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A. TWO-DIMENSIONAL POWER DENSITY SPECTRUM OF

RANDOM NOISE

TELEVISION

1. Introduction

1-4Several workers have investigated the subjective effect of television random noise.

They have tried to relate the subjective effect of additive Gaussian noise to the one-

dimensional power density spectrum of the noise considered as a function of time.

Although the noise is one-dimensionally generated as a function of time, it is neverthe-

less displayed in two-dimensional fashion. Therefore, it has been our opinion that it

might be more fruitful to try to relate the subjective effect of additive Gaussian noise

to the two-dimensional power density spectrum of the noise considered as a function of

two space variables. In this connection the following question naturally arises. A one-

dimensional Gaussian noise with known power density spectrum o(w) is given. From

this noise a two-dimensional noise is obtained by scanning. What is the power density

spectrum * (u,v) of the two-dimensional noise in terms of I (w)? In this report we

shall attempt to answer this question.

2. Two-Dimensional Power Density Spectrum

We restrict our attention to black-and-white still pictures. The two-dimensional

noise is completely specified by its magnitude n (x,y) as a function of the space variables

x and y. The geometry of the scanning lines is shown in Fig. X-1. We assume that the

scanning is from left to right and from top to bottom, and that there is no interlacing.
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Fig. X-l. Geometry of scanning lines.

The length of each scan line is L, and the distance between two successive scan lines

is taken as the unit length. Let the one-dimensional noise be no(t), and let (x,y) = (0,0)

correspond to t = 0. Then we have

n (x,y) = n(x,y) 7 (y-k), (1

k

where

n(x,y) = no(x+yL) (2

and

Any particular noise picture can be considered as a finite piece of the sample func-

tion (1) which is infinite in extent. The impulses 6(y-k) are used so that we can

deal with the Fourier transform of n instead of the Z-transform.

We assume that the one-dimensional noise is ergodic, then n(x,y) is also ergodic.

The autocorrelation function of n(x,y) is

(T1,T2) = n(x,y) n(x+T1 ,+T 2 )

= n(t) n(t+T1+T 2 L)

(3)

where o(T) is the autocorrelation function of n (t). Let #(u,v) and o( w) be the power

density spectra of n(x,y) and n (t), respectively. We have
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Figure X-2 shows a possible 0 (w) and its corresponding D(u,v). It is to be noted

v
that (u,v) is zero everywhere except on the line u - = 0 where it is an impulse sheet.

Po (W)

A

D (u, v)

2TrA

L

u- =0
L

Fig. X-2. Relation between f(u, v) and Do ().

V
For ordinary commercial television, we have L - 500. Hence the line u -L = 0 is very

close to the v-axis.
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Letting 1 (u,v) be the power density spectrum of n (x,y), we have

S*(uv) = (u,v+2Trk), (5)

k

where the summation is over all integers. D (u,v) consists of identical impulse sheets
v 2rrkon the lines u - k = 0, ± 1, 2, ...L L'

3. One-Dimensional Power Density Spectrum along a Particular Direction

We have derived the power density spectrum P*(u,v) of a two-dimensional noise in

terms of the one-dimensional power density spectrum along the x-direction. It is rea-

sonable to believe that the subjective effect of noise depends also on the one-dimensional

power density spectra along directions other than the x-axis.

o SLOPE a TAN e
z

Fig. X-3. Calculation of the one-dimensional
power density spectrum along the
a direction.

We shall find the

slope a (Fig. X-3).

one-dimensional power density spectrum Z (w) along a line of

Let n(z be the noise along such a line:

na(z) = na(z) z - + k =a a 2 a
k

where

na(z) = n(z cos 8, z cos 8+b) for some fixed b.

The autocorrelation function of n (z) is
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4a(T) = na(z) na(z+T)

= n(x,y) n(x+T cos 0, y+T sin 6)

= (T Cos 0, T sin 6) (8)

or

a(1 F ran,' aT 1). (9)

The Fourier transform of 'a (T) is

c (w-av, v) dv . (10)
00

Hence the Fourier transform of a (r 1 ) is

a - a j cos

1

2rr cos 6
(11)S( o - av,v) dv.

