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The theory of overfocusing is developed for a self-colliding storage ring (Exyder) and for a classical
migma configuration. Forces due to external and self-generated equilibrium magnetic fields are
considered. The band of energy containment is calculated for a model external magnetic field
configuration. The forces due to self-generated magnetic fields in migmas and Exyder can also cause
overfocusing, and thereby set a beta limit on a migma disc and a luminosity limit on Exyder. The
luminosity in Exyder can increase substantially if the self-colliding storage ring is partially
unneutralized. The beta condition of a charge-neutral thin migma limits the self-generated magnetic
field to a fraction of the externally imposed magnetic field.

1. INTRODUCTION

In the migma conceptI energetic ionized particles are stored in an axial disc so
that their orbits focus close to the axis of symmetry. This can be done with
particles in a vacuum magnetic field similar· to that of a mirror fusion machine.
These magnetic fields allow orbit containment according to the principles used for
confinement of plasmas in mirror machines or confinement of particles in
accelerators with weak focusing fields. For the nearly ideal case, particles are
almost monoenergetic, with an angular momentum distribution in Pe peaked
about Pe = 0, and the axial velocity-the velocity component parallel to the
magnetic field lines-is much less than the velocity perpendicular to the magnetic
field lines. The orbits have the pattern shown in Fig. 1, where all orbits pass very
close to the origin, the radial extent of the particle confinement region is two
Larmor radii, and the spread in axial speed is so small that the axial extent of the
migma (Az) is much less than the Larmor radius (rL).

The energetic ions stored in a -migma establish diamagnetic currents that tend
to cancel applied vacuum magnetic fields. In order to reduce the synchrotron
radiation of charge-neutralizing electrons, a diamagnetic migma2 has been
proposed, in which the ion self-currents cancel the vacuum magnetic field in the
bulk of the ion containment region.

Recently Blewett has suggested how a vacuum magnetic configuration could be
designed so that the magnetic fields are near zero throughout most of the ion
storage region. His suggestion is the basis of Exyder, a proposal for a compact
self-colliding storage ring. 4

2S



26 H. L. BERK AND H. V. WONG

x, y plane z, r plane

z

FIGURE 1 Schematic diagram of a thin migma. The ion orbits are nearly circular in shape, and for
flow in the direction of the arrows the circular shape precesses clockwise. Peak currents develop at the
plasma edge at r =:= 2rL in the clockwise direction, where rL is the ion Larmor radius. The thickness ~z
of this migma is assumed to be small compared to rL.

In the proposed diamagnetic migma of Exyder, the absence of magnetic field
in the bulk of the containment region means that magnetic focusing forces are most
significant when an ion reaches the radial periphery of the containment region. At
the radial periphery an ion feels a magnetic force that focuses its orbit radially
and axially. The radial containment condition is straightforward; there needs to
be enough magnetic flux to radially reflect the particle. The purpose of this paper
is to discuss why axial focusing is a more subtle problem. Of course, there needs
to be a net inward axial force. However, somewhat paradoxically, one can have a
condition where the inward axial force is too strong, which leads to axial
expansion. We call such an effect "overfocusing."

In the Exyder configuration, ions move radially from the center, with negligible
bending if the vacuum field is small, and turn around in the periphery where the
magnetic field is high. Electric forces can be neglected in the presence of
neutralizing, low-energy electrons that can be contained by an electric potential
energy much lower than the ion energy. A schematic of the orbits is shown in Fig.
2. Inside the circle of radius To'- the magnetic field is considered negligible and
ions move in straight lines. The magnetic field abruptly rises to a mean value Bo
outside the circle (more discussion of this magnetic field is given in Section 2).
Outside To the particles turn in a semicircular orbit, where the radius is
approximately the Larmor radius (TL) , which is small compared to To. In the
Exyder proposal it is also assumed that the axial width ~z is small compared to
To·

The focusing forces occur outside the radius To. The magnetic field is assumed
to be strong enough to radially reflect the particle. The axial force felt by the

particle is Fz = qoBrvo (where qo is the ion charge, B r the radial component of the
c

magnetic field, Vo the O-component of the velocity and c the velocity of light).
This force is felt during the relatively short time interval (compared to the time to
more a distance 2To) in which the particle is outside the radius To. Thus, in the
time interval to turn around radially, the particle receives an inward impulse per
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I FIGURE 2 Schematic orbits in the Exyder configuration. In the low-magnetic-field T < TO region,
ions move radially with little bending. At T < To, the large magnetic field bends the ions in an
approximate semicircular orbit of radius TL (the Larmor radius). Currents develop for T > To, and peak
at T ~ To + TL • ,In this work the thickness !!.Z is assumed small compared to TL •

unit mass, given by

h .. d 1
were m IS the Ion mass an y = ( 2/ 2)1/2.

