

An Introduction to Computational Fluid Dynamics

THE FINITE VOLUME METHOD

Second Edition

H K Versteeg and W Malalasekera

Harlow, England • London • New York • Boston • San Francisco • Toronto Sydney • Tokyo • Singapore • Hong Kong • Seoul • Taipei • New Delhi Cape Town • Madrid • Mexico City • Amsterdam • Munich • Paris • Milan

Contents

Preface Acknowledgements		xi xiii
1	Introduction	1
1.1	What is CFD?	1
1.2	How does a CFD code work?	2
1.3	Problem solving with CFD	4
1.4	Scope of this book	6
2	Conservation laws of fluid motion and boundary	
	conditions	9
2.1	Governing equations of fluid flow and heat transfer	9
	2.1.1 Mass conservation in three dimensions	10
	2.1.2 Rates of change following a fluid particle and for	
	a fluid element	12
	2.1.3 Momentum equation in three dimensions	14
	2.1.4 Energy equation in three dimensions	16
2.2	Equations of state	20
2.3	Navier-Stokes equations for a Newtonian fluid	21
2.4	Conservative form of the governing equations of fluid flow	24
2.5	Differential and integral forms of the general transport equations	24
2.6	Classification of physical behaviours	26
2.7	The role of characteristics in hyperbolic equations	29
2.8	Classification method for simple PDEs	32
2.9	Classification of fluid flow equations	33
2.10	Auxiliary conditions for viscous fluid flow equations	35
2.11	Problems in transonic and supersonic compressible flows	36
2.12	Summary	38
3	Turbulence and its modelling	40

