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A. GENERALIZATION OF THE ERROR CRITERION IN NONLINEAR

THEORY BASED ON THE USE OF GATE FUNCTIONS

In the Wiener theory of optimum nonlinear systems, the measure of performance

is the mean-square error and the input is a Gaussian process. A reason for the choice

of this error criterion and type of input is the resulting relative analytical and experi-

mental simplicity by which a nonlinear system can be determined. Recently, experimen-

tal procedures have been studied by which one can determine optimum nonlinear systems

for error criteria other than the mean-square error criterion and inputs other than a

Gaussian process. 1 ' 2 The basic procedure is to expand the class of systems of interest

into a complete set of operators, n, so that the output of any system of this class can

be expressed as

N

y(t) = anyn(t) (1)

n=l

in which

Yn(t) = Cn[x(t)]. (2)

Figure IX-1 is a schematic representation of Eq. 1. In this representation, the coef-

ficients, a n , are amplifier gains. The determination of an optimum system is thus

reduced to the determination of these coefficients. The procedure is then to measure

experimentally the desired function of the error and simply to adjust the amplifier gains

in order to minimize this quantity. This procedure is guaranteed to result in the opti-

mum system of the class being represented for convex error criteria, since we are

then guaranteed that there is a unique minimum of the function of the error and that

there are no local minima. A difficulty with this method is that, in general, the amplifier
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Fig. IX-1. Operator expansion of a system.

gain settings are not independent of one another and therefore an iterative adjustment

procedure is required. This interdependence of the amplifier gain settings also makes

any estimation of the optimum gain settings by analytical techniques too unwieldy to be
obtained in any practical manner. Also, one generally has difficulty in obtaining a rea-
sonable estimate of the class of nonlinear systems to represent. However, there is a
set of operators based on the gate functions which can be used to expand the desired
system with which, for any error criterion, the amplifier gain settings do not interact.
In this report, we shall present some experimental and analytical techniques by which
the amplifier gains can be determined when this set of operators is used. To explain
the techniques, the determination of optimum nonlinear no-memory systems for various
error criteria will be presented. The extension to nonlinear systems with memory will
then be given.

1. The Gate Functions

For nonlinear no-memory systems, the set of operators that we shall use is the
gate functions, Qn. These functions were first introduced into the study of nonlin-

3ear systems by Bose. For this set of operators and input, x(t), the outputs, yn(t),
are

S= if -oc < x(t) < x
yo(t) = Qo[x(t)] = o

otherwise

ri if x 4 x(t) < x +; n 0,N

Yn(t) = Qn[x(t)] = 1n <n+1 ;(3)
0 otherwise

(t) 1 if XN < x(t) < co

YN(t)= [(t)] otherwise
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Qn (x)

0 Xn Xn + X

Fig. IX-2. Transfer characteristic of a gate function.

in which x > x if m > n. Figure IX-2 is a plot of the n t h gate function. Any step
m n

approximation of a nonlinear no-memory system can be expressed in terms of this set

as

N

y(t) = anQn[x(t)] ,  
(4)

n=0

in which we have not placed any restrictions on x(t).

Before proceeding, we note four important properties of the gate functions. The

first is

N

SQn[x(t)] = 1. (5)

n=0

The second is

QP[x(t)] = Qn[x(t)] for P > 0. (6)

The third is

P
IT Qa [x(t)] = 0 unless a = a = ... = ap. (7)
n=l n

Then, by use of Eqs. 6 and 7, we obtain the fourth property, which is

N N

an n[x(t )  = an Qn[x(t)]. (8)

n=0 an=0
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2. Optimum No-Memory Systems for Minimum IE(t) P

In order to illustrate some of the properties of the gate functions and also methods

for determining the coefficients, a n , we first shall discuss the determination of opti-
thmum nonlinear no-memory systems for error criteria that are the mean P power of

the magnitude of the error, E(t). That is, the error criteria that we first shall discuss

are 1IE(t) i = E(t)l P for P = 1, 2, 3, ... . . We shall then generalize these results to

error criteria that are arbitrary functions of the error.