1- v c
We shall show that if this inward impulse is too large, then the next time the

particle returns to the focusing region at the opposite side of the z-midplane, it
will have a larger amplitude. Orbit instability arises when this amplitude
continues to increase with multiple passes. If we assume that the axial impulse
received in the focusing region is proportional to z (Le., /z = - z ~v /~z with /z the
axial impulse per unit relativistic mass and ~v the axial velocity increment
received at z = ~z), then we derive from an impulse model that overfocusing
arises, if

~vT 4-->
~z '

where T is the radial period of oscillation.
In Section 2 we describe howoverfocusing can arise in a vacuum magnetic

configuration that is relevant to the concept of self~colliding storage rings. For a
model magnetic field we determine the energy band of good containment. We
then show in Section 3 how diamagnetic effects in a standard migma configuration
can also cause overfocusing. For a highly focused migma disc, the overfocusing
criterion places a restriction on the beta (the ratio of average kinetic energy
density to magnetic field energy density in the region occupied by energetic
particles) that can be achieved. The beta limit, Pc, is found to be given roughly by

2
Pc =In(l/e),

where E = b/rL, withrL the ion particle Larmor radius; b = bo+ ~z, with bo the
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mean "impact parameter" which is the mean value of the distance of closest
approach to the axis of symmetry; and ~Z is the axial extent of the disc. The
calculation also shows that the self-magnetism of a thin axial disc-like migma
configuration can produce a field only a fraction as large as the vacuum magnetic
field. This means that a diamagnetic migma, where the magnetic field in the bulk
of the containment region is much less than the magnetic field at the periphery,
cannot be achieved for a thin charge-neutralized configuration. In principle, in
order to achieve a diamagnetic migma as described in Ref. 2, the axial width ~z

has to be large compared to the ion containment radius.
For the self-colliding storage ring, it should also be noted that as the particle

number increases, the self-consistent axial self-force can also violate the over­
focusing condition and thereby set a limit to the total particle storage number
(hence the luminosity of the beam and the interaction rate). This limit is
calculated in Section 4, and it is shown that the limiting luminosity of a large
charge-neutralized storage ring does not increase with radial size. The limiting
luminosity L c scales as Lccx:Boy/mz=3~z/rLxl040cm-z/sec if Bo==:5T and
y =10. (Bo is the magnitude of the external magnetic field, ymcZ the energy of
the ions with mass m, ~z the axial extent of the disc and rL the Larmor radius in
the magnetic field.) However, a larger luminosity can in principle be obtained if
one introduces compensating defocusing forces. One obvious way is to control the
charge imbalance of the energetic ions and background electrons. To take this
possibility into account we have included in Section 4 a model for self-generated
electric fields arising from a lack of charge neutrality.

2. OVERFOCUSING IN A VACUUM MAGNETIC FIELD

Let us consider an azimuthally symmetric magnetic field which is small and nearly
constant at small radii, and changes rapidly in some interval around r ==: ro within
a distance ~r as shown in Fig. 3. Such a field can be constructed by splitting two
concentric solenoids as shown in Fig. 4. The field is 8 0 in the solenoidal shell,
ABo, near the axis, and significant field variation exists near r = ro when
Z ;$ max (Zl' zz).

In practice there are many variations of magnetic field coil designs to produce
the fields of Fig. 3 at the Z midplane. The ultimate choice should be made to
economize on magnetic field energy and to optimize orbit stability.5 However, for
model studies we use magnetic fields that arise from the configuration shown in
Fig. 4.