3.1	What is turbulence?	40
3.2	Transition from laminar to turbulent flow	44
3.3	Descriptors of turbulent flow	49

3.4.1 Free turbulent flows 53 3.4.2 Flat plate boundary layer and pipe flow 57 3.4.3 Summary 61 3.5 The effect of turbulent fluctuations on properties of the mean flow 61 3.6 Turbulent flow calculations 65 3.7 Reynolds-averaged Navier-Stokes equations and classical 66 3.7.1 Mixing length model 69 3.7.2 The k-e model 72 3.7.3 Reynolds stress equation models 85 3.7.4 Advanced turbulence models 87 3.7.5 Closing remarks – RANS turbulence models 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.2 Smagorinksy–Lily SGS model 102 3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 109 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110	3.4	Characteristics of simple turbulent flows	52
3.4.3 Summary 61 3.5 The effect of turbulent fluctuations on properties of the mean flow 61 3.6 Turbulent flow calculations 65 3.7 Reynolds-averaged Navier-Stokes equations and classical turbulence models 66 3.7.1 Mixing length model 69 3.7.2 The k-c model 72 3.7.3 Reynolds stress equation models 80 3.7.4 Advanced turbulence models 80 3.7.4 Advanced turbulence models 80 3.7.4 Advanced turbulence models 80 3.7.5 Closing remarks – RANS turbulence models 98 3.8.1 Spacial filtering of unsteady Navier-Stokes equations 98 3.8.2 Smagorinksy-Lily SGS model 102 3.8.3 Higher-order SGS models 105 3.8.4 Advanced SGS models 106 3.8.5 Initial and boundary conditions for LES 109 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110		3.4.1 Free turbulent flows	53
3.5 The effect of turbulent fluctuations on properties of the mean flow 61 3.6 Turbulent flow calculations 65 3.7 Reynolds-averaged Navier–Stokes equations and classical turbulence models 66 3.7.1 Mixing length model 69 3.7.2 The k-e model 72 3.7.3 Reynolds stress equation models 80 3.7.4 Advanced turbulence models 80 3.7.5 Closing remarks – RANS turbulence models 97 3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.2 Smagorinksy–Lilly SGS model 102 3.8.3 Higher-order SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical sinulation 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113			
3.6 Turbulent flow calculations 65 3.7 Reynolds-averaged Navier-Stokes equations and classical 66 3.7.1 Mixing length model 69 3.7.2 The k-e model 72 3.7.3 Reynolds stress equation models 80 3.7.4 Advanced turbulence models 80 3.7.5 Closing remarks - RANS turbulence models 97 3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier-Stokes equations 98 3.8.1 Spacial filtering of unsteady Navier-Stokes equations 98 3.8.2 Smagorinksy-Lilly SGS model 102 3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.7 General comments on performance of LES 109 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for one-dimensional steady state diffusion 115 4.3 <td></td> <td></td> <td></td>			
3.7 Reynolds-averaged Navier-Stokes equations and classical turbulence models 66 3.7.1 Mixing length model 69 3.7.2 The <i>k</i> - <i>e</i> model 72 3.7.3 Reynolds stress equation models 80 3.7.4 Advanced turbulence models 80 3.7.5 Closing remarks – RANS turbulence models 97 3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.2 Smagorinksy–Lilly SGS model 102 3.8.3 Initial and boundary conditions for LES 106 3.8.4 Advanced SGS models 104 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical insues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 131			
turbulence models 66 3.7.1 Mixing length model 69 3.7.2 The k-e model 72 3.7.3 Reynolds stress equation models 80 3.7.4 Advanced turbulence models 85 3.7.5 Closing remarks – RANS turbulence models 97 3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.2 Smagorinksy–Lilly SGS model 102 3.8.3 Higher–order SGS models 104 3.8.4 Advanced SGS models 106 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 129 4.5 Summary 132 </td <td></td> <td></td> <td>65</td>			65
3.7.1 Mixing length model 69 3.7.2 The k-= model 72 3.7.3 Reynolds stress equation models 80 3.7.4 Advanced turbulence models 80 3.7.5 Closing remarks - RANS turbulence models 97 3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier-Stokes equations 98 3.8.2 Smagorinksy-Lilly SGS model 102 3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical issues in DNS 111 3.9.1 Numerical issues in DNS 113 3.10 Summary 113 4 The finite volume method for one-dimensional steady state diffusion 115 4.1 Introduction 115 4.2 Finite volume method for convectiondiffusion problems 129 5.4 F	3.7		
$3.7.2$ The k - ε model72 $3.7.3$ Reynolds stress equation models80 $3.7.4$ Advanced turbulence models81 $3.7.5$ Closing remarks – RANS turbulence models97 3.8 Large eddy simulation98 $3.8.1$ Spacial filtering of unsteady Navier–Stokes equations98 $3.8.2$ Smagorinksy–Lilly SGS model102 $3.8.3$ Higher-order SGS models104 $3.8.4$ Advanced SGS models104 $3.8.5$ Initial and boundary conditions for LES106 $3.8.6$ LES applications in flows with complex geometry108 $3.8.7$ General comments on performance of LES109 3.9 Direct numerical sinulation110 $3.9.1$ Numerical issues in DNS111 $3.9.2$ Some achievements of DNS113 3.10 Summary113 4 The finite volume method for diffusion problems115 4.1 Introduction115 4.2 Finite volume method for three-dimensional diffusion problems129 4.5 Finite volume method for convection-diffusion problems134 5.1 Introduction134 5.2 Steady one-dimensional convection and diffusion135 5.3 The central differencing scheme136 5.4 Properties of discretisation schemes141 $5.4.3$ Transportiveness141 $5.4.3$ Transportiveness143 5.5 Assessment of the central differencing scheme for convection-diffusion roblems145 5.6 The upwind differencing scheme145 5.6 The upwind differencing scheme146 5.7 The hybrid differencing			
3.7.3 Reynolds stress equation models 80 3.7.4 Advanced turbulence models 85 3.7.5 Closing remarks – RANS turbulence models 97 3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.2 Smagorinksy–Lilly SGS model 102 3.8.3 Higher–order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for one-dimensional steady state diffusion 118 4.1 Introduction 115 4.2 Finite volume method for convectiondiffusion problems 129 4.5 Finite volume method for convectiondiffusion problems 129 4.5 The finite volume method for convectiondiffusion proble			
3.7.4 Advanced turbulence models 85 3.7.5 Closing remarks – RANS turbulence models 97 3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.2 Smagorinksy–Lilly SGS model 102 3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical sinulation 110 3.9.1 Numerical issues in DNS 111 3.0.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 129 4.5 Finite volume method for two–dimensional steady state diffusion 118 4.4 Finite volume method for convectiondiffusion problems 129 4.5 Finite volume method for convectiondiffusion problems 131 4.6 Summary 132			
