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It is shown that cross-coupling among cavities may reduce beam breakup (BBU) growth in a recirculating
accelerator. The main reason for this growth reduction appears to be the sharing of the deflecting mode
energy among coupled cavities. The result is based on a numerical study of the proof-of-principle
experiment currently planned for the Spiral Line Induction Accelerator. We conclude that the beam in
such an experiment (35 ns, 10 kA, 8.5 MeV) should not be vulnerable to BBU growth. The scalability to
much higher energies remains unclear, however, and the various issues are explored.

1 INTRODUCTION

The spiral line induction accelerator (SLIA)*2 is a novel compact accelerator with
the potential of accelerating a multi-kiloamp electron beam to tens of MeV or beyond.
It makes use of a stellarator magnetic field® to force the beam to recirculate through
the same accelerating unit, and is projected to share many of the advantages
of linacs and cyclic accelerators. A proof-of-concept experiment (POCE) is currently
under construction.? It is designed to trap a 35 ns, 10 kA beam and accelerate it to
8.5 MeV through two recirculations. A schematic drawing of the POCE is shown in
Figure 1. It consists of two accelerating units. The beam path threading through
these units consists of four arms, labeled sequentially as A, B, C, D. Each of the four
arms consists of five accelerating gaps; there are twenty gaps altogether. The gaps
in Arm A may electromagnetically be coupled to the gaps in Arm C, and those in
Arm B to those in Arm D.

Since beam acceleration occurs only when the beam encounters accelerating gaps,
attainment of high energies necessarily requires sequential beam passage through
these gaps. Beam breakup (BBU) growth*'8 is then a primary factor in the ability
of the SLIA configuration to achieve ultra-high energies. In addition, it is necessary
to devise a new procedure to assess the BBU growth in the POCE, since scalings
for such a configuration are unavailable.
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SLIA PROOF—OF—CONCEPT EXPERIMENT

Accelerating Units

e—beam

e—beam

FIGURE 1 Schematic drawing of the Spiral Line Induction Accelerator.

The SLIA is a hybrid between a linac and a cyclic accelerator. BBU growth would
occur in the linear sections of the accelerating units where the gaps lie. However,
since the beam recirculates through the same accelerating units, albeit via different
beam paths (Figure 1), there would be inevitable cross-coupling of the gaps. Thus,
the first gap of Arm A would couple to the first gap of Arm C, the second gap of
Arm A would couple to the second gap of Arm C, etc. (Figure 2). In fact, there has
been considerable concern that such cross-couplings would worsen BBU growth.
This concern has prompted consideration of cavity designs that would minimize such
cross-couplings.'® (We will assume here that the beam pipe is cut off to the
propagation of the cavity modes responsible for BBU, so that the couplings illustrated
in Figure 2 are the only ones possible.)

Since the SLIA is markedly different from a linac, an attempt was made to assess
its BBU growth by taking the opposite view, pretending the SLIA to be a strictly
cyclic system.!” That analysis, though not directly applicable to SLIA, does pinpoint
some intrinsic differences between BBU in a linac and in a cyclic accelerator.!7-*® It
also raised several interesting issues concerning whether BBU growth in a cyclic
system is best described in terms of transient amplifications or in terms of unstable
eigenmodes, as the properties of growth depend very much on the pulse length, on
the number of pulses, on the pulse separation, on the quality factor Q, and on the
degree of feedback. Many of these issues remain unsettled.°

In this paper, we treat BBU in a SLIA under more-realistic assumptions and
employ parameters that cover the range of the POCE. The crucial feature of this
work, which is different from all others, is the explicit modeling of cross-coupling of
cavities in the different arms of SLIA (Figures 1 and 2). Cavities within the same arm
are shielded from one another electromagnetically, as in the POCE. Thus, we may
unwrap the SLIA into a linac to treat BBU (Figure 2), except that cavity number 1
is coupled to (and only to) cavity 11, cavity number 2 to number 12, etc. (The twenty
cavities are numbered sequentially in the order of beam encounter).
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CROSS—COUPLING OF CAVITIES

FIGURE 2 Schematic representation of cross-coupling in the twenty cavities.

The most unusual result that we found is that the presence of cross-coupling may
actually reduce BBU growth. Several reasons may be given to explain this unexpected
phenomenon: the relatively short pulse length treated, the sharing of the mode energy
by another cavity (and therefore the reduction of beam deflection by an individual
cavity), and the phase mixing associated with the detuning in the breakup mode
frequencies as a result of finite (though small) coupling. This reduction of growth is
observed regardless of the value of Q associated with the deflecting dipole mode.
Based on this study, we conclude that BBU in the POCE of SLIA is not likely to
cause beam disruption.