8

Bo --------------

ro

FIGURE 3 Schematic radial magnetic configuration at midplane for a self-colliding storage ring.
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FIGURE 4 Model physical system that can establish magnetic configuration for a self-colliding
storage ring. Magnetic field in sleeve is Bo. Magnetic field in innermost solenoid is ABo·

We only consider magnetic forces where kinetic energy does not change. Hence
relativistic orbits can be evaluated from nonrelativistic theory if the relativistic
mass is used instead of the rest mass. To consider orbits, we write the
Hamiltonian per unit relativistic mass as

1
2H =2 (Po - q1jJ/(ymc))2 + v; + v;,

r

where H and Po are the energy and angular momentum per unit relativistic mass,
and V r and V z the axial and radial velocities. 1jJ(r, z) is the magnetic flux, ·and the
magnetic field is given by

1a1jJ
Bz =;a;:'

To solve the orbits, we assume Po = 0 and that the axial speeds V z are less than
the perpendicular speeds V.L = (2H)1I2. Then we assume that in a single radial
pass through the interaction region around r = ro, we can neglect the z motion
and consider V z constant. In this approximation, the time increment dt is

dt= dr
[2H - v; - (1/r2)(po - q1jJ(r, z)/(ymc))2]112

dr

where z and V z are fixed. The axial acceleration is

= qvo B = __q_ ( _ q1jJ(r, z))B
az r p(J r'ymc ymcr ymc

and the impulse per unit mass ~vz during a transit through the interaction region
is

2q irt dr(po - q1jJ(r, z)/(ymc))Br

= - ymc rmin [2H - (1/r2)(po - q1jJ(r, z)/(ymc))2]112·
(2)
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Here T is a radial bounce period and rt and rmin are the outer radial turning point
and inner turning point, respectively. Our expression is still valid if z varies
appreciably in a radial bounce period, as long as z is nearly constant in the
interaction region. Also note that the factor 2 in the r integral arises from
accounting for positive and negative radial velocities.

To simplify Eq. (2) further, we set Po equal to zero, which is approximately
valid if

Po «q1/J(r, 0)/ ymc.

Further, given Bz , we can approximate Br (using V x B = 0):

aBr aBz
az = ar '

which, upon integrating around the midplane, gives

B
_ aBz(r, z =0)

r - z ar .

Then using 1/J = In r drBz(r, z = 0) and approximating 1/J about r = ro,

2 dr(aBz(r)/ar)l
r
dr'r'Bir')

Zq Z f 0

~VZ=(ymcf 0 [zHr2-(1/(ymc)f dr'Bz(r')r,rr
12

2 dr(oBzlor)[lr dr'(Bz(r') - Bz(O)) + roBz(O)/Z]
· Zq zro f 0 (3)

=:= (ymC)2 0 {ZHr~ - (qro/(ymc))2U: dr'(Bir') - Bz(O)) + Bz(O)ro/2rr
12

Note that if the fields increase at small r, the numerator is positve; the
contribution to ~vz is positve and therefore axially defocusing. At large radii,
aBz/ ar is negative, which contributes to axial focusing if the particle can reach
this region. The stagnation that arises in the region where a particle turns radially
tends to be strongly weighted because the denomintor of Eq. (3) vanishes there.
If this region is where aBz/ ar > 0, one tends to obtain a strong axial focusing
contribution that overcomes the defocusing contribution from the smaller radii.

To cast the expression in a more dimensionless form, we define b(r) =
Bz(r)/Bo, WeO = qBo/ymc, with Bo the characteristic magnetic field at r ~ ro, and
rL = (2H) 1/2/ WeO == the Larmor radius for a particle of energy H in uniform
magnetic field Bo.

Then we find

~vz Zz r, dr o~~){f dr'[bo(r') - b(O)] + (ro/Z)b(O)}

;;-;; = -;:L{ [f· rr12

cO 0 0 0 ri - 0 dr'(b(r) - b(O)) + (rob(O)/2)

Iz
(4)
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This expression depends strongly on energy. The low-energy particles are turned
before they reach the region aBz / ar < 0, and since I is intrinsically negative for
such particles they cannot be contained axially. Higher energy particles have
positive I, hence are focusing axially. We also restrict rL so that

rL < max (!Lr

drrb(r))=!L
OO

drrb(r),
r 0 ro 0

which guarantees radial focusing. This follows from the Hamiltonian when
Po = 0, as then

1
As we assume rL < max (So drb(r)r), there is a point ro where ri = 2" Jon r drb(r).

1(0)r
2

) ro
For small r, r2 f6'rdrb(r)~b2-4- . Therefore v;>O for small r, and v; must

vanish at a point r = rt < roo Thus, the radial containment region (the region
where v; > 0) is limited to a radius less than roo

We now develop a mapping technique to study axial focusing if I> O. Suppose
a particle is at Z = Zn with an axial speed V z = V n when it is about to enter the
interaction region r ~ roo Upon passing through the interaction region it receives
an impulse

so its coordinates will be Z = Zn and V n +l = V n - wclzn • If a radial bounce period T
nearly elapses (T = (4/AWcO) sin-1 (Aro/2rL) and ABo is the magnetic field at small
radii), the particle will again be ready to enter the interaction region, and its
coordinates will be,

(5)

The stability of this difference equation is found by seeking normal mode
solutions Zn+l = Azn , V n +l = Avn • Then solving Eq. (5) leads to the dispersion
relation

A2-(2-4[)A+l=0,

where [= fi.vzT /4zn = wco TI/4. The solutions for A are

A = 1- 2[ ± i2([ - [2)112.