3.7.5 Closing remarks – RANS turbulence models 97 3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.2 Smagorinksy–Lilly SGS model 102 3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 106 3.8.5 Initial and boundary conditions for LES 106 3.8.6 Less applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 129 4.5 Finite volume method for two-dimensional steady state diffusion 118 4.4 Finite volume method for convectiondiffusion problems 129 4.5 Finite volume method for convectiondiffusion problems 129 4.5 Finite volume method for convectiondiffusion problems 134 5.6 Th		• •	
3.8 Large eddy simulation 98 3.8.1 Spacial filtering of unsteady Navier–Stokes equations 98 3.8.2 Smagorinksy–Lilly SGS model 102 3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical issues in DNS 111 3.9.2 Some achievements of DNS 111 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for two-dimensional steady state diffusion 118 4.4 Finite volume method for convection-diffusion problems 129 4.5 Finite volume method for convection-diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The entinal differencing scheme 136 </td <td></td> <td></td> <td></td>			
3.8.1 Spacial filtering of unsteady Navier-Stokes equations 98 3.8.2 Smagorinksy-Lilly SGS model 102 3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for two-dimensional steady state diffusion 118 4.4 Finite volume method for three-dimensional diffusion problems 129 4.5 Finite volume method for convection-diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection-diffusion problems 134 5.1 Introduction 134		-	
3.8.2 Smagorinksy-Lilly SGS model 102 3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for three-dimensional steady state diffusion 118 4.4 Finite volume method for three-dimensional diffusion problems 129 4.5 Finite volume method for convectiondiffusion problems 131 4.6 Summary 132 5 The finite volume method for convectiondiffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 <	3.8		
3.8.3 Higher-order SGS models 104 3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for convectiondiffusion problems 131 5.6 The finite volume method for convectiondiffusion problems 132 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes<			
3.8.4 Advanced SGS models 105 3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for convection—diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 <td></td> <td></td> <td></td>			
3.8.5 Initial and boundary conditions for LES 106 3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 115 4.4 Finite volume method for three-dimensional diffusion problems 129 4.5 Finite volume method for convection—diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretis		-	
3.8.6 LES applications in flows with complex geometry 108 3.8.7 General comments on performance of LES 109 3.9 Direct numerical simulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for three-dimensional diffusion problems 129 4.5 Finite volume method for convection—diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.3 Transportiveness			
3.8.7 General comments on performance of LES 109 3.9 Direct numerical ismulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 118 4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for three-dimensional diffusion problems 129 4.5 Finite volume method for convection—diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.3 Transportiveness 143 5.4.3 Transportiveness 143 <t< td=""><td></td><td></td><td></td></t<>			
3.9 Direct numerical simulation 110 3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 5.5 Finite volume method for convection—diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.1 Conservativeness 143 5.4.2 Boundedness 143 5.5 Assessment of the central differencing scheme 145			
3.9.1 Numerical issues in DNS 111 3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 115 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for convection-diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection-diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.2 Boundedness 143 5.4.3 Transportiveness 143 5.5 Assessment of the central differencing scheme for convection-diffusion problems 145 5.6 The upwind differencing scheme	• •		
3.9.2 Some achievements of DNS 113 3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convectiondiffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 141 5.4.1 Conservativeness 141 5.4.2 Boundedness 143 5.5 Assessment of the central differencing scheme for convection diffusion problems 143 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 146 5.7 The	3.9		
3.10 Summary 113 4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convectiondiffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 141 5.4.1 Conservativeness 141 5.4.2 Boundedness 143 5.4.3 Transportiveness 143 5.5 Assessment of the central differencing scheme 143 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 146 5.7 The hybrid differencing scheme 151			
4 The finite volume method for diffusion problems 115 4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convectiondiffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.1 Conservativeness 143 5.5 Assessment of the central differencing scheme for convectiondiffusion problems 143 5.5 Assessment of the upwind differencing scheme 146 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 146 5.7 The hybrid differencing scheme 146 5.7 The hybrid differencing scheme 146			
4.1 Introduction 115 4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convectiondiffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.1 Conservativeness 143 5.5 Assessment of the central differencing scheme for convection-diffusion problems 143 5.5 Assessment of the central differencing scheme 146 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 149 5.7 The hybrid differencing scheme 149	3.10	Summary	113
4.2 Finite volume method for one-dimensional steady state diffusion 115 4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.1 Conservativeness 143 5.4.3 Transportiveness 143 5.5 Assessment of the central differencing scheme for convection—diffusion problems 145 5.6 The upwind differencing scheme 146 5.7 The upwind differencing scheme 146 5.7 The hybrid differencing scheme 146	4	The finite volume method for diffusion problems	115
4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.2 Boundedness 143 5.4.3 Transportiveness 143 5.5 Assessment of the central differencing scheme for convection—diffusion problems 145 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 146 5.7 The hybrid differencing scheme 149	4.1	Introduction	115
4.3 Worked examples: one-dimensional steady state diffusion 118 4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.2 Boundedness 143 5.4.3 Transportiveness 143 5.5 Assessment of the central differencing scheme for convection—diffusion problems 145 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 146 5.7 The hybrid differencing scheme 149	4.2	Finite volume method for one-dimensional steady state diffusion	115
