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A nonlinear analytical theory of space-charge compensation of a high-current ion beam in a magnetoinsu­
lated accelerating gap is presented. The problem is described by the set of equations for the charge
separation potential and for the self-consistent azimuthal magnetic field. This set is obtained from nonlinear
electron motion equations in a drift approximation, the Maxwell equations, the continuity equation, and
the energy, and particle-flux conservation laws. The beam thickness is assumed to be much smaller than
the beam radius. Also formulated are system-parameter requirements.

INTRODUCTION

One of the promising ways to produce high-current heavy ion beams for ICF pulses
is the induction accelerating machine. An increase in current at low initial ion energies
is achieved through space-charge neutralization of the ion beam by electrons. In this
case, the electron current in the accelerating gap is suppressed with the help of
magnetic insulation. In the axially symmetric system, the well-known mechanism for
transporting the ion beam (which has only limited compensation) through the
magnetic barrier! cannot take effect because in this system there is no azimuthal­
polarization electric field. Therefore, it was earlier suggested2 that the ion beam in
the accelerating gap should be charge-compensated by a specially injected electron
beam. The physical meaning of this mechanism is that the injected electron beam
drifts through the gap because of both the magnetic self-field of the ion beam and
the radial electric field resulting from the radial separation of the beams.

Consider a thin-walled, tubular ion beam moving through a magnetically insulated
gap together with a moving electron beam of the same current density as the ion
beam. In the approximation L\ ~ a, where a is the inside radius and L\ is the wall
thickness, one can use a Cartesian system to describe the ion dynamics. Let the x
axis be directed along the radius, and the z axis along the direction of beam
propagation. Then the beam density ni may be written as

{
1' a::; x ::; a + L\

ni(x) = niO
0, x < a, x > a + L\
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In this approximation we assume the beam to be unlimited in the OY-axis. The
external magnetic field has OX and OZ components; that is, Ho(Hox , 0, Hoz). Note
that the H 0 value is such that the Larmor radius of the ions rHi is considerably greater
than the accelerating gap length L (rHi ~ L). Accordingly, for electrons, r Hi ~ L; that
is, .the conditions for magnetic insulation of the electrons are fulfilled. The external
accelerating electric field Eo is directed along the OZ axis: Eo == Eoez. The ion beam
is injected into the system along the accelerating field at an initial velocity voi == Voiez·
We assume the gain in the ion velocity, dV i , in the process of acceleration to be small
as compared with the injection velocity Voi ; that is, eEoL/mv;i ~ 1. Then the increase
in the ion velocity along the OZ axis may be neglected. We also assume that there are
no limits along the OY axis, i.e., we consider that all the quantities are functions only
of the X and Z coordinates. The magnetic self-field excited by this ion beam has the
form

4n
-enoid, x>a+d
c

H == 4n (2)y
- enoVOi(x ~ a), asxsa+d
c

\0, x<a

We assume that the characteristic time of the problem is small compared to
Wi-

1 and Qi-
1 (wlX ' and Q

IX
correspond to the plasma and cyclotron frequencies,

respectively, and rt. == e,i). And we ignore the ion velocity increase in the ~cceleration
gap. Thus this problem can be described by a set of nonlinear equations: hydro­
dynamic drift equations for electrons, a continuity equation for electrons, and
equations for the radial decompensation electric field and for the azimuthal magnetic
field.

2 ELECTRON BEAM DYNAMICS

Let us consider the dynamics of the compensating electrons. The electrons moving
in the cusp field "0' the external electric field Eoez' and the field of charge division
V<p (qJ is the potential of the charge division field) are involved in the drift
motion. We restrict our consideration to the electric drift of the electrons:

C ( OqJ)
~x == - -2 Eo - - H y'

H o OZ

C {OqJ ( OqJ)}V ==-- --H - E --H
dy H6 ox 0:: 0 OZ ox' (3)
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In the drift approximation, the set of equations can be written as

and
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(4)

(5)

(6)

(7)

(8)

(9)

In the general case, the investigation of the set Eqs. (3)-(9) is rather complicated. We
take (alaz) ~ (IlL) ~ (1/L\) ~ (alox) and keep only the terms comprising the deriva­
tives with respect to Equation (8). It follows that

4nenoe vox
---;:.================================ = - 4neni(x),

Box e
2 _.+ 2 - [q>(x) - q>(a)]

m m

(Vx + ~x)2 Box + e { () ( )}=- - q>x -q>a ,
2 m m

Using Eqs. (7), (10) and (11) we obtain the equation for q>,

d2 q>

dx2

(10)

(11)