Stability requires IAI > 1, which restricts [to the interval 0 <[ < 1. Satisfying the
left side of the inequality is the condition for focusing. Satisfying the right-hand
side is the condition for avoiding "overfocusing."

In overfocusing, the impulse is so large that a particle achieves a larger
amplitude in IZnl with each axial impulse, with the sign of Zn alternating with each
kick. It can be readily shown that for the critical case [ = 1, a particle with a
velocity V n = 2zn /T and axial position Z = Zn receives an impulse -4zn /T and at its
next interaction its coordinates are V n +l = -2zn /T = -Vn and Zn+l = -Zn. It also
follows that at [ = 1 the particle passes through the origin when it passes through
the axis. Any larger impulse will cause an exponential increase of the coordinates
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FIGURE 5 Focusing, defocusing and overfocusing trajectories. If point 0 is the origin of a "lens"
with reflection symmetry, then a trajectory emerging from 0 is a focusing one, if on reflection at B it
lies within the angle OBC. The trajectory is defocusing if on reflection at B it lies to the right of BC
(the dashed line). The trajectory is overfocusing if on reflection at B it lies to the left of OB (dotted
line).

with successive interactions. These observations are consistent with a physical
interpretation given by Blewett (private communication) for overfocusing. He
considers a particle moving from the origin at a point 0 in Fig. 5. The particle
moves in a straight line until it reaches the point B at radius '0' For , > '0, the
particle feels a strong focusing force causing the particle to reflect radially, and
having its V z component changed. The particle returns to , <'0 near the point B.
The line Be is the line of specular reflection. If the reflected trajectory returns on
the dashed line, to the right of the line Be, we have a defocused system, while if
the trajectory returns on the dotted line, to the left of OB, we have an
overfocused system.

It can also be shown that if a continuously applied focusing force is added to
the impulsive focusing force considered here, the value of [for which overfocus­
ing occurs decreases. Hence, the external mirror fields makes the overfocusing
condition slightly more restrictive. To counter overfocusing, one must compen­
sate with defocusing forces.

It is also interesting to study Eq. (4) when [is small and the difference scheme
can therefore be converted to a differential equation. We have

dz . Zn + 1 - Zn .

dt 7 T 7VZ

dvz . V n +l - V n . 4[z
d(7 T 7 T2 '

Combining these equations yields

d 2z 4[
d(+ T 2Z =0.

Hence, the solution is

z = Zo cos (W z t + <p)

Vz = - WzZo sin (wzt + <P),
with

2[1/2
WZ=T'

(6)

(7)

(8)
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(9)

In practice, one may have a condition that particles must be stored within a
distance 6.z. The axial spread in velocity then must satisfy

v~o 6.z2m; 6.z2
]

-2- <-2-=-2---
V ..1..0 V ..1..0 rL meoT

6.z2

2~]'nrL
6.z2

]

2rLrO'

To illustrate the relevance of the orbit stability criteria, we consider the model
field discussed at the beginning of the this section and illustrated in Fig. 4. Away
from slots, the magnetic field in the sleeve is Bo and the magnetic field in the
central region is ABo. Thus, the current density at r = ro + 6.x is cBo/4n, while at
r = ro - 6.x the current density is cBo(1 - A)/4n. We calculate the magnetic flux
1/J(r, z) = f~ dr rBz(r, z) in the vicinity of the slit assuming 2zo=ao« roo The
solution consists of the superposition of current densities

J =J t +J2

where

(10)

and

The exact solution for the magnetic flux function 1/Jt, as well as the approximate
solution in the vicinity of r = ro, is

(a) r::; ro - xo

(b) ro + xo < R < ro - xo
(ro - XO)2 Bo 2 2

1/Jt(r, z) = ABo 2 +2" [r - (ro - xo) ]