4.4 Finite volume method for two-dimensional diffusion problems 129 4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.1 Conservativeness 141 5.4.2 Boundedness 143 5.4.3 Transportiveness 143 5.4.3 Transportiveness 143 5.4.3 Transportiveness 143 5.5 Assessment of the central differencing scheme for convection— 145 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 149 5.7 The hybrid differencing scheme 149	4.3		115
4.5 Finite volume method for three-dimensional diffusion problems 131 4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.1 Conservativeness 141 5.4.2 Boundedness 143 5.4.3 Transportiveness 143 5.5 Assessment of the central differencing scheme for convection—diffusion problems 145 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 149 5.7 The hybrid differencing scheme 149		Worked examples: one-dimensional steady state diffusion	
4.6 Summary 132 5 The finite volume method for convection—diffusion problems 134 5.1 Introduction 134 5.2 Steady one-dimensional convection and diffusion 135 5.3 The central differencing scheme 136 5.4 Properties of discretisation schemes 141 5.4.1 Conservativeness 141 5.4.2 Boundedness 143 5.4.3 Transportiveness 143 5.5 Assessment of the central differencing scheme for convection—diffusion problems 145 5.6 The upwind differencing scheme 146 5.6.1 Assessment of the upwind differencing scheme 149 5.7 The hybrid differencing scheme 149			118
5.1Introduction1345.2Steady one-dimensional convection and diffusion1355.3The central differencing scheme1365.4Properties of discretisation schemes1415.4.1Conservativeness1415.4.2Boundedness1435.4.3Transportiveness1435.5Assessment of the central differencing scheme for convection- diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4	Finite volume method for two-dimensional diffusion problems	118 129
5.2Steady one-dimensional convection and diffusion1355.3The central differencing scheme1365.4Properties of discretisation schemes1415.4.1Conservativeness1415.4.2Boundedness1435.4.3Transportiveness1435.5Assessment of the central differencing scheme for convection- diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems	118 129 131
5.2Steady one-dimensional convection and diffusion1355.3The central differencing scheme1365.4Properties of discretisation schemes1415.4.1Conservativeness1415.4.2Boundedness1435.4.3Transportiveness1435.5Assessment of the central differencing scheme for convection- diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5 4.6	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary	118 129 131 132
5.3The central differencing scheme1365.4Properties of discretisation schemes1415.4.1Conservativeness1415.4.2Boundedness1435.4.3Transportiveness1435.5Assessment of the central differencing scheme for convection- diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5 4.6 5	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems	118 129 131 132 134
5.4Properties of discretisation schemes1415.4.1Conservativeness1415.4.2Boundedness1435.4.3Transportiveness1435.5Assessment of the central differencing scheme for convection- diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5 4.6 5 5.1	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems Introduction	118 129 131 132 134 134
5.4.1Conservativeness1415.4.2Boundedness1435.4.3Transportiveness1435.5Assessment of the central differencing scheme for convection- diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5 4.6 5 5.1 5.2	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convectiondiffusion problems Introduction Steady one-dimensional convection and diffusion	118 129 131 132 134 134 135
5.4.2Boundedness1435.4.3Transportiveness1435.5Assessment of the central differencing scheme for convection- diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5 4.6 5 5.1 5.2 5.3	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convectiondiffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme	118 129 131 132 134 134 135 136
5.4.3 Transportiveness1435.5 Assessment of the central differencing scheme for convection- diffusion problems1455.6 The upwind differencing scheme1465.6.1 Assessment of the upwind differencing scheme1495.7 The hybrid differencing scheme151	4.4 4.5 4.6 5 5.1 5.2 5.3	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme Properties of discretisation schemes	118 129 131 132 134 134 135 136 141
5.5Assessment of the central differencing scheme for convection- diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5 4.6 5 5.1 5.2 5.3	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convectiondiffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme Properties of discretisation schemes 5.4.1 Conservativeness	118 129 131 132 134 135 136 141 141
diffusion problems1455.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5 4.6 5 5.1 5.2 5.3	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme Properties of discretisation schemes 5.4.1 Conservativeness 5.4.2 Boundedness	118 129 131 132 134 135 136 141 141 141
5.6The upwind differencing scheme1465.6.1Assessment of the upwind differencing scheme1495.7The hybrid differencing scheme151	4.4 4.5 4.6 5 5.1 5.2 5.3 5.4	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme Properties of discretisation schemes 5.4.1 Conservativeness 5.4.2 Boundedness 5.4.3 Transportiveness	118 129 131 132 134 135 136 141 141 141
5.6.1 Assessment of the upwind differencing scheme1495.7 The hybrid differencing scheme151	4.4 4.5 4.6 5 5.1 5.2 5.3 5.4	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme Properties of discretisation schemes 5.4.1 Conservativeness 5.4.2 Boundedness 5.4.3 Transportiveness Assessment of the central differencing scheme for convection—	118 129 131 132 134 135 136 141 141 143 143
5.7 The hybrid differencing scheme 151	4.4 4.5 4.6 5.1 5.2 5.3 5.4 5.5	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme Properties of discretisation schemes 5.4.1 Conservativeness 5.4.2 Boundedness 5.4.3 Transportiveness Assessment of the central differencing scheme for convection— diffusion problems	118 129 131 132 134 134 135 136 141 141 143 143 143
	4.4 4.5 4.6 5.1 5.2 5.3 5.4 5.5	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme Properties of discretisation schemes 5.4.1 Conservativeness 5.4.2 Boundedness 5.4.3 Transportiveness Assessment of the central differencing scheme for convection— diffusion problems The upwind differencing scheme	118 129 131 132 134 134 135 136 141 141 143 143 145 146
	4.4 4.5 4.6 5.1 5.2 5.3 5.4 5.5 5.6	Finite volume method for two-dimensional diffusion problems Finite volume method for three-dimensional diffusion problems Summary The finite volume method for convection—diffusion problems Introduction Steady one-dimensional convection and diffusion The central differencing scheme Properties of discretisation schemes 5.4.1 Conservativeness 5.4.2 Boundedness 5.4.3 Transportiveness Assessment of the central differencing scheme for convection— diffusion problems The upwind differencing scheme 5.6.1 Assessment of the upwind differencing scheme	118 129 131 132 134 134 135 136 141 141 143 143 143 145 146 149