The following assumptions have been made to reach the above conclusions. All
gaps are identical in the sense that, when isolated, each admits a deflecting mode
with the same transverse shunt impedance Z, and the same quality factor Q. We
assume that cross-coupling would not alter these values. The beam transport between
two successive gaps (including that around the bend) is modeled by 2 x 2 matrices®’
with constant matrix elements. We consider only a continuous coasting beam, and
assume that the beam’s pulse length is less than 1/2 of the total transit time from
the first cavity to the last cavity so that, at any moment, the beam passes only one
cavity in the cross-coupling interaction (Figures 1, 2). We model an individual cavity
by an RLC circuit whose natural frequency and Q coincide with the respective values
of the deflecting mode. The cross-coupling between the cavities is modeled by a
mutual inductance linking the equivalent RLC circuits. This modeling is done in
much the same way that cavity coupling is handled in standard microwave litera-
ture.?! The formulation is therefore consistent with the established results in the
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appropriate limits: the BBU growth reduces to that of the cumulative BBU in a
linac®*® when the cross-coupling is absent and the standard coupled cavity result is
recovered when the beam is absent.

In Section 2, we describe the cross-coupling of the deflecting modes via simple
RLC circuits. There, we introduce the dimensionless cross-coupling coefficient x. In
Section 3, we formulate the governing equations for BBU evolution, including the
effects of cross-coupling, together with the imposed boundary conditions and initial
conditions. In Section 4, we present the numerical results over a wide range of k and
Q. It is these numerical results on which we base our conclusions, stated in the
Abstract. In Section 5, we discuss further the nature of cross-coupling, and examine
the possible consequences and implications of relaxing some of the simplifying
assumptions. We also raise a number of issues that need to be resolved if the SLIA
is to be scaled to much higher energies than the POCE.

2 CROSS-COUPLING BETWEEN CAVITIES

When the gaps are isolated from one another, we assume that the deflecting mode
may be modeled by an equivalent RLC circuit of frequency w, and quality factor Q.
When cross-coupling between two gaps (cavities) is present, these individual RLC
circuits are also coupled. The coupling of cavities has been customarily modeled?!
with a mutual inductance M = kL which links the RLC circuits representing the
individual cavities (Figure 3). Here, k is the dimensionless constant which measures
the degree of (cross-) coupling. When the coupling is weak,

Kk <1 (1

MODEL OF CAVITY COUPLING

M=kl

FIGURE 3 Circuit model for cavity cross-coupling.
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We assume that the presence of cross-coupling does not alter the values of Q and
Z, of the deflecting mode in an isolated gap. Thus, w, = l/ﬁ and Q = wyRC.

To account for the cross-coupling between, say, cavity 1 of arm A and cavity 11
of arm C (Figure 2), we first denote f¥(f) to be the deflecting mode amplitude of the
i-th cavity at time t. When the weak coupling condition (1) is satisfied, /¥’ and f*V
may be shown to be governed by the following differential equations when the beam
is absent (see Appendix A):

Lf(t) = ke 4 12) @
LFD(t) = ke f 1), ©)

where L denotes the operator
L = d?/dt* + (w,/Q)d/dt + w}. @

Equations (2) and (3) admit normal solutions of the form exp(iwt). When x =0
(zero coupling), both f*)(t) and f*1)(¢) oscillate independently with

exp(iogt — wot/2Q)

dependence. When k? < 1, the eigenfrequencies are given by

®= [i ¥ <1 + g)]wo )

Equation (5) shows that the coupling leads to a slight detuning of the breakup mode
frequency and that there are two independent modes of oscillation.??

The coupling between cavity number 2 and number 12 is also descibed by Eqgs (2)
and (3), in which fV is replaced by f® and f*? by 2. A similar procedure applies
to coupling between cavity number 3 and cavity number 13, and so on.

We have assumed that there is no phase shift in the coupling between cavity number
1 and cavity number 11. If the two cavities are symmetrically placed within the cross
section of the acceleration unit, the phase shift should, by a symmetry argument, be
either zero or m. The case of phase shift equal to m is equivalent to replacing k in
Egs (2) and (3) by —«. Even in the presence of the beam, we have found from the
numerical results that the BBU growth is not sensitive to the sign of k. Henceforth,
we take k¥ > 0.