. Bor~
=7 A-2- + Boro(x + xo) - ABoroxo

(c) r>ro+x.
(ro - XO)2

1/Jt(r, z) = Bo 2 + 2Boroxo

. Bor~
=7 A-2- + 2Boroxo - ABoroxo, (12)

where we define x = r - ro and, in the approximate forms, we have neglected
term O(x~).
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FIGURE 6 Plots of focusing parameter f vs. Larmor radius in sleeve (normalized square root of
energy) with A= 0.1 and ro/xo= 10. In (a) Zt = Zz and each curve is for a given value of zz/xo. For
curves (1)-(6) the values of zz/xo are: 0.25, 0.5, 0.75, 1.2, 1.5, 2.0, respectively. In (b) Zz = Xo and in
the curves (1)-(6) the values of Zt/zz are 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, respectively.
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For the current J2 , we neglect cylindrical effects for evaluating 1/J2 in the vicinity
of r = ro Izi = Zl, Z2' Then, treating J2 as a current in a fixed direction, we have

1Jh(r, z) ~ -;:B
o

J:oo dy [r:
2

[(z _ Z')2 +:2Z~ (x _ XO)2]1I2

jZl dz'(I- A) ]
- -Zl [(z - Z')2 + y2+ (x + XO)2jl/2 · (13)

These integrals can be evaluated straightforwardly. For the integrals in Eq. (3) we
then find

~ iT dr'r'Bz(r, 0)=~ [1JJl(r, 0) + 1JJ2(r, 0)] = rO{2Z2
In [(~ _1)2 +;]

Bo 0 Bo n Xo Xo

_ (1- A)rOz1 ln [(~ + 1)2 + Z~]
2n Xo Xo

+ .!.(x - xo) tan-1(~) - (1- A) (x - xo) tan-1(~)} + 1JJl(r) , (14)
n x-xo n x-xo Bo

with 1/Jl(r) given in Eq. (12); and

1 aBz aBr 1 a21/J 1 [Z2 (1 - A)Zl ]

Bo or =Booz =Boro OZ2 =;. (x - XO)2 + z~ - (x + XO)2 + zi · (15)

We substitute Eqs. (13) and (14) into Eq. (3) [or Eq. (4)] and evaluate the
integral for I numerically. The relevant integral for orbit stability is / = OJcoTI/4,
so stable orbits lie in the interval 0 </ < 1. Note that f < 0 is an unfocused orbit
and / > 1 is an overfocused orbit. The values of / as a function of rL are given in
Figs. 6(a) and (6b). In Fig. (6a) Zl = Z2 and the various curves are for different
values of Zl/Xo. In Fig. (6b) we choose Zl = Xo and the curves are for various
Z2/Zl' The most dramatic aspect of those curves is their steepness as a function of
rL' Roughly, these curves indicate that focused orbits occur in an energy interval
aE/Eo= 10% where aE is the spread of energy about an energy Eo (where, say
/ = 1/2). This steepness in the energy dependence of / can be mitigated with
careful magnetic field design as indicated by Blewett.5 Nonetheless, the example
shows that overfocusing is an important phenomenon in orbit stability.

3. OVERFOCUSING BY SELF-MAGNETIC FIELDS IN A MIGMA

We now show how overfocusing can arise in a self-consistent equilibrium, and we
take a nearly ideal migma disc as an example. An ideal migma is a thin disc
with axial length az much less than the radius ro ~ 2rL' All particles are nearly
monoenergetic with a speed v and have Po values close to zero. The equilibrium
density n of an ideal migma is determined from the condition nVr = constant
with Vr = [2H -(q1/J/my~]1/2. In a nearly uniform magnetic field Bo, i.e.
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2rL(1/B)(8Bz /8r)« 1, n is then given by

2iirLo(r)
n=---

1fr
(16)

Here a(t) = (1- r2/4ri)-V2, where rL is the ion Larmor radius and equals vlwc,

and We = qBo . The mean density averaged over a cross-sectional area is ii.
ymc

Notice that the density of an ideal migma is singular at the origin and at
r = 2rL. There are no particles at r > 2rL. By considering a distribution function
of finite width in Po and finite energy, these singularities are replaced by finite
peaked functions. Examples of such finite peaked functions can be found in Ref.
6, and a nonsingular form for a(r) can be used when there is a small spread. For
example, given a distribution of particles with a characteristic impact parameter b
(i.e., b is the characteristic distance of closest approach of a particle to the origin)
one finds that

a(r) 1
--~ if b« r « 2rL - b

r r(1 - r214ri)V2

a(r)~! if r~b
r b

a(r) 1
-7- =r

L
b l12 if 2rL - r = b

a(r) O·f 2 b
--~ I r- rL» .

r

The directed speed is Vo = -wcrI2, so the current density jo is

. iiqrLwca(r)
}o =nqvo = - ·

1r
(17)

(18)

Note that for an ideal migma, jo is singular at r = 2rL. For a distribution function
with a spread in Po and energy, jo is peaked but finite around r = 2rL.

