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A very precise determination of Vus can be obtained from the semi-inclusive hadronic decay
width of the τ lepton into final states with strangeness. The ratio of the Cabibbo-suppressed and
Cabibbo-allowed τ decay widths directly measures (Vus/Vud)2, up to very small SU(3)-breaking
corrections which can be theoretically estimated with the needed accuracy. Together with previous
LEP and CLEO data, the recent measurements by Babar and Belle of some Cabibbo-suppressed
τ decays imply Vus = 0.2165±0.0026exp±0.0005th, which is already competitive with the stan-
dard extraction from Kl3 decays. The uncertainty is largely dominated by experimental errors and
should be easily reduced with the high statistics of the B factories, providing the most accurate
determination of this parameter. A 1% experimental precision on the Cabibbo-suppressed τ decay
width would translate into a 0.6% uncertainty on Vus.
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1. The hadronic τ decay width

The hadronic decays of the τ lepton provide a very clean laboratory to perform precise tests of
the Standard Model [1]. The inclusive character of the total τ hadronic width renders possible an
accurate calculation of the ratio [2 – 6]

Rτ ≡
Γ[τ−→ ντ hadrons(γ)]

Γ[τ−→ ντe−ν̄e(γ)]
= Rτ,V +Rτ,A +Rτ,S , (1.1)

using analyticity constraints and the Operator Product Expansion. One can separately compute the
contributions associated with specific quark currents: Rτ,V and Rτ,A correspond to the Cabibbo-
allowed decays through the vector and axial-vector currents, while Rτ,S contains the remaining
Cabibbo-suppressed contributions.

The theoretical prediction for Rτ,V+A can be expressed as [4]

Rτ,V+A = NC |Vud |2 SEW {1+δP +δNP} , (1.2)

where NC = 3 is the number of quark colours and SEW = 1.0201±0.0003 contains the electroweak
radiative corrections [7 – 9]. The dominant correction (∼ 20%) is the perturbative QCD contri-
bution δP, which is fully known to O(α3

s ) [4] and includes a resummation of the most important
higher-order effects [5, 10].

Non-perturbative contributions are suppressed by six powers of the τ mass [4] and, therefore,
are very small. Their numerical size has been determined from the invariant-mass distribution of
the final hadrons in τ decay, through the study of weighted integrals [11],

Rkl
τ ≡

∫ m2
τ

0
ds
(

1− s
m2

τ

)k ( s
m2

τ

)l dRτ

ds
, (1.3)

which can be calculated theoretically in the same way as Rτ . The predicted suppression [4] of the
non-perturbative corrections has been confirmed by ALEPH [12], CLEO [13] and OPAL [14]. The
most recent analysis [12] gives

δNP = −0.0043±0.0019 . (1.4)

The QCD prediction for Rτ,V+A is then completely dominated by the perturbative contribution;
non-perturbative effects being smaller than the perturbative uncertainties from uncalculated higher-
order corrections. The result turns out to be very sensitive to the value of αs(mτ), allowing for an
accurate determination of the fundamental QCD coupling [3, 4]. The experimental measurement
Rτ,V+A = 3.471±0.011 implies [15]

αs(mτ) = 0.345±0.004exp±0.009th . (1.5)

The strong coupling measured at the τ mass scale is significantly larger than the values ob-
tained at higher energies. From the hadronic decays of the Z, one gets αs(MZ) = 0.1186±0.0027
[16]. Evolving up to the scale MZ [17], the strong coupling constant in (1.5) decreases to [15]

αs(MZ) = 0.1215±0.0012 , (1.6)

in excellent agreement with the direct measurements at the Z peak and with a similar accuracy. The
comparison of these two determinations of αs in two extreme energy regimes, mτ and MZ , provides
a beautiful test of the predicted running of the QCD coupling; i.e., a very significant experimental
verification of asymptotic freedom.
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2. Cabibbo-suppressed τ decay width

The separate measurement of the |∆S|= 0 and |∆S|= 1 τ decay widths allows us to pin down
the SU(3)-breaking effect induced by the strange quark mass [18 – 27], through the differences

δRkl
τ ≡

Rkl
τ,V+A

|Vud |2
−

Rkl
τ,S

|Vus|2
. (2.1)

Since QCD is flavour blind, these quantities vanish in the SU(3) limit. The only non-zero con-
tributions are proportional to powers of the quark mass-squared difference m2

s (mτ)−m2
d(mτ) or

to vacuum expectation values of SU(3)-breaking operators such as 〈δO4〉 ≡ 〈0|mss̄s−md d̄d|0〉 ≈
(−1.4± 0.4) · 10−3 GeV4 [19, 26]. The dimensions of these operators are compensated by corre-
sponding powers of m2

τ , which implies a strong suppression of δRkl
τ [19]:

δRkl
τ ≈ 24SEW

{
m2

s (mτ)
m2

τ

(
1− ε

2
d
)

∆kl(αs)−2π
2 δO4

m4
τ

Qkl(αs)
}

, (2.2)

where εd ≡ md/ms = 0.053± 0.002 [28]. The perturbative QCD corrections ∆kl(αs) and Qkl(αs)
are known to O(α3

s ) and O(α2
s ), respectively [19, 27].