It is of interest to note at this point that the presence of cross-coupling leads to
two distinct modes, associated with the + sign in Eq. (5). Thus, the beam needs to
drive two modes (instead of one when such a coupling is absent). For the same beam
deflection, the deflecting mode amplitude in a cavity would be less when x # 0.
This reduction in deflecting mode amplitude would in turn produce less transverse
displacement of the beam. We believe that the above processes constitute the main
reason why cross-coupling reduces BBU growth, at least within the context of the
present model of cavity coupling.

Finally, we remark that the “leakage” of mode energy to another cavity (when
k # 0) is not equivalent to an effective lowering of Q in the present model of
cross-coupling. A finite Q always represents lossy processes from which energy cannot
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be recovered, whereas a nonzero k represents only reactive loading which does not
result in any energy loss. This is obvious in the coupled circuit shown in Figure 3.
To see this mathematically, we set Q = oo (i.e., remove the lossy processes) but keep
k # 0 in Egs (2), (3). These two equations imply conservation of total mode energy
because of the self-adjointness of the operator L when Q = co. The remaining
question, which we shall not address in this paper, concerns the condition under
which cavity cross-coupling can be modeled by the coupled-mode treatment given
in this section. The alternative would be to treat the entire accelerating unit, including
all of the gaps on the various arms threading through the unit, as a single resonant
structure.

3 FORMULATION OF BEAM BREAKUP GROWTH IN THE PRESENCE
OF CAVITY CROSS-COUPLING

This formulation of beam-gap interaction follows closely those given in the BBU
literature. Consider a uniform coasting beam of pulse length 7, relativistic mass factor
7, and current I. Let x®(t) and p“(t), be respectively, the transverse displacement and
the transverse momentum of a beam slice that, at time ¢, is about to enter the ith
accelerating gap (i = 1,2, ..., 20). Let x(t) and p¥(t) be the corresponding quantities
when this beam slice exists the ith gap. If the gap width is small, then®-®

x0(0) = x(0) ©)
pAe) = pe) + fOA), ()
where f(t) is the incremental momentum produced by the deflecting mode at
the ith cavity at time ¢. The ith cavity is in turn excited by the beam’s transverse
displacement, and, because of the cross-coupling, it is also excited by the neighboring

cavity which lies on the same plane orthogonal to the beam path. Referring to Eqs
(2) and (3), the evolution of f(t) is governed by®!’

. k . . .
L) = C—iw%l(f)h(‘)(t)x(')(t) + kwd f90); (8)
(0]
i=1,2,...,20

where j=i+ 10ifi<10and j=i— 10if i > 11.
In Eq. (8), (kc/w,) is a dimensionless quantity equal to Z,(Q)/30 Q [Ref. 6], and

. 1, LE<t<t;+7
ht) = { . )
0, otherwise

represents the time interval during which the beam passes through the ith gap.
We have used t; to designate the time at which the beam head enters the ith gap.
If T designates the transit time between neighboring cavities within the same arm
and T the transit time to go around each bend (e.g., from cavity no. 5 to cavity no.
6),thent, =0,t, = T,t; =2Tts =4T te =4T+ T',t,, = 9T+ 2T, etc. (Figure 2).
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We next assume that the beam transport between neighboring cavities within the
same arm can be modeled by a 2 x 2 matrix 4.° In general, a different matrix A’
would be necessary to model beam transport across the bend.” Thus, the beam
transport within the same arm is described by

X0+ Ty X0 [x90)
|:I7(i+1’(t + T)] B A_p@(r)] B A[p‘“a) + f(i)(tJ 1o
for i # 5, 10, 15. Across the bends,
X0+ Y] x90]  [x9)
[p"‘* Dt + T’)J -4 _p@(r)} -4 [p(f’(t) + f""(t)} )

for i =5, 10, 15. In writing the last forms of Eqs (10) and (11), we have used Egs
(6) and (7).

Equations (8), (10) and (11) are the governing equations for the transverse
displacement x(t), transverse momentum p‘(t), and the deflecting mode amplitude
f9t). The following initial conditions and boundary conditions are imposed. We
assume that the beam enters the first cavity without any initial transverse displace-
ment nor transverse momentum. For the cavities, we assume that, at t = 0, they are all
unexcited, except the first one, which has an amplitude f,, at t = 0. Thus, the only
non-trivial initial condition is

f10) = f, = non-zero constant. (12)

All remaining initial conditions are set to zero.