For simplicity we take ii constant between -Ilz12 < z < Ilz12. Our model can
be further refined to allow Ilz to be a function of r, and we can even attempt to
find an explicit distribution function whose density will replicate this property.
However, the essential aspects of our model are that we have a thin disc of
characteristic width Ilz« rL, and that aniaz vanishes on the mid-plane. The
induced magnetic fields produced inside the containment region of a general
distribution will be quite similar to what is produced in the model we analyze.

The induced magnetic field, 8 1 , is given by the equations

aB1r aB1z 41r. 4iirLqwca(r)
-----=-}o =-

az ar c c

(19)
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(20)

As the axial variation is rapid, we can neglect (aBlz/ar) in Eq. (18), so Br is
found to be

where P= y8JriimV
2

/ B~ is the mean beta averaged over cross-sectional area of
the particles in the migma. We note that the evaluation of B Ir , given Eq. (20),
fails near the edge of an ideal migma when 2rL - r =:::; dz. This is because, in this
case, aBlz/ar cannot be neglected in Eq. (18), as can be ascertained by

calculating aBiz =Biz in Eq. (19). However, the expression for BiT ~t r =2rL is
az dZ

valid if dZ < a/(aa/ar), and this can be achieved if there is enough speed in,
say, Po.

We note that Bir/Bo~ f3zlrL' which needs to be small to justify neglecting
self-fields in the equilibrium. Thus consistency requires that pdZ I rl «1. It can
also be shown that Biz /Bo« PdZ In (dz /rL)/rL. Thus, with p~ 1, we still have
small self-field effects if dz/rL« 1.

The axial acceleration felt by a particle is

~ qVe P £O~zra(r)
a = ym = - ymc BiT = - 4n: r

L
(21)

where we have used Eq. (20) and Vo = -£OcrI2. The axial impulse per unit
relativistic mass this particle receives in passing through the outer radial periphery
is, using Eq. (12),

(22)J P £0

2 JdV = a dt =--~ dtzra(r).
4.1l'rL

Let us assume z is nearly constant in passing through the outer periphery. Then,

-2p L2rL-erL rdr . -p (1)
dv =--z£Oc (4 2 - 2) =7- (JJcZ In - ,

.1l' 2rL-r' rL r.1l' E

Thus,

drldt~-

V r z=const.

2dr
(23)

(24)

where dt is multiplied by a factor of two to take into account the positive and
negative radial velocities. The cut-off erL is introduced in order to take account of
the logarithmic singularity and rL» 2rL - r' »e, the natural spread that exists in
a nonideal migma. With the natural spreads, the expression for dv is not
divergent. By determining the limiting values where Eq. (24) is applicable, the
magnitude of the large logarithmic response is found. Our calculation is only
accurate to the extent In (II E) is large. Two natural spreads determine the cutoff;
dr(dr ~ a(r)1 a</>I ar at r ~ 2rL) and dz with erL < max (dr, dz). To logarithmic
accuracy we can choose erL = dr + dz and incorporate both cases.

We have noted that, when dz > dr, our expression for Bir fails when
2rL - r:::5 dz. A proper evaluation of B ir would lead to a nondivergent contribu­
tion in Eq. (24) for r ~ 2rL; the appropriate integration of this term would correct
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the logarithmic term proportional to In (1/e). We do not attempt to find this
correction. If ar > ~z, the cut-off parameter can be calculated relatively simply.
In this case we note that B lr can be obtained without any local breakdown of the
expression, and we have near r = 2rL,

4njo . -2n
B lr =Z-- =;=-- wcrqn(r)z.

c c

We now define a phase space mean of a physical quantity G(po, H, r) as

_ f dpe dHGF(Pe, H)
G= .fdpe dHF(Pe, H)

(25)

For highly peaked distributions, all particles have nearly the same G value, so (;
characterizes the typical value of G. Now let G be the impulse av, so the mean
impulse av is -fdpe dHF(Pe, H)fdtqveBlr/ymc

av=-------------

fdPe dHF(Pe, H)

-(21rqzw~/cBo)fdpe dHF(Pe, H){max drr2n(r)/vr
rmm

fdpe dHF(Pe, H)