Putting Eq. 4 into Eq. 11, we have

(1+La)W)cos =a I(l+La) cos l O1 +La)cos

1+ a 2

l+a= q ~a
2

+ a'
o( 1 +La
0 1a"

In particular, for a = 0, we have

w () = ()

which checks with our assumption. For a = oo, we have

(12)

4 o() = I c(L )

We note that for L = 500, the bandwidth of D ,(w) is 500 times that of D (w).0

shows how the factor + a2 varies with the slope a. We note
I1+Laj

Figure X-4

that the area under

Sa(w) is independent of a.
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1 0

L

Fig. X-4. + azvs a.
I1+La

Finally, from Eq. 6, we find that the one-dimensional power density spectrum

along the direction a is

* (W) = a + a k (14)
a ka 'k \ + a/

where k = 0, ±1, ±2, ...

4. Discussion

From subjective tests, it has been found - 4 that for pictures that are more or less

isotropic, low-frequency noise (low-frequency when considered as a time function) is

in general more annoying. From Eq. 12 we know, however, that a two-dimensional

noise obtained from a low-frequency one-dimensional noise by scanning may contain

high frequencies along directions other than the x-axis. In particular, the bandwidth

along the y-axis is approximately 500 times as wide as that along the x-axis. Since the

spatial frequency response of the human eye has a high-frequency cutoff, we suspect

that the following hypothesis might be true for isotropic pictures contaminated by addi-

tive Gaussian noise. The more anisotropic a noise is, the more annoying it will be.

Work is being carried out to test, among other things, this hypothesis, but the results

are still not conclusive.

It is important to note that the mathematical model from which we obtained

the power density spectra is quite crude. In order to relate the spectra to

the subjective effect of noise, modifications may have to be made to take care
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of the finiteness of scanning aperture.

We should like to thank W. L. Black who offered many very helpful comments

on this work.

T. S. Huang
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B. SEQUENTIAL DECODING FOR AN ERASURE CHANNEL WITH MEMORY

1. Introduction

It has been shown that sequential decoding is a computationally efficient technique

for decoding with high reliability on memoryless (or constant) channels.1 It is of

interest to determine whether or not similar statements are true for channels with

memory.

In order to gain insight into the problem of sequential decoding with memory, a

simple channel model, a two-state Markov erasure channel, has been analyzed. The

presence of memory is shown to increase the average number of computations above

that required for a memoryless erasure channel with the same capacity. For the era-

sure channel, the effects of memory can be reduced by scrambling.

2. Channel Model

Assume as a channel model an erasure channel with an erasure pattern that is

generated by a Markov process. Assume the process shown in Fig. X-5. Assume for

POP0

pi

Fig. X-5. Noise model.
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simplicity that the process begins in the 0 state. This will not affect the character of

the results.

It can be shown that the probability of being in the 0 state after many transitions

p1 2
becomes independent of the starting probabilites and approaches Channel

Po +Pl

capacity is defined as

1 n n
C = im max I(x ;y n),

n
n-ooc p(xn

where xn and yn are input and output sequences of n digits, respectively. Then, intui-
Pl

tively, C = , since information is transmitted only when the noise process is in
Po +P1

P
1the 0 state and the frequency of this event approaches n with large n.

Po +P1

3. Decoding Algorithim

We encode for this channel in the following fashion: A stream of binary digits is

supplied by the source. Each digit selects J digits from a preassigned tree (see

Fig. X-6). If a digit has the value 1, the upper link at a node is chosen, the lower link

being chosen when it is 0. (In our example (1, 0, 0) produces (011, 101, 000).)

Our object in decoding will be to determine the first information digit of a sequence

of n digits. Having done this, we move to the next node and repeat the decoding process,

again using n digits. The following decoding algorithim is used: Build two identical

decoders that operate separately on each subset of the tree in time synchronism. Each

0

0i

Q 0 0 0 UPPER SUBSET

00

Fig. X-6. Encoding tree with 3.
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decoder compares the received sequence with paths in its subset, discarding a path

(and all longer paths with this as a prefix) as soon as a digit disagrees with an unerased

received digit. When either a subset is identified (one subset is eliminated) or an

ambiguity occurs (that is, when an acceptable path is found in each subject), we stop.