4 NUMERICAL RESULTS

In the presentation of the numerical results, we shall use the normalized time variables
t = wyot. We shall normalize both p and f with respect to f,, the initial amplitude
of the deflecting mode in the first cavity, cf. Eqs (12) and (7). The diagonal elements
of the transport matrices A and A’ are always dimensionless. The off-diagonal ones
become dimensionless if we normalize p by f,. We shall use the normalized variables,
unless otherwise specified. The normalized equations are given in Appendix B.

In these normalized variables, the breakup mode period in the individual cavity
is 2n. We set w,T = 7.33, w,T' = 73.3, and w,yt = 204 in all numerical calculations.
Note that the pulse length is sufficiently short that, at any instant, only one (not
both) of the cross-coupled cavities is occupied by the beam. The above numbers
correspond to a breakup mode frequency of 1 GHz, a cavity separation within each
arm of 35 cm, and a distance around bend (from Gap 5 to Gap 6) of 350 cm. To
characterize the BBU interaction with a gap, we introduce a dimensionless parameter

= (e
“=2\17xA 5(,)’ (13)
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which measures the strength of BBU excitation within each gap (cf. Eq. (B3) of
Appendix B). For I = 10 kA, y = 17, kc/w, = 0.416, we have ¢, = 0.0144. This value
of ¢, has been used in all numerical calculations.

Finally, for the transport matrices, we assume that, for simplicity, the effective
betatron frequencies w, associated with beam transport within the straight arms A,
B, C, D are identical to those in the bends. We shall use Q = w_./w, to denote focal
strength. Note that if w,/2n = 1 GHz, Q would assume a value of 0.28 if the effective
betatron wavelength 2nc/w, is 1.07 meter. For Q = 0.8, the elements a;; in the
normalized matrix A are a,, = a,, = 09134, a,, = —0.509, a,, = 0.326, whereas
those in A’ are: d}; = a,, = —0.462, a,, = 1.11, a@,; = —0.462. (See Appendix B).
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FIGURE 4 Evolution of the deflecting modes f)(f) at the ith cavity. In the left column (i =1, 5,
6), the arrows on the left designate the time at which the entire beam exits the ith cavity; the arrows on
the right designate the time when the whole beam exits the (i + 10)th cavity. In the right column (i = 11,
16, 20), the arrows on the left designate the time of arrival of the beam head at the ith cavity; the arrows
on the right designate the time when the entire beam clears the ith cavity. The values of Q, k, and Q are
specified on the figure. The coordinates have linear scales.
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In the numerical calculations, the parameters we have used are Q =4, 20, 100,
10%; Q = 0.14, 0.28, 0.8; and « = 0, 0.01, 0.03, 0.1, 0.3. These numbers span a rather
wide range. (The data for k = 0.3 are included only to show the qualitative behavior
when substantial cavity cross-coupling is present. One may argue that the mode
coupling formulation is adequate only for x < 0.1).

In order to read the figures in more detail, we make a few comments about the
dimensionless time coordinate in Figures 4-9. In these units, the beam enters cavity
1 at £ =0 and cavity 11 (the cavity to which it is connected) at f = 206. It enters
cavity 5 at £ = 30, cavity 6 at f = 103 (after a bend), cavity 16 at f = 310 (cavity 16
is cross-coupled to cavity 6) and cavity 20 at ¢ = 340. The beam’s pulse length is 204
time units.

X (@) ol 0
-04 L -16
1.2 A 50
k=0
0 o Q =100
=08
-50
-|.2 1 1 1
100 v
£=20 .
ol— Vg
_|oo 1 1
0 250 500
t t

FIGURE 5 The evolution of the normalized transverse displacement x¥(f) at the ith cavity. The
arrows in the left column (i = 2, 5, 6) designate the time at which the entire beam leaves the ith cavity.
In the right column (i = 11, 16, 20), the arrows on the left designate the time of arrival of the beam head
at the i-th cavity; the arrows on the right designate the time at which the entire beam leaves the ith cavity.
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FIGURE 6 Same as in Figure 4.

In Figures 4 and 5, data for the case Q = 100, k = 0 (no cross-coupling), and
Q = 0.8 are presented. Figure 4 shows the deflecting mode amplitude in cavities 1,
S, 6, 11, 16 and 20. Figure 5 shows the beam transverse displacement in the same
cavities. We see in Figure 4 that the deflecting mode decays continuously with time
in cavity 1 as expected because of the finite Q; cavity 1 is not excited by the beam
since the beam enters on axis, by assumption. This decay continues until the beam
has left the (un)coupled cavity 11, beyond which time it presents no physical interest
to either cavity 1 or 11. The field in cavity 5 shows a different pattern. No field is
present in the cavity before beam entry and the field rises in the cavity due to its
excitation by the beam. As soon as the beam leaves the cavity, the field decays as in
cavity 1. This pattern is actually repeated in cavities 2 through 10. The pattern in
cavities 11 through 20 is not physically different but appears differently in the figure.
In these graphs, only the rise in field amplitude is shown, since the decay is not
relevant, the beam not re-entering any cavity coupled to those. Note that in this case
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FIGURE 7 Same as in Figure 4.

of no cross-coupling, the field amplitude is always zero before the beam enters the
cavity, except in cavity 1, by assumption.