2
3 1'" drr3n2(r)

- nqzwc 0

cBo f ',dpo dHF(po, H)

(26)

where rmin should satisfy the condition

r,. 2rL
1«~«--1.

ar ar
However, the logarithmic accuracy of the last term in Eq. (26) is not affected by
replacing rmin by zero where we have used f (dpo dHlvr)F(po, H) = rn(r). We
note that f~ dr r2n(r) is logarithmically large from the contribution near r = 2rL.
For example, th~ distribution function

F( eH ) = i3B~ (j(H - V~)8(P~- b~)
p 4n2 y w 2 v 2

m c

characterizes a spread of impact parameters of width bo; the normalization
constant is chosen to produce a migma with a mean beta value i3 (if
bo« rL = vol we). Here 8(x) is a step function. Using Eq. (26), the mean impulse
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on a particle is then found to be

- 2Pro z L2
+

E

~V= c_ dxx3c2(x, e)
rc 0

where c(x, e) is a normalized density which is a function of the radial coordinate
r =xrL and the parameter bo= erL. Specifically, c(x, e) is given by6

de' 8(4 -~ (x2- 2e')2)
1 fE x 2

c(x, e) =- 1/2

2xe -E [4 -:2 (x2- 2e')2]

rc, O<x<e

1 sin-1 [2+ e (~-_X_)J + sin-1 [(2- e) (~+~)J; e<x<2- e
2 x 2+e 2 x 2-e

4e'

sin-l[2+e(~__x_)J+~; 2-e<x<2+e
2 x 2+e 2

To compare the result of a finite density profile with the ideal case, with
cut-offs introduced as given by Eq. (24), we compare the function
QI(e)=! In (l/e) with the integral Qs(e)=f~+Edxx3c2(x, e). We find:

QI(O.OOl) = 3.45

QI(O.Ol) = 2.,30

QI(O.l) = 1.15

Qs(O.OOl) = 4.55

Qs(O.Ol) = 3.40

Qs(O.l) = 2.25.

Empirically, we find the difference Qs(e) - QI(e) = 1.1, independent of e. Note
that the numerical results give a slightly larger ~v than the analytic estimate by
an amount independent of e. Thus we see that the results obtained by taking
finite radial spread into account yield results compatible with our cutoff
procedure.

We now determine the overfocusing condition using our analytic estimate. The
radial bounce time is T = 2rc/Wc. Thus, using ~vT > 4z, we find that the
overfocusing instability arises in a disc-like migma when

dVen
)- - >4

Z W c

or
- 2
P> In (1/e) · (27)
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The validity of this prediction requires that

R~Z 2E'
p_= <1

rL In (II E) ,
(28)

where E' = ~zlrL.

The overfocusing condition then indicates that the disc must swell axially if Pis
to be increased.

4. OVERFOCUSING BY SELF-MAGNETIC FIELDS IN STORAGE
RINGS

The self-consistent overfocusing condition from magnetic fields in a nearly
charge-neutralized self-colliding storage ring configuration (Exyder) is now
estimated. For simplicity we consider a system where particles are stored within a
region r $ ro, the magnetic field is negligibly small, and the particles are turned
around by a uniform vacuum magnetic field Bo that is taken as constant for r > roo
The turning radius in this magnetic field is rL = v IWe with We = qBol/ ymc. We
assume rL« ro, and. the focusing force due to the vacuum magnetic fields is
ignored. It can be shown "that such a focusing force causes a more restrictive
overfocusing condition than we calculate. It is possible that a self-colliding system
would not be totally neutralized. The space charge density is then gqn, where g is
the fraction of non-neutralization. If this non-neutral component can be con­
trolled, we can compensate the magnetic overfocusing forces with defocusing
electric forces, as will be illustrated.

The magnetic flux function for the configuration described is

(29)

The particle and current densities are taken to be constant in z between
- ~z /2 < z < ~z /2, and zero otherwise. The radial structure is given by

iivro
n =----------

2r[v2- (q1J1(r)/(ymrc))2]1I2 '

. iivroq21J1(r)
18 = 2 22ymcr (v - (q1J1(r)/(ymrc))2]1I2 ,

(30)

(31)

where ii is the average Ion density in the disc, i.e. ii~NT/(:Jrr~~z), NT is the
total number of particles stored. We have used the density and current of an
ideally focused system. Using distribution functions the formulas can be modified
(as in the previous section) to take into account peaked but finite spreads in phase
space.