For the input x(t), let the desired output be z(t). The error is then

N

E(t) = z(t) - 7 anQn[x(t)]. (9)

n=0

For convenience, we shall omit writing the argument t. Thus we shall write the error

as given by Eq. 9

N

E = z - aQn[X] (10)

n=0

with the understanding that E, x, and z are functions of time. Then the Pth power of

the error is

I- N

EP = z / anQ(x) . (11)

n=0

We shall obtain a more convenient form of this expression. Equation 11 can be expanded

as

E = zP + c 1 z anQn(x)

+ c 2 z P - 2  anQn(x) + ...

n=0

+ Cp anQn(x) (12)

n=0

in which the coefficients, cn, are the binomial coefficients. Substituting Eq. 8 in Eq. 12,
we then have
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N
EP P 1 P-1 aQ(x)

n=0

N
P-2 a 2

+ c2z anQn(x) +

n=O

N

Scp aPQn(x). (13)

n=0

Equation 13 can be written in the form

N
P P P-1 P-2 2 P

E z + clz an+c 2 z an+. . .+c panQn(X)
n=0

N

= zP+ [(z-a )P-zP]

n=O

= zP - Qn(x) + [z-an]Qn(x). (14)

n=0 n=0

By use of Eq. 5, we then have

N

E = [z-an]P Qn(x). (15)

n=O

The magnitude of the Pth power of the error can be expressed in the form

E P = [E2P]1/2. (16)

Thus, from Eq. 15 we have

N 1 /2

El = (z-an) 2 PQ (x) (17)

in which the bar indicates the time average of the function.

The optimum set of coefficients, a n , for which Eq. 17 is a minimum can be

determined by setting the derivative with respect to a. equal to zero. Thus, from

Eq. 17 we have
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2P-1
alEIP (z-a) Q (x)

a. -PP (18)

The numerator in Eq. 18 is zero except when the amplitude of x(t) falls in the interval

of the jth gate function. At such times, the denominator is equal to .(z-a Q (x) 1/2

Thus we can rewrite Eq. 18 to obtain

8 J P z-a Qj(x)

j z-a.j

= -P (zaj-a Q (xj . (19)

However,

(z-a) = jz-aj Sgn(z-a (20)

in which

l if z > a.

Sgn(z-a.) = if z = a. (21)

1 if z < a..

Substituting Eq. 20 in Eq. 19, we find that the condition for E I  to be a minimum is

I z-a P-ISgn(z-aj) Q (x) = 0. (22)

We can show that Eq. 22 is the condition for a minimum by differentiating Eq. 18 with

respect to a. and substituting Eq. 22 in the result. Then we obtain

a21 E
P  (z-aj)2(P-1)

a a = (P-1) P P Q (x) 0. (23)

Equation 23 is positive, since P > 1 and all terms being averaged are always positive.

Thus Eq. 22 is the condition for a minimum. We note that, by using the gate functions,

the amplifier gain settings do not interact and they can be determined individually by

means of Eq. 22.

Equation 22 provides a convenient experimental method for determining the desired
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coefficients, a . We note that if P is even, then Eq. 22 can be written in the form
n

(z-a j)P-1Q (x) = 0 [P even]. (24)

A circuit for experimentally determining the value of a. that satisfies Eq. 24 is depicted

in Fig. IX-3. The battery voltage, V, is adjusted to make the meter read zero; the volt-

age, V, is then numerically equal to the optimum value of a.. Another procedure is to

expand Eq. 24 as

P-1

(z-a) P-1 Q(x) = znQ (x) aP = 0,

n=0

(25)

in which the coeffieients, c , are the binomial coefficients. The averages, znQ(x), can

be measured experimentally. The optimum value of a. can then be determined by

substituting the measured values of znQ (x) in Eq. 25 and solving for the root of the

resulting (P-l) -degree polynomial in a..
J

METER

Fig. IX-3. A circuit for determining a. for P even.
J

P is

of a.
J

odd, then there are

can be determined.