The beam transverse displacement does not show as much structure since the beam
goes only once through each cavity. Figure 5 shows the displacement in the same
cavities as in Figure 4, except for cavity 1, which has been replaced by cavity 2 (the
displacement in cavity 1 is always zero). The beam picks up a non-trivial transverse
displacement only when it arrives at cavity 2. This “initial” displacement is equal to
Xo = dy, = Q7 'sin (QT), cf. Eq. (B-11) of Appendix B. In order to assess BBU
growth, we take the ratio of the final beam displacement to this initial displacement
(Figures 10, 11). The beam displacement in Figure 5 does not evolve exactly as the
field amplitude in Figure 4 but it can be seen to decay in the first cavities before
growing exponentially as expected of BBU. For the present case, the transverse
displacement reaches 228 times its initial displacement after 20 cavities.
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FIGURE 8 Same as in Figure 4.

The cavity modes shown in Figure 6 correspond to the same Q, ¢, and Q as in
Figure 4 but include a small cross-coupling ¥ = 0.01. Although the final transverse
displacement is similar (228 x, vs. 210 x,), the mode evolution is qualitatively very
different. The difference starts with cavity 1, for example, where the field decays at
first. However, once the beam enters the coupled cavity 11, leakage from that cavity,
although not very important, shows very clearly in the rise of the field in cavity 1.
Although this field will not act on any part of the beam directly in the present
configuration, it is important to evaluate it since it affects the field in cavity 11, which
is itself driving the beam. The pattern shows very clearly for cavities 5 and 6. In
cavity 11, another difference appears. In that cavity, when the beam enters it at
t = 206, the field is non-zero since it was leaked from cavity 1 from ¢t = 0 onward.
It was thought that this non-zero field could aggravate BBU growth but it turns out
that the opposite conclusion is reached — namely, that this non-zero leakage actually
alleviates BBU. This apparently contradictory result will be addressed further in the
next section.
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FIGURE 9 Same as in Figure 4.

Differences in beam behavior are much smaller than differences in field amplitudes,
and, in fact, beam displacement is quite similar to the x = 0 case and will not be
shown. As the cross-coupling constant increases, the coupling between modes in
corresponding cavities increases and, as shown by Eq. (5), two modes would be excited
and their beatings give rise to much more complex time behavior. This type of
behavior is evident in Figure 7, as an example, where « = 0.1. It is apparent, by
comparing Figure 4 and Figure 7, that increasing the coupling coefficient x reduces
BBU growth.

Runs have been repeated for the case Q = 20, Q = 0.28 (Figure 8) and for Q =4
and Q = 0.14 (Figure 9). The decreasing values of Q correspond to decreasing values
of the focal strength. These two cases display behavior similar to the higher Q case
shown in detail previously. The maximum beam transverse displacement at cavity
20 normalized to its initial displacement is shown as a function of x for these cases
in Figures 10 and 11. The effect of cross-coupling is evident. However, it becomes
less important as Q decreases. This can be explained easily, since for low Q, the modes
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FIGURE 10 The ratio of the maximum transverse displacements at cavity no. 20 and at cavity no. 2,
as a function of k, for the values of Q, Q specified in the figure.
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FIGURE 11 Same as in Figure 10.
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are damped much more effectively and by the time the beam enters a coupled cavity
the fields in that cavity will decay to a low level. (see Figure 9). Basically, a low-Q
cavity is not very different from an uncoupled one, and this fact is borne out by the
results. Figure 12 shows the peak mode amplitudes as a function of k, in several
cavities for the case Q = 100.

We have considered three different values of Q because, although the dominant
break-up mode may have a low-Q value, the residual deflecting modes may have
much higher Q values and it is those modes that are most difficult to control.
However, although the reduction in growth is larger for higher-Q cavities, final beam
displacement is still larger for these modes. There is substantial reduction in the
transverse displacement by factors of ten or more, when the coupling constant k
exceeds a few percent.