If an ambiguity occurs, ask for a repeat. The computation, then, is within a factor of

2 of that necessary to decode the incorrect subset. We average the computation over

the ensemble of all erasure patterns and all incorrect subsets.

4. Computation

th
Let x. equal the number of nodes that are acceptable at the i state of the incorrect

1
subset. We trace two links for each node or perform two computations. Then, the

average computation to decode the incorrect subset is I(n).

nR-1

I(n) =2 Xi

i=O

1
where R , the rate of the source. We have

1 2 i - P (a path of if digits is acceptable)

i-i

Now

mZ, (Dm-r
Pm = I (1)m-r Pm(r),

r=O

where Pm(r) is the probability of r erasures in m transitions. Then

nR-1 i(- ) if

I(n) = () 2rPi(r).

i=O r=O

We recognize that the sum on r is the moment-generating function of erasures, gm(s),

evaluated at s = In 2.

gm(s) = e(e) P(em),
e

m

where em is a sequence of m noise states and
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m

4(em) = ((ei

i=l

It can be shown that

gm(s) = ,, O, [

4(x) =
0

where = o o s , and that

largest eigenvalue of U. Then,

for I(n)

n(R-R
comp)

where w , el are constants and

R1 3 I+c
comp = 1 - log 2 - P -

x= ?

x*?

m
Fl is asymptotically equal to the mth power of the

we find the following asymptotically correct expression

R<R
comp

R>R
comp

/ 2

S3-po-c/2 -8 1 - c.

Using similar techniques, we can find an upper bound to the probability of ambi-

guity and show that it is equal to the random block-coding bound and that the zero rate

exponent of this bound is R
comp

The computational cutoff rate, Rcomp' is shown as a function of po for fixed capacity,
c, in Fig. X-7. Rcomp is an increasing function of po for constant c. It is equal to

Rcomp' the memoryless rate, when p = ql = 1 - c, and it exceeds Rcomp when p > q 1.
However, po > q 1 is not, in general, physically meaningful, since this situation corre-

sponds to anticlustering.

5. Conclusions

We conclude that sequential decoding is inefficient when the channel becomes "sticky"

(small po). It is possible, however, to reduce the effective memory of the channel and

increase Rcomp if we scramble before transmission and unscramble after reception.

1Since the ergodic probability, 0 + of erasures is not changed by this maneuver,

channel capacity remains constant.

Most of these results appear to be extendable to binary-input, binary-output channels.

It is not clear, however, that scrambling will improve performance on binary channels,

QPR No. 69
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since capacity is reduced in the process. Work is continuing on this problem.

J. E. Savage
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C. A SIMPLE DERIVATION OF THE CODING THEOREM

This report will summarize briefly a new derivation of the Coding Theorem. Let

1 ' X2' '.' M be a set of M code words for use on a noisy channel, and let

Y .'.2' .''' L be the set of possible received sequences at the channel output. The

channel is defined by a set of transition probabilities on these sequences,

Define

Pr ( I .m).

Pr (_)= Pr (Pr m) Pr ( yl m )
m

Pr (~m y)=

Pr (J m) Pr (m)

Pr (y)

For a given received y, the decoder will select the number m for which Pr (zm I/)

is a maximum. We call this number m

rectly in this case is, then, Pr (xm I).

is

The probability that the decoder selects cor-

Therefore the probability of decoding error

Pr ()[1-Pr (lZ

We now upper-bound the expression in brackets in Eq. 3.

1 - Pr ( m ly x Pr (x m )

mAm

Pr (x 1 )/(+P)] for any p > 0.

mm
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Pe

154



(X. PROCESSING AND TRANSMISSION OF INFORMATION)

Equation 5 follows from the fact that tl/(1+p) is a convex upward function of t for p > 0.

Rewriting Eq. 5, we obtain

I - Pr m < I
m m

Pr ( 1E ) / ( l + p )

< Pr (m /(l+p)

m m':m

Pr (xm I) 1 /( I +p)

Equation 7 follows from overbounding the first term of Eq. 6 by summing over all m,

and overbounding the second term by replacing the missing term, Pr (m I) with

a smaller missing term, Pr (x ~ ). Now assume that the code words are equally
1 m

likely, so that Pr ( _m  M -for all-m, and substitute Eq. 2 in Eq. 7.