The moments δRk0
τ (k = 0,1,2,3,4) have been measured by ALEPH [29] and OPAL [30]. In

spite of the large experimental uncertainties, the corresponding QCD analysis has allowed to per-
form a rather competitive determination of the strange quark mass [20, 26]. However, the extracted
value depends sensitively on the modulus of the Cabibbo–Kobayashi–Maskawa matrix element
|Vus|, because the small differences δRkl

τ result from a strong cancellation between two nearly-
equal quantities. It appears then natural to turn things around and, with an input for ms obtained
from other sources, to actually determine |Vus| [26]. The most sensitive moment is the unweighted
difference of decay widths δRτ ≡ δR00

τ :

|Vus|2 =
Rτ,S

Rτ,V+A
|Vud |2

−δRτ,th
. (2.3)

The SU(3)-breaking quantity δRτ ∼ 0.25 is one order of magnitude smaller than the ratio
Rτ,V+A/|Vud |2 = 3.661± 0.012, where we have taken for Vud the PDG advocated value |Vud | =
0.97377± 0.00027 [31]. Therefore, to a first approximation Vus can be directly obtained from
experimental measurements, without any theoretical input. With Rτ,S = 0.1686±0.0047 [15], one
gets in the SU(3) limit:

δRτ = 0 −→ |Vus|SU(3) = 0.215±0.003 . (2.4)

This rather remarkable determination is only slightly shifted by the small SU(3)-breaking correc-
tions. For instance, taking δRτ ≈ 0.25 increases the result to |Vus| ≈ 0.222. Thus, an estimate of
δRτ,th with an accuracy of around 10% translates into a final theoretical uncertainty for |Vus| of only
0.4% (±0.0008). The final precision on the τ determination of |Vus| is then a purely experimental
issue, in contrast to the standard extraction from Kl3 which is already limited by theoretical errors.
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3. Theoretical evaluation of δRτ

The theoretical analysis of Rτ [2 – 4] involves the two-point correlation functions

Π
µν

i j,J (q) ≡ i
∫

d4x eiq·x 〈0|T [J µ

i j (x)J
ν†

i j (0)]|0〉 =
[
qµqν −q2gµν

]
Π

T
i j,J (q2)+qµqν

Π
L
i j,J (q2)

(3.1)
of vector, J µ

i j = V µ

i j ≡ q̄ jγ
µqi, and axial-vector, J µ

i j = Aµ

i j ≡ q̄ jγ
µγ5qi, quark currents (i, j =

u,d,s). The invariant-mass distribution of the final hadrons in the τ decay is proportional to the
imaginary parts of the correlators Π

T/L
i j,J (q2), where the superscript in the transverse and longitudi-

nal components denotes the corresponding angular momentum J = 1 (T ) and J = 0 (L). Employing
the analytic properties of these correlators one can express Rτ as a contour integral running counter-
clockwise around the circle |s|= m2

τ in the complex s-plane:

Rτ = 12π

m2
τ∫

0

ds
m2

τ

(
1− s

m2
τ

)2[(
1+2

s
m2

τ

)
ImΠ

T (s) + ImΠ
L(s)

]

= − iπ
∮
|s|=m2

τ

ds
s

[
1− s

m2
τ

]3 {
3
[

1+
s

m2
τ

]
DL+T (s) + 4DL(s)

}
. (3.2)

We have used integration by parts to rewrite Rτ in terms of the logarithmic derivatives

DL+T (s) ≡ −s
d
ds

Π
L+T (s) , DL(s) ≡ s

m2
τ

d
ds

[
sΠ

L(s)
]

, (3.3)

where the relevant combination of two-point correlation functions is given by

Π
J(s) ≡ |Vud |2

{
Π

J
ud,V (s)+Π

J
ud,A(s)

}
+ |Vus|2

{
Π

J
us,V (s)+Π

J
us,A(s)

}
. (3.4)

The two terms proportional to |Vud |2 contribute to Rτ,V and Rτ,A, respectively, while Rτ,S contains
the remaining contributions proportional to |Vus|2.

