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A simple transport code has been developed to model the beam in a heavy-ion recirculating accelerator.
The novel feature of the model is the treatment of the beam charge density as a Lagrangian fluid in the
axial direction. In addition, the envelope and centroid equations include terms that account for the
transverse self-force, image forces, and bend fields in the paraxial limit. The use of "compressible" beam
slices makes the code suitable for designing the acceleration and compression schedules. The code has
been used primarily to design the lattice of the LLNL recirculator, and preliminary transport results for
that machine are presented here.

INTRODUCTION

A recirculating accelerator for a heavy-ion fusion reactor requires detailed design of
the lattice and the beam-acceleration schedule. The amount of energy gained by the
beam per turn must be matched to the increase in the bend-magnet field strength,
and the time variation of the acceleration field should be chosen to approximately
balance the beam axial space-charge force. In addition, the injection and extraction
sections must be effectively invisible to the beam except during the first and last
turns, and the constraint that the undepressed phase advance per lattice period be
less than about 80° must be satisfied at all times.

A fast-running envelope code has been developed to carry out the detailed lattice
design for the Lawrence Livermore National Laboratory (LLNL) recirculating
heavy-ion accelerator. 1 The model combines an envelope description of the beam
transverse dynamics with a fluid-like treatment of axial dynamics. Appropriate terms
are included to account for the effects of image forces, beam emittance, and space
charge in the limit of paraxial motion, and the beam is focused and accelerated by
a user-specified lattice of time-varying quadrupoles, bending magnets, and accelera
ting modules. In this paper, we briefly present the equations used in the model and
discuss the code numerics. The concluding section gives code results for a preliminary
lattice design, including a method for the final beam extraction.

t This work was performed under the auspices of the US Department of Energy by Lawrence
Livermore National Laboratory under W-7405-ENG-48.
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2 MODEL

The set of envelope equations used here to model the beam transverse dynamics is
similar to that formulated first by Kapchinskij and Vladimirskij2 and later adapted
by Lee, Close, and Smith. 3 The beam transverse distribution function is assumed to
be uniform and elliptical in each phase-space plane, and in the absence of an axial
magnetic field the coordinate-space ellipse may be taken to be unskewed. The
formulation differs from the more-rigorous envelope model of Chernin4 mainly in
representing the beam space charge by a perveance term, rather than obtaining it
iteratively. As in Ref. 3, the treatment is first-order in the ratio of the beam radii and
centroid displacements to the beam-pipe radius. This approximation makes it
appropriate to represent bend magnets and quadrupoles by idealized expressions and
to neglect higher-order multipole fields. In the present version of the code, only
single-function magnets are used, and axial fringe fields are neglected. Although the
ion mass is multiplied where it appears by the Lorentz factor y, derivatives of yare
small enough to be dropped from the ion-motion equations. Also, we assume a
circular beam pipe of infinite conductivity and radius R.

With these assumptions, the coupled envelope equations for the coordinate-space
radii may be written as follows:

d2a 1 dfJda B' t; 2K fK a
-+---== +--a+-+--+-a-- (la)
ds2 fJdsds -[BpJ a3 a+b R 2 p2

d2 b 1 dfJdb _ B' t~ 2K fK
ds 2 + {J ds ds = + [Bp] b + b3 + a + b -? b. (lb)

Here, the notation of Ref. 3 is used without modification. The coordinate s is
distance around the axis of the lattice, and x and yare respectively the spatial
coordinates in and perpendicular to the plane of the lattice, with a and b being the
beam coordinate-space radii in the x and y directions. The quadrupole-field trans
verse gradient is denoted by B', with the sign being determined by the magnet
orientation. The "magnetic rigidity" in the quadrupole-focusing terms is given in SI
units by

[BpJ == fJyMc/qe, (2)

(3)

where M and q are the ion mass and charge state, fJ is the axial velocity scaled
by the speed of light c, and yM c2 is the total energy of beam ions. The perveance K
in the space-charge and image-force terms is defined as

K == _1_ 2qelb

4nto (fJy)3 M c3 '

where I b is the beam current in amperes, and to is the free-space permittivity. The
beam transverse temperature is accounted for in Eq. (1) by the terms proportional
to the unnormalized emittances t x and ty, which are calculated in the present version
of the code by assuming that the normalized-emittance components fJ}'t x and fJ}'t y

are constant. The image-force terms in Eq. (1) were derived in Ref. 3 by assuming
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that the centroid of the elliptical beam is displaced a distance X ~ R from the axis of a
straight beam pipe. With this assumption, the form of the coefficient f is

_a2
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[ ~ (a 2

- b
2

) ~ (a 2
- b

2)2J
f(a, b, X) - 4R 2 + R 2 1 + 2 R 2 + 8 R 2 • (4)

(5)

The presumption of a straight beam pipe substantially simplifies the algebra and
is appropriate when the bend radius p is much larger than R. The two terms in Eq.
(1) that differ from the envelope equation in Ref. 3 are - a/p2 in the a equation,
accounting for curvature of the beam-pipe axis with a local bend radius of p, and
the df3/ds terms, which arise from changing variables from t to s. As we discuss below,
an approximate expression for df3/ds is obtained directly from one of the equations for
longitudinal motion.