-m M
1 - Pr m ) Pr Pr ( x)1/(1+p Pr 1/(+p)

mYf -
P1

P <  Pr( x)1/(1+p)
e M -m

m m'm

P P
Pr (yx )1/(1+p)

Equation 9 bounds P for a particular code in terms of an arbitrary

We shall now average this result over an ensemble of codes. For each

chosen independently according to some probability measure P(x).

- < 1 P ) Pr (m)l o/(1+P) Pr (/. m ,) 1/

e Mm -m -

m m m'm -

The bar over the last term in Eq.

words other than m. Now let p <

tion, and we can upper-bound Eq.

is, then, the average of a sum of

for 0 < p < 1,

parameter p > 0.

m, let x be-- m

(1+P)] (10)

10 refers to the average over the ensemble of all code

1. Then we are averaging over a convex upward func-

10 by averaging before raising to the power p. This

M-1 identically distributed random variables. Thus,

e ML

m

P(_m) Pr ( ;m 1/(1+p) (M-1) P(x) Pr ( P) I + p .

QPR No. 69
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Removing the index m in the sum over m , and summing over m, we have

1+p

- < P(x) Pr ( x)I/(1+P) (M-1) .  (12)e

The bound in Eq. 12 applies to any channel for which Pr (Y I_) can be defined, and

is valid for all choices of P(x) and all p, 0 < p < 1. If the channel is memoryless (that
N

is, if Pr (1) Pr (Yn1 xn)' where P= (l' "' n' ' ~yN )'--  = (x,' .
n=l

... N)), then the bound can be further simplified. Let P(,r) be a probability measure

that chooses each letter independently with the same probability (that is, P(_) =
N
[I P((x)) Then

n=l

N +p

P < P(x) H Pr(yn I /(p (M-1) . (13)
n= 1

The term in brackets in Eq. 13 is the average of a product of independent random vari-

ables, and is equal to the product of the averages. Thus

_ l+p

P e P(xk) Pr ( x1/ 1+p (M-1) , (14)
n=l k=

where x1, ... , xK are the letters in the channel-input alphabet. Applying an almost

identical argument to the sum on , we obtain

P e  <  P(xk) Pr (yj Ixk) 1/(+p (M-1) ,  (15)

j= 1 -k=1

where yl, ... yj are the letters in the channel-output alphabet.
In M

If the rate is defined in natural units as R = N , Eq. 15 can be rewritten

< e - NE(p) for any p, 0 < p < 1 (16)

E(p) = Eo(p) - pR (17)

S1+P

E (p) = In ) P(x ) Pr (yj Ixk) 1/(I+p) (18)

ji k

QPR No. 69 156



(X. PROCESSING AND TRANSMISSION OF INFORMATION)

It can be shown by straightforward but tedious differentiation that Eo(p) has a positive

first derivative and negative second derivative with respect to p for a fixed P(xk). Opti-

mizing over p, we get the following parametric form for E(p) as a function of R:

E(p) = E (p) - pE'(p)0 0

R(p) =E' (p)

E=E (1)-R

for E'(1) < R < E'(0)
o o

for R <E'(1).o

(19)

(20)

(21)

From the properties of Eo(p), it follows immediately that the E,R curve for a given

choice of P(xk) appears as shown in Fig. X-8. Eo(0) turns out to be the mutual informa-

tion on the channel for the input distribution P(xk). Choosing P(xk) to achieve channel

E0 (1)

E

Eo (1) R Eo (0)

Fig. X-8. Exponent as a function of rate for fixed P(xk)

capacity, we see that for R < C, the probability of error can be made to decrease expo-

nentially with the block length, N. For rates other than channel capacity, P(xk) must

often be varied away from the capacity input distribution to achieve the best exponent.

Equations 19-21 are equivalent to those derived by Fano, and for E'(1) < R -< E' (0),
O o

a lower bound to P can also be derived 1 of the form P > K(N) e- N E ( p ) , where E(p) ise e
the same as in Eq. 19, and K(N) varies as a small negative power of N.

R. G. Gallager
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