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A. BLACK-BOX DESCRIPTION AND PHYSICAL ELEMENT IDENTIFICATION

IN THE PUPIL SYSTEM

Black-box input-output analysis of nonlinear systems is, at present, a control-systems
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(XVII. NEUROLOGY)

area of much activity. Functional analysis 1 - 4 has a mathematical elegance that is

attractive, and we have applied this method 5 to the pupil light reflex. Figure XVII-1

shows hl(T), the first-order kernel, and h 2 (T 1 , T 2 ), the second-order kernel, as two-

dimensional and three-dimensional functions, respectively. Work is now under way to

refine the experimental method to obtain more consistent and reliable data.

However, since our goal is identification of the physical laws of the anatomical-

physiological elements that together make up the pupillary system, we have attempted

to dissect into the black box. The high-frequency cutoff is probably due to the output

mechanical elements, the iris muscles, as the experiment illustrated in Fig. XVII-2

demonstrates. Here, locally applied drugs that partly overstimulate both the sphinc-

ter and dilator muscles reduce the bandpass of the system and the gain. This confirms

a previous experiment 7 in which gain measurements were not obtained.

L

Fig. XVII-3. Impulse response of pupil to light (L) and
electrical intracranial (IC) stimulation.

IC

Frank H. Baker 8 has shown that in anesthetized cats direct intracranial stimulation

by electrodes stereotactically placed near the motor fibers of the oculomotor nerve pro-

duces pupillary contraction with approximately the same transport delay and third-order

response as does light stimulation of retina, as shown in Fig. XVII-3. Estimates of

nerve conduction times and synaptic delays for the pupillary system range from 10 msec

to 20 msec, in agreement with the assigning of 90 per cent of the transport delay and all

of the high-frequency attenuation to the output neuromuscular elements. 9

These experiments indicate the range of approaches utilizing system theory, and

neurophysiological and neuropharmacological dissection techniques, both of which are

necessary to make a quantitative and into-the-black-box analysis of a neurological con-

trol system.

L. Stark
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B. PUPIL VARIATION AND DISJUNCTIVE EYE MOVEMENTS AS A RESULT

OF PHOTIC AND ACCOMMODATIVE STIMULATION

There are several methods of stimulating the iris muscles which result in

a variation of the pupil diameter (Fig. XVII-4). First, the eye can be stimulated

with light. A signal goes from the retina to the central nervous system (CNS),

and then back to the iris muscles. l This photic response is involuntary, and thus

prediction does not occur. Second, a target can be moved on the optical axis

of one eye, while a cooperative subject tries to keep it in focus. It is evident

that this method of providing a stimulus necessitates a voluntary contrubution by

the subject and thus prediction may occur. In this situation, an error signal goes

to the CNS, indicating how far the image is out of focus. This is an even-error

signal, but in our present experimental arrangement, since there are additional

clues such as the size and brightness of the target, we actually work with an

odd-error signal. 2 From the CNS there is a signal path to the ciliary muscle

and the dioptric strength of the lens varies in such a way as to obtain clear

vision. Also, an additional signal goes from the CNS to iris muscles, and pupil

diameter varies to control depth of focus of the eye.

Third, the accommodation input by way of the CNS results in a disjunctive

eye movement of the other eye, although this eye cannot see the target. Figure XVII-4

is a simplified block diagram of these various inputs, outputs, and interactions.

The experimental arrangement is shown in Fig. XVII-5; it is possible to stimulate

one eye with either a light or an accommodation input and to measure the pupil

size. The associated disjunctive movements of the other eye which resulted from the
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Fig. XVII-4. Block diagram of the interacting
iris-lens-convergence system.
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Fig. XVII-5. Experimental arrangement.
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accommodation input were measured separately with equipment previously described. 3

To obtain an idea of the dynamics of the various systems, the eye was stimulated

with a sinusoidal light input or with a sinusoidal target-position input in the optical

axis of one eye. The variations in pupil diameter of the same or the disjunctive

movements of the other eye are measured. Bode plots are shown in Fig. XVII-6.