	5.7.2 Hybrid differencing scheme for multi-dimensional	
	convection-diffusion	154
5.8	The power-law scheme	155
5.9	Higher-order differencing schemes for convection-diffusion problems	s 156
	5.9.1 Quadratic upwind differencing scheme: the QUICK scheme	156
	5.9.2 Assessment of the QUICK scheme	162
	5.9.3 Stability problems of the QUICK scheme and remedies	163
	5.9.4 General comments on the QUICK differencing scheme	164
5.10	TVD schemes	164
	5.10.1 Generalisation of upwind-biased discretisation schemes	165
	5.10.2 Total variation and TVD schemes	167
	5.10.3 Criteria for TVD schemes	168
	5.10.4 Flux limiter functions	170
	5.10.5 Implementation of TVD schemes	171
	5.10.6 Evaluation of TVD schemes	175
5.11	Summary	176
6	Solution algorithms for pressure-velocity coupling	
	in steady flows	179
6.1	Introduction	179
6.2	The staggered grid	180
6.3	The momentum equations	183
6.4	The SIMPLE algorithm	186
6.5	Assembly of a complete method	190
6.6	The SIMPLER algorithm	191
6.7	The SIMPLEC algorithm	193
6.8	The PISO algorithm	193
6.9	General comments on SIMPLE, SIMPLER, SIMPLEC and PISO	196
6.10	Worked examples of the SIMPLE algorithm	197
6.11	Summary	211
7	Solution of discretised equations	212
7.1	Introduction	212
7.2	The TDMA	213
7.3	Application of the TDMA to two-dimensional problems	215
7.4	Application of the TDMA to three-dimensional problems	215
7.5	Examples	216
	7.5.1 Closing remarks	222
7.6	Point-iterative methods	223
	7.6.1 Jacobi iteration method	224
	7.6.2 Gauss-Seidel iteration method	225
	7.6.3 Relaxation methods	226
7.7	Multigrid techniques	229
	7.7.1 An outline of a multigrid procedure	231
	7.7.2 An illustrative example	232
	7.7.3 Multigrid cycles	239
7 0	7.7.4 Grid generation for the multigrid method	241
7.8	Summary	242