One may question whether the BBU growth reduction by cavity cross-coupling is
merely a coincidence due to the specific values assigned to the breakup mode
frequency and to the focal strength. To answer this question, we have varied the
breakup mode frequency w,, fixing all other parameters, such as w,, T, T', t, I, and
y. Specifically, we have changed w, by about 5 percent, so that w,t’ ranges from
(206 — 2m) to (206 + 2m), where 7’ is the transit time of a beam slice to travel

T l T l T
N
30-—“ ]
| f(20)
! N
Q =100 ]
N=0.8 )
i
A ,L 1.
0.2 0.3

FIGURE 12 The maximum mode amplitude at cavities nos. 11, 16, 20 as a function of k. Here Q = 100,
Q=08.
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between each pair of cross-coupled cavities, e.g., between cavity 1 and cavity 11. Thus,
the phases of electron arrival at the cross-coupled cavity may take on any value over
two breakup mode cycles. (We chose two breakup cycles to make sure that the result
is essentially unchanged from one cycle to another, as shown by the solid curve in
Figure 13). The comparison between the x = 0.03 and the k = 0 case is shown in
Figure 13. This figure gives the maximum beam deflection X(20) at the last cavity
as a function of w,t’ over the interval (206 — 2n) < w7’ < (206 + 27). We have set
Q = 100 and, when w,t’ = 206, Q = 0.8. We see that x(20) without cross-coupling
(the k¥ = 0 case) is always higher than that for the x = 0.03 case, by at least a factor
of 6. Thus, growth reduction by cavity cross-coupling is prevalent and the phase
variation in w,t’ does not seem to negate such features. We believe that this relative
insensitivity to the phase is a result of the relatively short pulse length treated. (Figure
13 shows that the phase variation can produce a 50 percent variation in X(20) for
the k = 0.03 case).

14 . , , 140
Q=100, 0=0.8

N
O o
o 4120 |l
I N
N -

O
- P
2 o
o 4100 &N
N [ ><
N
| ><

80

W, T

FIGURE 13 The maximum normalized transverse displacement x(20) as a function of w,t’, which is
the phase advance in the breakup mode during the time interval it takes a beam slice to travel between
cross-coupled cavities. Note that growth reduction persists for the k = 0.03 case (when compared with
the k = 0 case), regardless of this phase.
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We summarize the main features in the above analysis.

1) BBU growth decreases with increasing cross-coupling between cavities.
2) Significant growth reduction occurs when k > a few percent.
3) The reduction in BBU amplitude can be a factor of 10 or more.

4) Substantial growth reduction is achieved for a large range in k values and so
should be readily implemented experimentally.

5) The growth reduction persists, irrespective of the phase of electron arrival at the
cross-coupled cavity.

These features are rather significant because they show a possible reduction in BBU
growth in a recirculation system which is not available in a linac geometry.

Based on the above findings, we now compare BBU growth in a cyclic accelerator,
in a linac, and in a recirculating linac with cross-coupling. Strictly cyclic systems
admit unstable normable mode solutions (for a given cavity) with simple exponential
growth in time.!”"'® Cumulative BBU in a linac exponentiates at a fractional power
of time>-6:13-16:23.24 (<1/2) and it therefore may be said to be less virulent. Here,
we have shown that BBU growth may further be reduced with cross-coupling of
cavities in a recirculating geometry, such as SLIA.

5 DISCUSSIONS

The numerical results based on the rudimentary theory led to the following. First,
the proof-of-concept experiments in SLIA as currently planned are not likely to be
vulnerable to BBU. Second, contrary to customary thinking, cross-coupling of
cavities in different arms of the SLIA is found to reduce BBU growth. Since the
second point is rather unusual, we shall have to explore further the implications. We
shall also comment on the limitations of our model and raise the various issues that
need to be addressed if SLIA is to be scaled to much higher energies.

We can name two reasons why cross-coupling among cavities could reduce BBU
growth. First, when coupling is present, the energy in one cavity is shared with
another cavity. Thus the cavity does not exert as strong a transverse deflection on
the beam. In addition, the beam needs to excite both cavities when cross-coupling
is present. For the same transverse displacement of the beam, the deflecting mode
that would be excited in an individual cavity has a lower amplitude. Based on this
simple physical argument, it is natural to speculate that the BBU gain per pass would
be further reduced if each accelerating unit were to accommodate a large number of
arms. In such a case, the deflecting mode energy in one cavity is shared by a large
number of other cavities through mutual cross-coupling. This scenario is quite
plausible if the beam’s pulse length is short enough so that, at any instant, the beam
resides in only one of the various arms in the cross-coupling interaction. Should this
be the case, we have here a rather peculiar situation for SLIA: the BBU growth per
pass is reduced as the number of recirculations is increased.
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The result that mode-coupling can reduce BBU growth may be extended to linacs.
If the accelerating cavities in a linac are coupled to similar but undriven cavities,
BBU growth may be reduced due to the reactive loading by these dummy cavities.
(See the last paragraph in Section 2).