two basically different circuits by which the desired

One is obtained by noting that

Iz-a. P-'Sgn(z-aj) = (z-aj.) I z-aj. [P >3 and odd]. (26)

A circuit, based on Eq. 26, for experimentally determining the desired value of a. is

depicted in Fig. IX-4. The second circuit is obtained by noting that a system whose

output is Sgn (z-a ) is a saturating amplifier. Thus, for P odd, a second circuit is

shown in Fig. IX-5. We note that the multiplier in Fig. IX-5 need only be a polarity-

reversing switch that is controlled by the output of the saturating amplifier. In the

special case for P = 1, the coefficients for the system with a minimum mean magnitude

QPR No. 69

If

value

125



T

Fig. IX-4. A circuit for determining a. for P > 3 and odd.

Fig. IX-5. A circuit for determining a. for P odd.

Fig. IX-6. A circuit for determining aj for minimum IE(t) I.
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error are obtained. The circuit for determining these coefficients is relatively simple

and is depicted in Fig. IX-6.

3. Optimum No-Memory Systems for Minimum F[E(t)]

The procedure that we have just described can be extended to the determination of

optimum nonlinear no-memory systems for error criteria that are arbitrary functions

of the error. To extend this procedure, we have from Eq. 10

N

F[E] = F - anQn (x . (27)

n=0

According to the definition of the gate functions (Eqs. 3), at any instant only one term

in the sum is nonzero. If, at that instant, x(t) is in the interval of the jth gate function,

then, at that instant, F(E) = (z-a.) Q (x). Thus, by the use of Eq. 5, we can express

Eq. 27 as

N

F[E] = F[z-an] Qn(x). (28)

n=0

P
Equation 28 is identical with Eq. 15 for F(E) = E . The set of coefficients for which

the mean of Eq. 28 is stationary now can be determined by setting the derivative of

F(E) with respect to a. equal to zero. Thus, if we define

d
G(a) da F(a), (29)

then the condition that a. be an extremal of the mean of Eq. 28 is

G(z-a ) Q (x) = 0. (30)

A sufficient condition that assures us that the condition given by Eq. 30 yields a mini-

mum of F(E) is that

2

2 F(a) > 0. (31)
da

Equation 31 is the statement that the error criterion is a convex function of its argu-

ment. For such cases, a circuit for experimentally determining the value of a. that

satisfies Eq. 30 is depicted in Fig. IX-7. The battery voltage, V, in the figure is

adjusted to make the meter read zero; V is then numerically equal to the optimum

value of a.. If F(E) is not a convex function of its argument, this simple procedure
J

is not sufficient, for local minima and maxima can then exist. However, the adjust-

ment of any one coefficient affects only one term of the sum in Eq. 28. The minimum
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V METER
T

Fig. IX-7. A circuit for determining a. for minimum F[E(t)].

of F(E) is thus obtained only if each term in Eq. 28 is a minimum. Therefore, because

of the special properties of the gate functions, the amplifier gains, a n , do not interact

even for arbitrary functions of the error and thus they can be determined individually.

This affords enormous simplification in search procedures for the determination of opti-

mum systems for nonconvex functions of the error. However, if G(a) can be expressed

as a polynomial, then the values of a. which satisfy Eq. 30 can be determined without a
J

search procedure. For, if G(a) can be expressed as a polynomial, then from Eq. 30 a

polynomial expression in a. can be obtained. The coefficients of the various powers of

a will involve only the averages znQ (x) which can be measured experimentally. The

values of a. which satisfy Eq. 30 can then be determined by solving for the roots of the

polynomial in a.. Thus, we have the important result that for the cases in which F(E)
J

can be expressed as a polynomial, no search procedure is required; then the optimum

value of a. can be determined analytically by solving for the minimum of the polynomial,
J

F(z-a.) Qj(x).

