A consistent adherence to the design structure of the processes and their associated
data and output files along with a persistent effort to keep the HILDA document up
to date will produce a program that has a good quality assurance audit trail. This
should provide a means for understanding and a basis for believing the results that
it produces.