Returning to the present study, we note that even if there is pre-existence of a
deflecting mode in a given cavity prior to beam arrival due to cross-coupling, this
initial mode energy does not seem to reverse the beneficial effects of cross-coupling,
as discussed above. Our numerical calculation has been extended to very high Q
values (Q = 10%) and these conclusions remain valid. Equation (5) suggests the
existence of two distinct modes when k # 0. A close examination of the numerical
results shows that the solution is biased toward the slow mode w ~ wy(1 — k/2) when
BBU is excited.

The second, but perhaps less convincing, reason is that the presence of cavity
coupling leads to a detuning of the breakup mode frequency, cf. Eq. (5). This detuning
may loosely be associated with an intrinsic frequency spread which is known to
provide phase mixing. This in turn leads to reduction of BBU growth.!#:15.23

We shall now address the deficiencies in our model and speculate on their effects
on the BBU growth. We have assumed that the values of Q and Z, associated
with a single, isolated cavity remain unchanged when this cavity is coupled to another.
The adoption of this assumption may have already led to an overestimate of the
BBU growth since, intuitively, when the energy within one cavity is allowed to couple
to another, Z, would be reduced, as it is a measure of the excitability of the cavity
by a traveling electron that is displaced from the center axis of the cavity. Other
simplifying assumptions we have made include a coasting beam and the use of
constant 2 x 2 matrices to model beam transport between cavities (including bends).
The dependence of BBU on 7y, which varies with the focusing system, is relegated to
a secondary role.

Let us now consider the various BBU issues that need to be addressed if the SLIA
is extended to an energy much beyond 8.5 MeV (as planned in the POCE). In that
case, many more recirculations and/or higher gain per arm would be required, and
each beamlet would encounter a large number of cavities. The cross section of an
acceleration unit would accommodate many arms of the beam pipe. The cross-
couplings among these various arms are clearly far more complex, though they may
lead to reduction of BBU gain per pass. This argument actually depends on whether
the beam consists of one single pulse or a series of pulses. It is possible that our
conclusion regarding BBU reduction by cavity cross-coupling would be altered, for
example, in the case of multiple pulses. One can think of situations in which cavity
cross-coupling may worsen BBU growth in a recirculating geometry, especially when
the individual beam pulses simultaneously occupy the various arms within the same
acceleration unit. In the latter case, the BBU growth would also show considerable
phase sensitivity, in sharp contrast to that displayed in Figure 13. These issues remain
to be investigated.

As we have emphasized, SLIA is neither a linac nor a strictly cyclic system.
Applicable scaling laws are non-existent at the time of this writing. They would be
highly desirable but their derivation touches upon some rather complex mathematical
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issues. Chief among them is the question of whether conditions exist under which
BBU in SLIA would evolve in a transient manner, or into an unstable normal mode
(if there is one).

There are other important topics that have not been addressed. They are mainly
related to ultra-high-energy SLIA operation. For example, the numerous encounters
of the beam with gaps require closer attention to the coupling between BBU and
orbital resonances.?* Perhaps more importantly the many recirculations of a high
current beam may dangerously couple the negative mass?> and image displacement
instabilities to BBU. These couplings cannot be ignored if the SLIA is to be extended
to the multi-kiloamp, hundred-MeV range.
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APPENDIX A
MODEL EQUATIONS FOR THE COUPLED CAVITIES

Consider first the coupling of the two identical RLC circuits (labeled a, b), as shown
in Figure 3. These two circuits are linked by a mutual inductance

M = kL (A1)

where k < 1 is the dimensionless coupling constant. Let 1, be the voltage across
the inductance L of circuit “a” and I, be the current flowing through this inductance.
Let ¥, and I, be the corresponding quantities for the inductance of circuit “b”.
Assume solutions with exp (iwt) dependence. The definition of mutual inductance M
gives

V,=iwLI, + ioMI, (A2)

V, = iowLl, + ioM]I, (A3)

We next apply the Kirchoff current law to circuits “a” to yield
Vo | .
I,,+E+w)CVa=0. (A4)

Similarly, for circuit “b”,

Vo .
I, + R + iwCV, = 0. (AS)
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The four Eqgs (A2)—(AS5) in the four unknowns V,, V,, I,, I, yield the natural
frequencies of oscillation of the coupled circuits:

i K
o= w0|:1 + 20 + 2]. (A6)
In writing Eq. (A6), we have ignored quantities of order x* and 1/Q?, and we have
used the relation w3 = 1/(LC) and Q = w,RC. The two modes given in Eq. (A6)
have obvious interpretations in the Q — oo limit and in the k — 0 limit.