4. An Example

An important consequence of the fact that the amplifier gains do not interact is that,

in many cases, analytical estimates of the desired optimum nonlinear system can be

obtained. We shall consider a simple example as an illustration. A received signal

is the sum of a message and a noise that are statistically independent. The optimum

nonlinear no-memory system is to be determined for an output that is the message.

The error criterion to be used is IEI P in which P > 1, but not necessarily an integer.

The message is a binary signal that assumes the value 1 with probability 1/2 or the

value -1 with probability 1/2. We shall determine the coefficients of the optimum sys-

tem from Eq. 30. To do this, let the random variable of amplitude of the message be

T which takes on values z; let the random variable of amplitude of the noise be 'r which

takes on values y. Then, the random variable of amplitude of the received signal, t, is
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= + r. (32)

On the ensemble basis, Eq. 30 for our example is

G(-a ) Q j() = 0. (33)

For our problem, F(a) = al so that from Eq. 29

G(a) = P a P-1Sgn(a). (34)

Thus Eq. 33 becomes

0 = i-aP-Sgn(-aj) Q j(,+n)

= dy dz I z-aj P- 1 Sgn(z-aj) Qj (z+y) P, (z,y). (35)
-oc -C

However, since the message is binary and independent of the noise, we have

P(zllZ,y) = P (z) P (y)

=1 [u(z-)+u(z+1)] P (y), (36)

in which u(z) is the unit impulse function. Substituting Eq. 36 in Eq. 35 and integrating

with respect to z, we obtain

1 P-1 cc

0 =-2I1-aP Sgn(l-aj) Qj(y+l) P (y) dy
00

+ l-l-aj P-ISgn(-l-a ) Qj(y-l) P (y) dy. (37)

The equation that a. must satisfy is thus

1-a. P - 1 Sgn(1-a.) fC Q (y-1) P (y) dy

(38)
+a Sgn(-l-a) f_00 Q (y+l) P (y) dy

We note that the right-hand side of the equation is the ratio of the probability that (9-1)

is in the interval of the jth gate function to the probability that (T1+1) is in the interval of

the jth gate function. Let us denote this ratio, which is positive, by Pj. We then have

P-1
1-aj Sgn(l-a.)

+a. Sgn(-1-a) (39)
3 i
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Since p >, 0, we require for a solution that

Sgn(1-a.)

Sgn(-1-aj) < 0.

Thus we require that la. be less than one. Equation 39 can thus be written as

1 P -1

S+aj = ; ajI < 1. (40)

For any set of gate functions, pj can be determined; a. can then be obtained by means

of Eq. 40. If each gate function is chosen to be of infinitesimal width, then

P (y-1)

j = (y) =P (y+1)' (41)

in which P (y) is the probability density of the amplitude of the noise. For such a case,

aj = a(y) is the transfer characteristic of the no-memory system. Solving for a(y) from

Eq. 40, we then have

1 - [p(y)]1/(P-1)
a(y) = 1 P > 1 (42)

I + [ /(y)]

in which P(y) is given by Eq. 41. We thus have obtained an explicit expression for the

transfer characteristic of the no-memory system. The analogy between the approach

taken in this example and the solution of a differential equation by means of difference

equations is to be noted.

5. Probability of a Function of the Error

Since an arbitrary function of the error can be written in the form of Eq. 28, we can

also determine the coefficients to minimize Prob {F[E] >A}. We have from Eq. 28 the

condition

Prob F[z-an] Qn(x) > A = minimum. (43)

n=0

But since, at any instant, only one term in the sum is nonzero, Eq. 43 can be written

N

Prob {F[z-an] Qn(x) > A} = minimum. (44)
n=0
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However, the adjustment of any one coefficient affects only one term of the sum in

Eq. 44. The minimum of Eq. 44 is thus obtained only if each term of the sum is a

minimum. Thus the optimum value of a. is that for which
J

Prob {F[z-a ] Q (x) > A} = minimum. (45)

A circuit by means of which the optimum value of a. can be determined is depicted in

Fig. IX-8. The voltage, V, is adjusted to minimize the meter reading; V is then

x (t) Q.

z (t) SATURATING HALF-WAVE
z (t) GTE AMPLIFIER RECTIFIER

SV - A METER

Fig. IX-8. A circuit for determining aj that satisfies Eq. 44.

numerically equal to the desired value of aj and the meter reading is the probability

that F[z-a ] Q (x) > A.