8	The finite volume method for unsteady flows	243
8.1	Introduction	243
8.2	One-dimensional unsteady heat conduction	243
	8.2.1 Explicit scheme	246
	8.2.2 Crank-Nicolson scheme	247
	8.2.3 The fully implicit scheme	248
8.3	Illustrative examples	249
8.4	Implicit method for two- and three-dimensional problems	256
8.5	Discretisation of transient convection-diffusion equation	257
8.6	Worked example of transient convection-diffusion using QUICK	250
	differencing	258
8.7	Solution procedures for unsteady flow calculations	262 262
	8.7.1 Transient SIMPLE	262
~ ^	8.7.2 The transient PISO algorithm	203
8.8	Steady state calculations using the pseudo-transient approach	265
8.9	A brief note on other transient schemes	203
8.10	Summary	200
9	Implementation of boundary conditions	267
9.1	Introduction	267
9.2	Inlet boundary conditions	268
9.3	Outlet boundary conditions	271
9.4	Wall boundary conditions	273
9.5	The constant pressure boundary condition	279
9.6	Symmetry boundary condition	280
9.7	Periodic or cyclic boundary condition	281
9.8	Potential pitfalls and final remarks	281
10	Errors and uncertainty in CFD modelling	285
10.1	Errors and uncertainty in CFD	285
10.2	Numerical errors	286
10.3	Input uncertainty	289
10.4	Physical model uncertainty	291
10.5	Verification and validation	293
10.6	Guidelines for best practice in CFD	298
10.7	Reporting/documentation of CFD simulation inputs and results	300
10.8	Summary	302
11	Methods for dealing with complex geometries	304
11.1	Introduction	304