(12)

where noe is the non-perturbed electron density, Box(Z) = mV;xI2, Vox is the initial
component of electron velocity (perpendicular to the ion-beam motion), and q>(a) is
the potential at the inner beam boundary.
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The equation describing the azimuthal magnetic field has the form

dcp
4nenoeVoxHy -

dx V·
-----;=========================== = 4ne ~ ni(x),

Box e C
2 - + 2 - [cp(x) - cp(a)J

m m

(13)

where Vi is the ion beam velocity.
The set of Equations (12)-(13), taking into account the energy and particle flux

conservation laws, has been investigated analytically and numerically. The areas
being investigated are divided into two parts:

- at x > a + ~, where thereis no ion beam but the electrons are present; and

- at a :s; x :s; a + ~ where account must simultaneously be taken of the electrons
and ions. It was shown previously3 that the electron drift velocity approaches the Vi
value provided that the system parameters satisfy the following conditions:

(14)

where Ho(a) is the external magnetic field amplitude at x = a, and L is the accelerating
gap length. The set of equations was analyzed for really existing case2

. Where
a = 1 cm, ~ = 0.03 cm, cp(a) = 0, Hy(a) = O. The values of Box, noi were chosen so that
the condition of Eq. (14) was satisfied and, therefore, the drift electron velocity in the
direction of ion beam propagation (OZ axis) would be maximally close to the ion
velocity Vi.

Consider the behavior of the quantities being studied: the charge separation
potential cp(x), the electron density ne(x), the intrinsic magnetic field H y(x), and
the electron drift velocity vdz(x), in summarized fields. This analysis clarifies the
behavior of these functions by changing the boundary value E(a) = (eEz(a)a/Box) for
different ratios of initial densities of electrons and ions with noi = 5.2· 1013 cm - 3 and
Box = 7.2 . 105 eVe At rather large boundary fields (E(a) = 100) the separation charge
potential rapidly drops from 0 to -(Box/e) over the range well below ~. So, the
compensating electrons are trapped in a narrow region in the vicinity of x = a, and
their density sharply-explosively-approaches infinity (see Figure 1, curve 1). The
azimuthal magnetic field of the beam is, in this case, small, and in the main is also
concentrated not far from x = a. Figure 2 (curve 1) presents the distribution of
electron drift veiocity.

As E(a) decreases, the picture of field distribution flattens. Already at E(a) ~ 34
the charge separation potential has diminished to - (Box/e) in the range ~~. Figure
2 (curve 2) presents the electron drift velocity. The electron drift region extends over
the range ~, and the maximum drift velocity attains the value Vi.

When E(a) (E = 20) decreases, the charge separation potential diminishes to its
minimum over the range ~ 2~. The electron density (see Fig. 1, curve 3) in the region
x = 1.06a increases up to 5.88 .1014 cm - 3. The electric field from energy separation
in the layer L1 remains nearly constant and then rapidly drops over the range ~ 2~.

The magnetic field is concentrated in the beam layer and then rapidly drops outside
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FIGURE 1 Distribution of the electron density versus the transverse coordinate x at different values of
E(a). Curve 1 (hollow circles): E(a) = 100. Curve 2 (filled circles): E(a) = 34. Curve 3 (hollow squares):
E(a) = 20. Curve 4 (filled squares): E(a) = 10.
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FIGURE 2 Distribution of the electron drift velocity versus the transverse coordinate x at different
values of E(a): Curve 1 (hollow circles): E(a) = 100. Curve 2 (filled circles): E(a) = 34. Curve 3 (hollow
squares): E(a) = 20. Curve 4 (filled squares): E(a) = 10.
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of it. The electron drift velocity ~z (Figure 2, curve 3) has a plateau in the region of
the beam layer with average value ~ ~ and rapidly diminishes just behind the layer.
It is a classical case of the virtual cathode; the electron cloud being formed is confined
near the beam surface by electron escape from the beam region.

The case of E(a) = 10 is similar to the foregoing case (Figure 1,2; curve 4), but in
this case the electron cloud has no sharply defined localization region.

The analysis allows one to conclude that charge compensation may be achieved
by using an electron· beam accompanying the ion beam in the accelerating system
(with magnetic isolation for the electron beam). However, the ion beam must have
sufficiently high current, and the charge separation field must increase to high values.
Note that the total numerical integration has been performed.4

,5

3 CONCLUSIONS

For a high-current ion beam in an acceleration gap to be- neutralized by the
co-moving electron beam, the electron beam energy must satisfy certain conditions.

The transported ion beam must have a sufficiently high current. Since the injected
electron beam drifts through the magnetically insulated acceleration gap, the electron
beam current density need not exceed· that of the ion beam to provide the charge
compensation.
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