As in Ref. 3, an equation for the lattice-plane centroid location X is obtained from
a distribution average of the single-particle motion equations. The resulting equation
may be written in the form

d
2
X 1df3 dX B' (1 By) gK X

ds2 + 73 ds a; = ± [Bp] X + P- [Bp] + R2 X - p2'

where the image-force coefficient g is given in the straight-pipe paraxial limit by
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(6)

(7)

The term -X/p2 in Eq. (5) again accounts for the lattice curvature, and we have
chosen to use By explicitly in the momentum-difference term so that a bend field may
be applied for extraction in a straight section of the lattice. The corresponding
equation for the centroid y position is not included in the present code version.

The effects of the beam axial space charge are crucial to the operation of a
heavy-ion recirculator both because the beam current affects the phase-advance
depression and because the beam must be finally compressed to a small fraction of its
initial length. To model axial dynamics, we treat slices of the beam as Lagrangian
fluid elements characterized by an axial velocity f3c and the time r that the slice
arrives at an axial location s. This approach implicitly assumes that the beam has a
negligible longitudinal temperature and that the slices remain approximately col
linear. If the slice boundaries are presumed to remain perpendicular to the beam-pipe
axis, then the equation for r is found from orbit kinematics to be

dr == ~ (1 + X),
ds f3c p

where we have again assumed paraxial motion. An approximate f3 equation is
obtained by retaining only the electrostatic force in the single-particle motion
equations and averaging the axial component over the beam elliptical cross-section:

df3 qe ( X)- == --2 1 + - (Eext + Esc)·
ds f3Mc p

(8)
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Here, the average external electric field Eext is approximated only by the voltage
across accelerating modules divided by the gap length. The axial electric field induced
by the change in bend-magnet field strength is neglected here because the field has
a peak strength that is less than 0.1 % of the average accelerating gradient and
furthermore has a null on axis. The space-charge field is approximated by

1[ ( 2R
2

) 1J[ a (A) AdfJJE '" - In + - - - + - -
sc '" 4n£0 a2 + b2 2 ar fJc f3 ds '

where the line-charge density A for a slice containing charge i\Q is estimated by

(9)

(10)A = i\Q .
fJci\r

In deriving the space-charge field, the radial electrostatic field is assumed to vary
over a much shorter scale length than EsC' and the continuity equation is used to
convert derivatives with respect to s into r derivatives. When Eq. (9) is substituted
into the fJ equation Eq. (8), the resulting equation is trivially rearranged to give an
equation for dfJlds in terms of Eext and the time derivative of AIfJ.

Equations (1)-(10) are recast in the code as a set of eight first-order equations and
are integrated by a conventional fourth-order Runga-Kutta method. A constant step
size in s is used in the present version, and the results are found to be insensitive to
the choice of step size so long as there are 15 or more integration steps per lattice
element. Since the envelope equations of Eq. (1) are quite complicated and may
include quadrupoles of any length, commonly used expressions 5 for the averaged
matched values of a and b are not, in general, useful for initializing the equations in
equilibrium. Instead, we integrate the equations for a slice near the beam midpoint
over the first full lattice period and adjust the initial values of the beam radii and
their derivatives until they match the corresponding final values.

An important aspect of the code is the lattice specification. The user may specify
an arbitrary number of distinct lattice elements, specifying appropriate properties
such as length, aperture, strength, and bend angle. At present, the element types
allowed in the code are drifts, accelerating gaps, sector bend magnets, and quadru
poles, but solenoids and higher-order multipoles may be easily added. Each lattice
element is given a name by the user, and lattice sections may be defined by listing
names of previously defined elements and subsections along with a repetition factor.
The final such grouping of subsections is treated as the complete lattice, and the
specification is checked to determine whether the lattice is a closed loop.

To facilitate code use, the code has a lattice "self-design" option. The main
assumption used to modify the lattice parameters is that energy is gained linearly in
distance s around the ring. With this assumption, the time-averaged voltage across
accelerating gaps and the bend-field strengths and time derivatives may be set. Also,
some compensation for longitudinal space charge is possible by imposing an ap
propriate time variation on the accelerating voltage. In this code, this voltage is
allowed by vary up to quadratically with time, and the voltage-correction terms are
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calculated from a four-term Legendre-series representation of the initial beam space
charge.

3 RESULTS

Design work with the envelope code has focused on modeling the final ring of the
four-ring LLNL ion recirculator. A tentative set of parameters for this ring is given in
Table 1. The lattice for this ring consists of alternating 3.3 T focusing and defocusing
superconducting quadrupoles with a half-lattice period L of 3 m and an occupancy
11 == Lquad/L == 0.2. Between each pair of quadrupoles is a 1.2 m sector bend magnet
flanked by a pair of accelerating gaps. The entire ring consists of 360 identical lattice
periods and is 2160 m long. Although the bend-magnet drive voltage is planned to
be a rising portion of a sine wave, the bend field By is assumed in the present
simulations to increase linearly with time t and to be the same in all the bend magnets.
This linear increase is the simplest to use because it corresponds to a constant energy
gain per unit length. We use two accelerating gaps per quadrupole because this
arrangement allows a better approximation to a linear energy gain than a one-gap
configuration. A complete lattice design should also have straight sections on each
side of the ring for beam injection and extraction, but we have chosen here to model
these sections separately.