6. Weighted-Mean Function of the Error

All of the results that we have obtained can be extended to weighted functions of the

error. By a weighted function of the error we mean W(t) F[E(t)] in which W(t) is an

arbitrary function of time. For example, W(t) can be a function of [z(t)-x(t)]. By use

of Eq. 28, the weighted function of the error can be written

N

WF[E] = F F[z-an] WQn(x). (46)

n=0

Thus all of our results apply if we replace Qn(x) by WQn(x). Thus, to minimize a

weighted mean of a convex function of the error, we have from Eq. 30 the result that the

optimum value of a. is that for which

G[z-a ] WQ (x) = 0. (47)

7. Systems with Memory

We shall now present an extension of our previous results to nonlinear systems with

memory. A complete set of operators that could be used for the synthesis of nonlinear
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h2 (t) AND + y (t)

ADDERS

- hn (t) , 3 a

Fig. IX-9. Nonlinear system.

systems with memory is Wiener's G-functionals. 4 These operators can be synthesized

in the form shown schematically in Fig. IX-9. As shown, the nonlinear system can be
divided into three sections that are connected in tandem: a linear system whose impulse

responses, hn(t), form a complete set of functions; a nonlinear no-memory section that
consists of just multipliers and adders; and a section consisting of amplifiers whose

outputs are then summed. In this model of a nonlinear system, the first section is the

only one that has memory, since its outputs, Vn (t), are the result of linear operations
on the past of the input, x(t). We note from this model that the output, y(t), of a non-

linear system of the Wiener class is just a linear combination of various products of
the outputs, vn(t), of the linear section. If the linear section consists of only K linear
systems, then, according to the model, the output, y(t), can be expressed as

00 K K

y . A .. v I ... V k (48)
_'_ l liJk 11 kk=l il =1 ik =1

By use of the gate functions, any step approximation to vi(t) can be given by

N

vi  BnQn[Vi] (49)
n=0

By substituting Eq. 49 in Eq. 48, we note that we can express any step approximation

to y(t) as

K N N

y I. C . .C Qn 1(v) Qn k(Vk). (50)
k= n=0 nk=0 1 1 k
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We note that by use of Eq. 5 we can write

N N

Sn Qnk+1 (Vk+l) ... Qn (VK) = . (51)

nk+l =0 nK=0

Thus Eq. 50 can be written in the form

N N

y Z ... D nnl .... , nK n 1(V '" nK ( K )  (52)

nl =0 nK=0

Define

1a (v ) = Qn (V 1 )... K) (53)
1 " K(vK)

in which a = (n, n 2 . . . nK). Then Eq. 52 can be written in the form

y a (v). (54)

a

We note that the functions, b (v), are K-dimensional gate functions, since # (v) is non-
a a

zero and equal to one only when the amplitude of v (t) is in the interval of Qn (v 1 ), and

the amplitude of v2(t) is in the interval of Qn (V), and so on for each v n(t). That is,

th
Sa (v) is nonzero and equal to one only when v is in the a cell. We also note that

Sa(v) = 1. 
(55)

a

By use of the K-dimensional gate functions, all of our results can be extended to

nonlinear systems that have memory. For we note that if the desired output is z(t),

then any function of the error is

F[E] = F z - A (v . (56)