A. Troelstra, B. L. Zuber, J. I. Simpson, L. Stark
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C. REMOTE PATIENT-TESTING INSTALLATION

We have set up a communication link between the Howe Laboratories of the

EYE TRACKING MOVEMENTS
MONITORED BY PHOTOCELL GLASSES

Fig. XVII-7. Block diagram of remote patient-testing installation using on-line computer.
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Fig. XVII-8. Bode plot of eye-tracking movement control system.

QPR No. 69 254

-200

1 I



Table XVII-1. Gain and phase as a function of frequency typed out by on-line computer.
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Massachusetts Eye and Ear Infirmaryl and an on-line computer (GE 225) in the

Electronic Systems Laboratory, M. I. T., for studying neurological eye-movement

defects. The communication links are four pairs of standard low-fidelity "direct"

telephone lines, traveling approximately 3 miles in roundabout fashion from Cambridge

to Boston.

The experimental arrangement, as shown in Fig. XVII-7, consists of a pseudo-

random excitation signal that is generated by the computer, converted by the

computer DIOB (data input-output buffer) to an analog voltage, and transmitted

over one pair of lines (0-2000 cps bandwidth) to drive a horizontally moving spot

on an oscilloscope face. The patient is instructed to follow the spot; the angular

direction of his eyes is measured by a pair of photocell goggles,2 and this response sig-

nal is sent back over another pair of lines, and is digitalized by the DIOB. The GE 225

computer then analyzes the gain and phase lag at each frequency of interest and

types out the information. A typical typeout is shown in Table XVII-1. Figure XVII-8

is a plot of five successive runs on A. Troelstra.

The peak in the frequency response has been predicted by a sampled-data

model of the eye-movement control system. 3 An X-Y plotter will be installed

in the hospital laboratory and the plotted frequency response will be available

a few minutes after the experiment.

L. Stark, P. A. Willis, Gabriella W. Smith
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D. EXPERIMENTS ON DISCRETE CONTROL OF HAND MOVEMENT

Previous reports assembled evidence regarding sampled-data control phenomena

in hand motor coordination1 and also presented a rather complete sampled-data model

for eye-movement tracking. 2 Recently, a thesis 3 has been completed which further

explores experimental phenomena, which are interpretable in terms of a discrete

model.

Unpredictable ramps are used as an input signal, and the rotational load is made
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low enough so that the mechanical output elements (muscles, load, apparatus) do not

smooth the output signal too drastically. The response of the hand is then a series of

steps, as shown in Fig. XVII-9; the hand control system is evidently a discrete posi-

tion control system. When step amplitudes and times between steps are plotted as a

function of ramp velocity as in Fig. XVII-10, it is clear, since only the amplitude and

not the sampling period is velocity-dependent, that the nature of the discontinuity is

Fig. XVII-9. Random ramp response.
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Fig. XVII-10. Dependence of (a) step amplitude, and (b) step
frequency as a function of ramp velocity.
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not quantization, but rather like a sampled-data system.

Experimentally, varying feedback by means of an environmental clamp is often use-

ful in dissecting a system, 4 ' 5 especially when one can open the loop. When the loop is

(a) (b)

Fig. XVII-11. Pulse response under open-loop conditions.

opened, an unpredictable pulse input should produce a step response. The responses

to the initial pulses in experiments such as those displayed in Fig. XVII-11 do indeed

approximate steps. Since the inputs are repetitive, and thus eventually predictable,

the subject adapts and finally compensates for the change in feedback. The last

response to each series of input pulses in Fig. XVII-11 is more nearly a (dynamically

limited) pulse. Thus, the position control loop and the adaptive nature of the hand

system are both demonstrated in these open-loop experiments.

F. Naves, L. Stark
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