OVERFOCUSING IN A MIGMA AND IN EXYDER CONFIGURATIONS 41

(32)

r<ro

Substituting for 'ljJ, we have

{

O,

je = qiirovwc (r2- r~)

- 4r2[v2- w~(r2 - 2r~ + rri/r2)/4]1I2 '

Using aBr/(az)=:=4nje/c and aEz /az=4nngqz, we find for -~z/2<z<

~z/2,

{

O,

Br = :' 2nqwc ()( 2 2)---n r r -ro z,
rc

r<ro
(33)

(34)

r<ro

Ez =4nn(r)g(r)zq.

The axial force per unit relativistic mass on a particle- is

~ -q(veBr/c - Ez )

ym ym

4nn(r )q2g(r)z

.my

nq2w; ()( 2 2)2 4nn(r)q2g(r)z
---2-2n r r -ro z+ ,

ymcr my

If g(r = 0) = 0, we can use the impulse method developed in Section 2 for
determining the overfocusing condition, because then the most significant axial
forces occur near the outer particle turning point. If g(r = 0) =1= 0, the use of the
impulse method is more complicated as particles can move an appreciable
distance in z between impulses at r = ro + rL and near r =b. For simplicity we will
study only the case where the impulse is only at the outer periphery.

The axial impulse, ~v, is

~V = ITI2 F'z. dt
-T12 ym

= _ 27Cq2z Lro+r
L{1-E) dr[w;n(r)(r2- r~)2fJ(r - ro)/r2c2- 4g(r)n(r)]

ym 0 r2[v2- w;fJ(r - ro)(r2- r~)2/4r2]112

= _ nq2iivroZ LT
O+

T
L(l-E) dr[(r2- r~)2fJ(r - ro)w;/c2- 4g(r)r2]

ym 0 r3[v2 - w~8(r - ro)(r2- r~)2/4r2]' (35)

where fJ(x) is a step function. These integrals have logarithmically divergent parts
near r = ro + rL and near r = O. For r = ro we use r = ro + x and r2- r~ =:= 2rox.
Assuming x «ro, we find

_ 47Cq2iivz [Lr
L(l-E) dx (W;.x2 )]

~v-- ---gl
ym 0 (v2- W;.x2) c2

=i= - 2:;rq
2
iivrLz In (!) [1 - C

2g
1] = - a{3 wcz In (!),

ymc2 e v2 4 e (36)
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(37)

(38)

(40)

where a=l-g1c
2/v 2

, e=li.z/rL+b/ro,gl=g(rO=:=rO+eL), b is the spread of
the impact parameter, and f3 = 81rnmyv2/ B~. The cut-off parameter is determined
as follows. At r = ro + rL == rl there is an axial width li.z. Our expression for Br

and Ez requires li.zan/ ar < n, which restricts rl - r> li.z. In addition, if there is a
spread in the impact parameter b, the turning points near r = ro + rL are smeared
by a distance = brL/ro. Thus the expression for the impulse near the outer
periphery breaks down a distance erL = li.z + brL/ro from rl. The period of a
radial bounce is T = 2ro/v; Therefore stability against overfocusing, IIi.v /zl T < 4,
requires

- rL 8
{3<- .

ro In (1/e)a

Eq. (37) implies a limit on the luminosity of the Exyder storage ring. The
luminosity is defined as

21rC fro dr
=:= - n2r~ li.z -

4 EtrO r
-2 4 2

_ 21rC -2 2 1 (~) ~ 21r {3 Boro li.z In (1/ e1)
- 4 n r0 Az n ..... ()2 2 2 3 'e1 4 81r m y C

where e1 = b/ro and we assume y» 1. Thus, using Eq. (37), the luminosity is
limited to

Bririli.z In (1/e1) e2 1n (1/e1) yBri
L < (39)

21r In2 (1/e)m2y2c3a2 In2 (1/e) 21r(JJ~rrn2a2'

where e2 = Ii.z/rL and (JJer = (qB/mc). As an example, consider Bo= 5 X 104

gauss, y = 10, and m is the mass of a proton. We find

L < 3.1 X 1040 £zln (1/£1) cm-z
.

a 2 In2 (I/e) sec

Note that for a charge-neutral self-collider, the overfocusing condition limits the
luminosity from scaling with radial size. However, a significant increase in
luminosity can be achieved if a can be made less than unity. Care with charge
neutralization is needed, however, since a < 0 causes defocusing.
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