According to the definition of the K-dimensional gate functions, only one term in the

sum is nonzero at any instant. If, at that instant, v is in the ath cell, then at that

instant F[E] = F(z-A ) Da(v). Thus, by use of Eq. 55, we can express Eq. 56 as

F[E] F[z-Aa] a(V). (57)

a
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This equation is identical in form with Eq. 28 and thus all of the results that we have

obtained for the one-dimensional case also apply to the K-dimensional case. For

example, from Eq. 30 the condition that A a be an extremal of F(E) is

G[z-A ] (v) = 0. (58)

Experimentally, the values of Aa that satisfy Eq. 58 can be obtained by means of the

circuit depicted in Fig. IX-10. The procedure is to adjust the battery voltage, V, until

the meter reads zero; V is then numerically equal to the desired value of A for which

z G GATE AVERAGER
T METER

Fig. IX-10. A circuit for determining Aa for which F[E] is a minimum.

Eq. 58 is satisfied. However, if G(a) can be expressed as a polynomial, then a poly-

nomial expression in Aa can be obtained from Eq. 58. The coefficients of the various

powers of Aa will involve only the averages zn a (v) which can be measured experimen-

tally. The values of A that satisfy Eq. 58 can then be determined by solving for the
a 2

roots of the polynomial. For example, if F(E) = E , then Eq. 58 becomes

(z-A ) b (v) = 0. (59)

Solving for A a , we have

z_ (v)
A - (60)

a ,a(V)

3

Equation 60 is the result obtained by Bose.3 We thus have the important result that, as

in the case of no-memory systems, no adjustment procedure of any sort is required in

those cases in which F(E) can be expressed as a polynomial. If F(E) is not a convex

function, the optimum value of Aa can still be determined analytically by solving for

the minimum of the polynomial, F[Z-Aa] a(v), and thus no search procedure is

required. Also, the set of coefficients {A } can be determined for which the mean of
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an arbitrary weighted function of the error or the probability of an arbitrary function of

the error is a minimum. Each coefficient of this set can be determined individually in

a manner similar to that used for the no-memory case.

M. Schetzen
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B. OPTIMUM QUANTIZATION FOR A GENERAL ERROR CRITERION

1. Introduction

Quantization is the nonlinear, no-memory operation of converting a continuous sig-

nal to a discrete signal that assumes only a finite number of levels (N). Quantization

occurs whenever it is necessary to represent physical quantities numerically. The pri-

mary concern in quantization is faithful reproduction, with respect to some fidelity

criterion, of the input at the output. Thus, it is not necessary to require uniform quan-

tization. In fact, since the number of output levels, N, will be specified, the "error"

in the output will be minimized by adjusting the quantizer characteristic. Figure IX-11

illustrates the input-output characteristic of a quantizer.

Early investigations into the process of quantization considered speech to be the

quantizer input signal. One of the first investigators was Bennett who concluded that,

with speech, it would be advantageous to taper the steps of the quantizer in such a man-

ner that finer steps would be available for weak signals. Following Bennett, other

investigators such as Smith, Z Lozovoy, 3 and Lloyd4 worked toward the characterization

of optimum quantizers by assuming that a large number of levels would be used in the

quantizer. Max 5 formulated the general problem of selecting the parameters of the

optimum quantizer for a wide class of error criteria irrespective of the number of levels

in the device. He also was able to determine a partial solution to the problem by paying

particular attention to the mean-square error criteria. Bluestein derived some exten-

sions to Max's work for the special case of the mean-absolute error criteria.

In this report, the expression for the quantization error as a function of the quantizer
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OUTPUT, y

YN

YN-1

YN -2 ---
o

o
X1 x2 x3  o

I I oI 
XN-1I I Io

I I o

I I

Y3

Y2

Fig. IX-11. Input-output relationship of the N-level quantizer.

parameters is presented and a method for determining these parameters by utilizing

the technique of dynamic programming is developed. This method has two advantages

over the previous ones. First, the method "searches" for the absolute minimum within

the region of variation rather than the relative minima. Second, the method is guaran-

teed to converge to the absolute minimum in a specified number of steps.