At large enough Euclidean Q2 ≡ −s, both ΠL+T (Q2) and ΠL(Q2) can be computed within
QCD, using well-established operator product expansion techniques. The result is organised in
a series of local gauge-invariant operators of increasing dimension, times the appropriate inverse
powers of Q2. Performing the complex integration (3.2), one can then express Rτ as an expansion in
inverse powers of m2

τ [4]. The perturbative correction δP in eq. (1.2) corresponds to the dimension-
zero contributions. The dominant SU(3)-breaking contributions shown in eq. (2.2) are associated
with operators of dimension two (m2) and four (δO4).

A very detailed theoretical analysis of δRτ was performed in refs. [19]. The perturbative QCD
corrections to the relevant dimension-two and four operators turn out to take the values ∆00(αs) =
2.0± 0.5 and Q00(αs) = 1.08± 0.03. In order to predict δRτ , one needs an input value for the
strange quark mass; we will adopt the range

ms(mτ) = (100±10)MeV [ms(2 GeV) = (96±10)MeV] , (3.5)

which includes the most recent determinations of ms from QCD sum rules and lattice QCD [32].
This gives δRτ = 0.227±0.054, which implies

|Vus| = 0.2216±0.0031exp±0.0017 th = 0.2216±0.0036 . (3.6)
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The largest theoretical uncertainty on δRτ originates in the longitudinal contribution (J = L)
to the dimension-two correction ∆00(αs). The corresponding perturbative series, which is known
to O(α3

s ), shows a very pathological behaviour with clear signs of being non-convergent; this
induces a large theoretical error in ∆00(αs). Fortunately, the longitudinal contribution to Rτ can be
estimated phenomenologically with a much higher accuracy, because it is dominated by far by the
well-known pion and kaon poles,

1
π

ImΠ
L
ud,A(s) = 2 f 2

π δ (s−m2
π) ,

1
π

ImΠ
L
us,A(s) = 2 f 2

K δ (s−m2
K) , (3.7)

which are determined by the π− → l−ν̄l and K− → l−ν̄l decay widths. Although much smaller,
the leading contribution to the scalar spectral function can be also obtained from s-wave Kπ scat-
tering data [32, 33]. Taking into account additional tiny corrections from higher-mass pseudoscalar
resonances [34], one obtains the following phenomenological determination of the longitudinal
contribution to δRτ [26, 32]:

δRτ |L = 0.1544±0.0037 . (3.8)

The pion and kaon contributions amount to 79% of δRτ |L. For comparison, taking the strange quark
mass in the range (3.5), the direct QCD calculation of this quantity gives δRτ |L = 0.166± 0.051;
in agreement with (3.8), but with a much larger error.

The perturbative QCD series ∆
L+T
00 (αs) is much better behaved, although it starts to show

an asymptotic character at O(α3
s ). Following the prescription advocated in refs. [19], one finds

3
4 ∆

L+T
00 (αs) = 0.75± 0.12 and QL+T

00 (αs) = 0.08± 0.03, which imply δRτ |L+T = 0.062± 0.015.
Adding the longitudinal contribution (3.8), gives δRτ = 0.216±0.016, which agrees with the pure
QCD determination and is 3.4 times more precise. This allows us to obtain an improved Vus deter-
mination:

|Vus| = 0.2212±0.0031exp±0.0005 th = 0.2212±0.0031 . (3.9)

4. Improved evaluation of Γ(τ−→ ντK−/π−)

The phenomenological determination of δRτ |L contains a hidden dependence on Vus through
the input value of the kaon decay constant fK . Although the numerical impact of this dependence
is negligible, it is worth while to take it explicitly into account. At the same time, we can deter-
mine the τ−→ ντK−/π− decay widths with better accuracy than the present direct experimental
measurements, through the ratios (P = K,π)

Rτ/P ≡
Γ(τ−→ ντP−)
Γ
(
P−→ ν̄µ µ−

) =
m3

τ

2mPm2
µ

(
1−m2

P/m2
τ

)2(
1−m2

µ/m2
P

)2

(
1+δRτ/P

)
, (4.1)

where δRτ/π = (0.16±0.14)% and δRτ/K = (0.90±0.22)% are the estimated electroweak radia-
tive corrections [35, 36]. Using the measured K−/π− → ν̄µ µ− decay widths and the τ lifetime
[31], one gets then:

Br(τ−→ ντK−) = (0.715±0.004)% , Br(τ−→ ντπ
−) = (10.90±0.04)% , (4.2)

in good agreement with the less accurate PDG averages Br(τ−→ ντK−) = (0.691±0.023)% and
Br(τ−→ ντπ−) = (10.90±0.07)%.
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Following ref. [15], we will use the improved estimate of the electronic branching fraction
Br(τ− → ντ ν̄ee−)univ = (17.818± 0.032)%, which is obtained by averaging the direct measure-
ments of the electronic an muonic branching fractions and the τ lifetime, assuming universality.
The resulting kaon and pion contributions to Rτ take then the values:

Rτ |τ
−→ντ K− = (0.04014±0.00021) , Rτ |τ

−→ντ π− = (0.6123±0.0025) . (4.3)

In our theoretical analysis of δRτ , we have considered the separate contributions from the J =
L and J = L+T pieces, defined through the two terms on the rhs of eqs. (3.2). The corresponding
splitting of the kaon and pion contributions is given by:

Rτ |τ
−→ντ K−

L
= Rτ |τ

−→ντ K−− Rτ |τ
−→ντ K−

L+T
= −2

m2
K

m2
τ

Rτ |τ
−→ντ K− = −(0.006196±0.000033) ,

Rτ |τ
−→ντ π−

L
= Rτ |τ

−→ντ π−− Rτ |τ
−→ντ π−

L+T
= −2

m2
π

m2
τ

Rτ |τ
−→ντ π− = −(0.007554±0.000031) .

(4.4)

Subtracting the longitudinal contributions from eq. (2.3), we can give an improved formula to
determine Vus with the best possible accuracy:

|Vus|2 =
R̃τ,S

R̃τ,V+A
|Vud |2

−δ R̃τ,th

≡
Rτ,S−Rτ |τ

−→ντ K−
L

Rτ,V+A−Rτ |τ
−→ντ π−

L
|Vud |2

−δ R̃τ,th

, (4.5)

where

δ R̃τ,th ≡ δ R̃τ |L +δRτ,th|L+T = (0.033±0.003)+(0.062±0.015) = 0.095±0.015 . (4.6)

The subtracted longitudinal correction δ R̃τ |L is now much smaller because it does not contain any
pion or kaon contribution.

Using the same input values for Rτ,S and Rτ,V+A, one recovers the Vus determination obtained
before in eq. (3.9), with a slightly improved error of ±0.0030.

5. Experimental update of Rτ,S

Within the Standard Model, where charged-current universality holds, the electron branching
fraction Be ≡ Br(τ−→ ντ ν̄ee−)univ = (17.818± 0.032)% determines the hadronic one, i.e., Rτ =
1

Be
−1.972564 = 3.640±0.010. Since Rτ,V+A = Rτ −Rτ,S, the only additional experimental input

which is needed is Rτ,S. Up to now, we have been using the value Rτ,S = 0.1686±0.0047, from a
recent compilation of LEP and CLEO data [15].

Babar and Belle have recently reported their first measurements of Cabibbo-suppressed τ de-
cays: Br(τ−→ ντφK−) = (4.05±0.25±0.26) ·10−5 [37], Br(τ−→ ντKSπ−) = (0.404±0.002±
0.013)% [38], Br(τ− → ντK−π0) = (0.416± 0.003± 0.018)% [39], Br(τ− → ντK−π−π+) =
(0.273±0.002±0.009)% [40] and Br(τ−→ ντφK−) = (3.39±0.20±0.28) ·10−5 [40]. The last
mode includes Br(τ−→ ντK−K−K+) = (1.58±0.13±0.12) ·10−5 [40], which is found to be con-
sistent with going entirely through τ−→ ντφK−. The changes induced in Rτ,S have been nicely
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summarized at this workshop by Swagato Banerjee [41]. Taking for Br(τ− → ντK−) the value
(4.2) and including the small τ−→ ντφK− decay mode, one finds a total probability for the τ to
decay into strange final states of (2.882±0.071)%, which implies the updated values

Rτ,S = 0.1617±0.0040 , Rτ,V+A = 3.478±0.011 . (5.1)

Although consistent within the quoted uncertainties, the new Babar and Belle measurements
are all smaller than the previous world averages, which translates into a smaller value of Rτ,S and
Vus. Using eq. (4.5), one finds now

|Vus| = 0.2165±0.0026exp±0.0005 th = 0.2165±0.0026 . (5.2)

Sizeable changes on the experimental determination of Rτ,S are to be expected from the full
analysis of the huge Babar and Belle data samples. In particular, the high-multiplicity decay modes
are not well known at present and their effect has been just roughly estimated or simply ignored.
Thus, the result (5.2) could easily fluctuate in the near future. However, it is important to realize that
the final error of the Vus determination from τ decay is completely dominated by the experimental
uncertainties. If Rτ,S is measured with a 1% precision, the resulting Vus uncertainty will get reduced
to around 0.6%, i.e. ±0.0013, making τ decay the best source of information about Vus.

An accurate experimental measurement of the invariant-mass distribution of the final hadrons
in Cabibbo-suppressed τ decays could make possible a simultaneous determination of Vus and the
strange quark mass. However, the extraction of ms suffers from theoretical uncertainties related to
the convergence of the perturbative series ∆

L+T
00 (αs). A better understanding of these corrections is

needed [42].
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