3.1 Acceleration

If a constant accelerating voltage is used, a beam pulse with the nominal parameters
is found to lengthen by a factor of about three during the first pass around the
lattice. The final line-charge density for this case is shown by the solid curve in Figure
la, with the dashed line indicating the initial density profile. For an initial density

TABLE 1

Nominal Parameters for the High-Energy Ring of the
LLNL Ion Recirculator

Beam parameters
ion charge state
ion mass
peak beam current
beam duration
initial energy
initial norm. emittance
initial radius in x
ininitial radius in y

Lattice parameters
length
half-period
pipe radius
avg. energy gain

q
M
I h

!h

(')'0 - I)Mc 2

}'{iBx ' }'{iey

ao
bo

Smax

L
R
Mc 2dYIds

1
200 amu
180 A
0.547 liS
1 GeV
10- 5 m-rad
4.8 cm
2.6 cm

2160 m
3m
6.7 cm
83.3 kV1m



FIGURE 1 The beam line-charge density;' after one pass around the high-energy recirculator lattice
with different initial conditions and accelerating schedules: (a) I-GeV initial energy with a constant gap
voltage; (b) I-Gev initial energy with a linearly increasing gap voltage to balance space charge; (c) 9.82-GeV
initial energy with the same linear voltage rise. The initial line-charge density is plotted as a dashed line
in each case.
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FIGURE 2 Envelope oscillations for a lO-GeV beam slice traversing two different extraction lattices: (a)
a simple lattice with a single step in radius and constant 1]B' throughout; (b) a lattice with a two-step
radius change and quadrupole strength chosen to give a constant average a and b.

(11)

that varies parabolically with T, the space charge force may be approximately
cancelled by a suitable linear increase of the accelerating voltage with t. For a beam
duration Tb and a gap length Lgap , the appropriate time-varying part of Eext is

1 [ ( 2R
2

) IJ 4 L Ib ( 2t)~Eext ~ -- In 2 2 + - - -- 22 1 - - ,
4nco ii + b 2 Tb L gap f3 c r b

where ii and b are the matched beam radii averaged over a lattice period. If
f3 in Eq. (11) is chosen to be the value appropriate for a 1 GeV beam, we find that
the length of an initially parabolic beam is effectively unchanged at the end of the
first pass through the lattice, as shown by the density plot of Figure 1b. A small
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change in the beam profile is seen because ii, b, and f3 do not remain uniform as
the beam is accelerated.

Although pulse-forming lines can tailor the accelerating voltage to balance the
space charge in the beam, even for beams with non-parabolic profiles, it is difficult
to change the voltage time-dependence on successive passes. Since the beam velocity
nearly triples in the final recirculator ring, the voltage rise chosen for the first pass
would be too rapid for the last pass by about a factor of nine and would obviously
compress the pulse. To see the extent of this compression, we ran a case using the
same .1.Eext and t b as in the first pass but with a beam energy and initial bend field
appropriate for the last pass. The final calculated line-charge density, shown in Figure
1c, is found to be only about 10% shorter than the initial density profile, and the
pulse remains nearly parabolic. The reason for this insensitivity is that the excessive
external force is balanced by the larger space-charge force as the pulse compresses.

3.2 Extraction

Extraction from the final recirculator ring is complicated by the high magnetic rigidity
of a 10-GeV heavy-ion beam. The method planned for the LLNL recirculator is to
bend the beam away from the axis over several periods of a large-radius quadrupole
lattice. A preliminary design uses eleven 1.2-m bend magnets, each with a strength
of 0.34 T. The relatively weak field strength allows the magnets to be turned on
between successive beam passes, and the odd number guarantees that the last bend
be followed by a defocusing magnet. The first simulation attempt used six periods
of quadrupoles with a 35 cm radius and occupancy ry of 0.4. The strength was chosen
to give constant ryE' because analytic estimates of ii and b based on the" thin-lens"
approximationS predict that this choice should give the same beam radii in the large
quadrupoles as in the nominal ones. While this lattice allowed quite effective
extraction, as seen in the X plot of Figure 2a, the radii of beam traversing
the large quadrupoles with the bend field off increased by about 200/0, as the plots
of the variables a and b show, leaving the beam substantially mismatched.

To correct this effect of sudden changes in occupancy, we have worked out a more
gradual extraction lattice. The quadrupole radii increase in two steps rather than
one and in each section the quadrupole strength is determined iteratively to give the
same ii and b as the nominal lattice. Also, following the last large quadrupole the
occupancy of the nominal-radius quadrupoles is decreased in two steps, with the
strength again adjusted to keep the radii the same. This modified lattice gives the
same extraction as the first, as the X plot of Figure 2b shows, but the a and b plots
with the bend field off show that the beam remains much better matched.
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