2. Formulation of the Problem

Figure IX-11 shows the input-output relationship for the general quantizer. The out-

put is yk for xk_ < x < xk. The xk are called the transition values; that is, xk is the

value of the input variable x for which there is a transition in the output from yk to

Yk+l. The Yk are called the representation values.

In the general quantizer problem under consideration here, the x i , as well as the

Yk (a total of ZN-1 quantities), are variables. These 2N-1 variables are to be chosen

in such a manner that the error with respect to a specified error criterion is mini-

mized.

In order to determine the specific values of x i and yk which specify the optimum

quantizer, that is, the quantities that we shall call Xi and Yk' we must first derive an1 k
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expression for the quantization error criterion. Since by optimum we shall mean min-

imum quantization error with respect to the specified error criterion, the X i and the

Yk are the specific values of xi and yk which yield the absolute minimum value for the

quantization error.

There is one set of constraints which must be imposed upon solutions to this prob-

lem. For purposes of organization as indicated in Fig. IX-11 we shall require that

xl <x
2

x Z < x2 3 (1)

XN-2 < XN-1

With respect to the quantizer of Fig. IX-11, the error signal when the input signal

satisfies the inequality

x. x < x. (2)
1 i+1

is

x - Yi+1. (3)

We shall choose the error criterion to be the expected value of the function

g(x,yi+l).

Then the measure of the error in this interval is

~+l g(x,Yi+) p(x) dx, (4)
xi

where p(x) is the amplitude probability density of the input variable x. Since the error

in each of the quantization intervals is independent of the error in the other intervals,

the total quantization error is

N-1

(x1l, x 2 . .. XN-1; lyZ'... YN) S x i+ 1 g(x,Yi+l) p(x) dx. (5)

i=O i

In writing this equation we included the two parameters xo and xN for convenience. If

x is a bounded function with lower bound X and upper bound X , then, by definition,

x ° will equal X and xN will equal Xu.

Upon first observation it appears that the coordinates of the absolute minimum value

of (5) can be determined by use of the methods of calculus. Indeed, if there is only a

single critical point of Eq. 5 within the region of variation (the region specified by Eq. 1)
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and if this critical point is a relative minimum, then it is also the absolute minimum of

the function. However, if there is more than a single critical point within the region of

variation, then one of these critical points may be the absolute minimum of (5). Or it

might be that none of these critical points is the absolute minimum. Thus the method

of calculus is not a satisfactory technique for solving this problem. What is needed is

a method that yields the coordinates of the absolute minimum whether or not the abso-

lute minimum is at a critical point. The method of dynamic programming 8 is such

a technique.

3. Determining the Optimum Quantizer by Using Dynamic Programming

In order to determine the coordinates of the absolute minimum value of (5) it is nec-

essary to define a sequence of error functionals

{f (x )} i = 1,2,.. .,N

as follows.

fl(x 1) =

mm x 1

Yl Xl g(x,yl) p(x) dx

X <x <Xu Lfl1~u

mmin

z(X2) = y 2 ,x 1
x x x1x2Xu

mmin

f3(x3 = Y3,X2
X -x 2<x3 X

mmin
fi(xi) = Yi'xi -

X i--xi i X

SXx  g(x,y 2 ) p(x) dx + fl(xl)j

g(x,y 3 ) p(x) dx + fZ(x 2)]
[x2

I U X~

fN-1(xN-1) =

mmin

YN-1,XN-2

X N-2 N-1 u
[ xN- 1 g(x,YN- ) p(x) dx + fN-2(xNN-2

xN-2 *

fN(xN) =

min xN
YNXN-1 N g(xYN) p(x) dx + fN-1(xN-1

X2 XN-1 <XN< u N-1
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It should be noted that in the last member of Eq. 6 we have taken the liberty of per-

mitting xN to take on variation from X to Xu in deference to our previous assumption

(see explanation immediately following Eq. 5) that xN = Xu. This variation is necessary

if fN(XN) is to be completely determined.