The cross-coupling between the cavities shown in Figure 2 may now be described,
making use of the preceding results. For example, let circuit “a” represent cavity no.
1 and circuit “b” represent cavity no. 11 of Figure 2. The field amplitudes f*(z) and

£11(t) may then be described by
Lf () = ke £ (t) (A7)
LF (1) = kg fD00), (A8)

where L = d?/dt* + (w,/Q)d/dt + w}. Equations (A7) and (A8) are adequate, as far
as mode coupling is concerned, because the two normal modes given by Eq. (A6) are
recovered from (A7) and (A8) when we assume normal mode solutions of the form
exp (iot), under the same conditions xk < 1 and 1/Q* < 1. No extraneous modes are
introduced, and Eqs (A7) and (A8) also have obvious interpretations in the limit « — 0.

APPENDIX B
THE NORMALIZED EQUATIONS

In this Appendix, we normalize the governing equations. In so doing, we identify the
dimensionless parameters which need to be specified. We use a bar to denote
normalized quantities, and a summary is given at the end of this Appendix.
Letf=wot, T=w, T, T = w,T', T = wot, f = f/fo. P = p/fo, and X = ymwox/fo
where f, is the initial breakup mode amplitude in the first cavity (cf. Eq. (12)), and ,
T, T', are respectively, the beam’s pulse length, the transit time between neighboring
cavities within the same arm, and the transit time across a bend. We further define

L = d?/de* + (1/Q)d/dt + 1. (B1)
Then Eq. (8) becomes
L) = &, hO0) + xf (@), (B2)

wherei=1,2,3,...,20;j =i+ 10ifi < 10andj =i — 10if i > 11. In Eq. (B2), h? is
defined in Eq. (9) and we introduce the dimensionless constant (cf. Eq. (13))

J(L)("C) B3
=\ ka N\ o, ) (B3)

which is a measure of the BBU strength in the individual beam-cavity interaction.
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The beam transport Eq. (10) between adjacent cavities of the same arm is then
normalized to read

0+ T)| _ R0 .
[ﬁ“”’(i + T)] B A[ﬁ“’(ﬂ + f""’(f)]’ I .

where
A=[a]- |: cos.(QT)_ Q! sitz (QT):I (B5)
—Qsin (QT) cos(QT)
and
Q = o /wy (B6)

is the ratio of the effective betatron frequency (of the focusing system within the
arms) to the breakup mode frequency. Similarly, the transport equation across the
bend [Eq. (11)] is normalized:

RONE+ TY] L [500) .
[ﬁ““’(f + T')] - [1’7“’@ + f(")(f)}’ b =7

where
- B cos (Q'T) Q) 1sin(QT)
A = [aij] = YA e ald e ald (B8)
—Q'sin(QT) cos(Q'T)
and
Q = w /o, (B9)

is the ratio of the effective betatron frequency (across the bend) to the breakup
mode frequency. B
We assume initial rest conditions for all X, p, and f, except one, namely,

[0 =1, (B10)

as in Eq. (12). Thus, the beam begins to pick up a non-trivial transverse displacement
only when it arrives at cavity no. 2. Inserting i = 1 and 7 = 0 in Eq. (B4), we obtain

X(T) = a,, fY0) = a,, = Q 'sin (QT) = x, (B11)

which is the normalized transverse displacement of the beam head when it first
encounters the second cavity. All beam transverse displacement in subsequent times
should be compared with the value given in Eq. (B11) to assess the BBU growth.

In summary, the normalized equations for cavity excitation are given in Eq. (B2).
The beam transport is described by Eq. (B4) within each arm, and by Eq. (B7) across
the bends. The only non-trivial initial condition is given by Eq. (B10) on the breakup
mode amplitude of the first cavity. Besides the normalized time scales 7, T, and T,
we need to specify ¢,, Q, and ', defined in Eqgs (B3), (B6), and (B9), respectively.
Normalized transverse displacement, in all cavities and for all times, should be
compared with the value given in Eq. (B11) to assess the increase in the transverse
displacement as a result of BBU.
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