****	miloudelloli	
11.2	Body-fitted co-ordinate grids for complex geometries	305
	Catesian vs. curvilinear grids – an example	306
	Curvilinear grids – difficulties	308

11.5	Block-structured grids	310
11.6	Unstructured grids	311
11.7	Discretisation in unstructured grids	312
11.8	Discretisation of the diffusion term	316
11.9	Discretisation of the convective term	320
11.10	Treatment of source terms	324
11.11	Assembly of discretised equations	325
11.12	Example calculations with unstructured grids	329
11.13	Pressure-velocity coupling in unstructured meshes	336
	Staggered vs. co-located grid arrangements	337
11.15	Extension of the face velocity interpolation method to	
	unstructured meshes	340
11.16	Summary	342
12	CFD modelling of combustion	343
/		
12.1	Introduction	343
12.2	Application of the first law of thermodynamics to a combustion system	
12.3	Enthalpy of formation	345
12.4	Some important relationships and properties of gaseous mixtures	346
12.5	Stoichiometry	348
	Equivalence ratio	348
	Adiabatic flame temperature	349
	Equilibrium and dissociation	351
	Mechanisms of combustion and chemical kinetics	355
	Overall reactions and intermediate reactions	355
	Reaction rate Detailed mechanisms	356
	Reduced mechanisms	361 361
	Governing equations for combusting flows	363
	The simple chemical reacting system (SCRS)	367
	Modelling of a laminar diffusion flame – an example	370
	CFD calculation of turbulent non-premixed combustion	376
	SCRS model for turbulent combustion	380
	Probability density function approach	380
	Beta pdf	382
	The chemical equilibrium model	384
	Eddy break-up model of combustion	385
	Eddy dissipation concept	388
	Laminar flamelet model	388
12.25	Generation of laminar flamelet libraries	390
12.26	Statistics of the non-equilibrium parameter	399
	Pollutant formation in combustion	400
12.28	Modelling of thermal NO formation in combustion	401
12.29	Flamelet-based NO modelling	402
12.30	An example to illustrate laminar flamelet modelling and NO	
	modelling of a turbulent flame	403
	Other models for non-premixed combustion	415
	Modelling of premixed combustion	415
12.33	Summary	416

13	Numerical calculation of radiative heat transfer	417
13.1	Introduction	417
13.2	Governing equations of radiative heat transfer	424
13.3	Solution methods	426
13.4	Four popular radiation calculation techniques suitable for CFD	427
	13.4.1 The Monte Carlo method	427
	13.4.2 The discrete transfer method	429
	13.4.3 Ray tracing	433
	13.4.4 The discrete ordinates method	433
	13.4.5 The finite volume method	437
13.5	Illustrative examples	437
13.6	Calculation of radiative properties in gaseous mixtures	442
13.7	Summary	443
Арре	endix A Accuracy of a flow simulation	445
Арре	endix B Non-uniform grids	448
Appe	endix C Calculation of source terms	450
Арре	endix D Limiter functions used in Chapter 5	452
Арре	endix E Derivation of one-dimensional governing equations for	r
	steady, incompressible flow through a planar nozzle	456
Appe	endix F Alternative derivation for the term (n. grad ϕA_i) in	
	Chapter 11	459
Арре	endix G Some examples	462
Bibli	ography	472
Inde	K	495