Also, from Eq. 6 we can show that the last member of this set of equations, when

evaluated at xN = X u, can be written

N-1 x x.

fN(Xu) = Yi'xi-l i=1,2,...N g(x ) p(x dx (7)

X =x x <...x =X i= i

Therefore, fN(X ) is the error for the optimum quantizer with N levels. (Note that,

in general, fi(Xu) is the error for the optimum quantizer with i levels, i < N.)

It is possible to simplify the minimization process used to determine the error func-

tionals, Eq. 6, when we realize that the minimum, with respect to yi, occurs for a

value of yi which satisfies the equation

x.
o = ,' [g(x,yi)] p(x) dx. (8)

xi- i

If, as will usually be the case, g(x,Yi) is greater than or equal to zero and is concave

upward, then (8) has only a single solution. This solution will be denoted by yi. (Should

(8) have more than one solution, the solution that minimizes (6) will be called 7i.) Equa-

tion 8 then allows us to rewrite the general term of (6) and to eliminate the formal min-

imization with respect to yi, since the value of yi which minimizes fi(xi) for specific

values of x. and x.1 is y. Thus (6) becomes
1 1 i

minmm xF p.x) fx_
fi(xi) = xi 1  g(x,i) p(x) dx + fil(Xil i= , 2,..., N (9)

X x. -1x.-X i-121-1 1 u

where x0 = X., a constant, and fo(X ) = 0. With reference to Eq. 7 we see that (8) has

reduced the number of variables over which the formal minimization must be performed

from 2N-1 to N.

In order to determine the optimum quantizer parameters it is necessary to define

two auxiliary sets of functionals; first, the transition-value decision functionals

(Xi(x)} i = 1, 2, .., N;

and second, the representation-value decision functionals

{Yi(x)} i =, 2 .... N.
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The transition-value decision functionals are defined as follows

X 1(X) = x;

X2 (x) = the value of x l which minimizes f (x2 ) for a

specified x = x2 , Y2 
= 72 ;

(10)

XN(x) = the value of XN-1 which minimizes fN(xN) for a

specified x = xN,  N = YN

In a similar manner the representation-value decision functionals are defined as

Y 1 (x) = yl for a specified x = xl;

Y2 (x) = y2 when x I is that value [i.e., x 1 =X2 (x)]

which minimizes f2 (x 2 ) for a specified
x = x;

YN(x) = YN when XN-1 is that value [i.e., XN_-1=XN()]

which minimizes fN(XN) for a specified
x = x N

Each of the functionals, Eqs. 6, 10, and 11, will be represented by a tabulation of its
value at a number of points taken along an equispaced grid. In general, the same set
of points will be used for each of the functionals.

As we have previously indicated, fN(Xu) is the measure of error for the optimum
quantizer with N levels with the specified error criterion used. Therefore, the loca-
tion of the transition value between levels (N-1) and (N) is specified by (10), that is,

XN- 1 = XN(Xu).

This level will be represented by the representation value

YN = YN(X ),

specified by Eq. 11. At this point in the decision process, x that is such that

XN-1 < x < Xu has been allocated to the Nt h level. The remaining values of x,
X -< x < XN-l , remain to be quantized into N-i levels. From (10) the transition
value between levels (N-2) and (N-1) is given by
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XN-2 = XN-1(XN-1),

and from (11) the representation value is

YN-1 = YN-1(XN-1).

This decision process is continued until the first representation value is found from (11)

to be

Y1= Y 1 (X 1 ) "

Once the decision process is completed, the optimum quantizer with respect to the spec-

ified error criterion is determined.

As a first example, this method of selecting the optimum quantizer is being applied

in the case in which speech is the input signal. In this application the error criterion

will be the expected value of the function

g(x,yi+1 ) = Ix-yi+ 1 I W(x),

where

W(x) > 0 -oo < x < oo.

J. D. Bruce
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