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1. INTRODUCTION

The papers of B. Maglich and his associatesl
-

4 propose production and use of a
charge distribution which they call a "migma" in which charged particles can be
collided for nuclear or particle physics, for nuclear fusion and for other purposes.

The charge distribution would be set up in a paraxial magnetic field with
cylindrical symmetry, decreasing slowly with increasing distance from the axis of
symmetry. In this field, charged particles will travel on orbits passing through the
axis and precessing around the axis. These orbits will intersect on or near the axis,
where their density will be very high. Hence charged particle collisions can be
produced in profusion throughout the central region of the migma.

For use at very high energies where the magnetic field region must become very
large, the author has proposed5 the use of a ring of magnetic field with low or
zero field throughout the central region.

With the original migma field pattern, paraxial forces are weakly restoring
("focusing") everywhere toward the median plane. In the ring field, the inner
part of the field pattern (where the field is increasing with radius) will be axially
defocusing, while the outer part will be axially focusing. In combination, as in
alternating-gradient focusing systems, these fields will provide a net focusing
effect if their configuration meets certain criteria, as presented below.

The analysis presented here is approximate, but will indicate acceptable ranges
of important parameters. Actual design of a ring magnet system will call for
detailed computer study of orbits and magnetic field configurations.

The field pattern considered here will have the form shown in Fig. 1:
From point 0 to point A, the paraxial magnetic field Bz is O.
From point A to point B, Bz increases linearly from 0 to Bo•

From point B to point C, B z decreases linearly at a rate to be determined.
It will be assumed that orbits do not travel past point C, so the shape of the

field for radii greater than the distance OC is immaterial.
It will be assumed also that the distances AB and BC are small compared with

OA.
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FIGURE 1 Radial distribution of paraxial magnetic field.

2. MAGNETIC FIELD SHAPING

A suitable array of currents arranged above and below the ring field region can
produce a field pattern of any desired shape in the region BC. If the field is
specified at n points in the region BC and at the axis of the system, it can be
produced, in principle, by n + 1 current pairs above and below the axis. Figure 2
shows a pattern produced by specifying the field at three points in the region BC
and requiring it to be zero at the axis. This pattern is produced by currents I, I,
-1.6/, and -0.8/ at the eight points indicated. Small changes in these currents
can yield the pattern shown in Fig. 3. The central field in Fig. 2 is weakly
defocusing while that in Fig. 3 is weakly focusing. Either effect will be
unimportant compared with the effects of the ring field.
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FIGURE 2 Field pattern achievable with eight currents.
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FIGURE 3 Alternative field pattern achievable with eight currents.

The distance AB (Fig. 1) required for buildup from zero to full field will be
about the same as the distance from the median plane to the exciting windings,
and so will be about half of the vertical aperture. This will be about the minimum
achievable length of AB; it can be increased if, for any reason, this seems
desirable.

The current array generating the field will have radial extent considerably
greater than BC and will extend both inside of B and outside of C. Since orbits
will not extend past C, currents can be included nearer to the median plane at
radii greater than OC.

3. ORBITS IN THE RISING FIELD AB

For radii large compared with the ring's radial extent, the equations of motion
boil down to those for rectangular coordinates:

~=ey~z -eZBy }

my = -exBz

mz=eiBy

Here i represents azimuthal motion, y represents radial motion and i represents
motion normal to the median plane (paraxial motion). The constant e is the ionic
charge (1.602 x 10-19 C), and m is the mass of a proton (1.673 X 10-27 kg) or a
deuteron (3.343 x 10-27 kg).

The magnetic field will have two components, By and Bz • Because the system is
cylindrically symmetric, there will be no B component in the azimuthal direction.

In the range AB of Fig. 1 we represent the axial field by

(2)
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where y represents distance from A, Yo is the distance AB, and Bo is the field at
B. (Bz will be a weak function of z; this fact will be neglected in this treatment.)
It follows, to the same order of accuracy, that

(3)

We proceed to a solution for the orbit in the median plane. As initial
conditions we assume that, at t = 0, we shall have x = y = i = 0 and y = Vo.

From Eq. (1) it is easily shown that

and

The solution is

i = w..y. 2.. /(2yo), where w = eBo/m,}

d2~~yO)= -(w2/2)(y/YO)3.

W
2v 3t5

Y = vot - --~- + terms in higher powers of t
4yo

(4)

(5)

For most cases of interest the higher-order terms are negligible for y < Yo we can
write:

At B the entry conditions for the region Be will be:

y=vo }
i = wyo/2 = VI (definition of VI)

x = wy~/6vo.

4. PARAXIAL MOTION BETWEEN A AND B

(6)

(7)

To evaluate paraxial motions we assume that excursions from the median plane
are not large and that we can superpose the paraxial motion upon the
median-plane orbits derived in the preceding section.

From Eqs. (1), (3), and (6), we obtain

(8)

To evaluate the ring magnetic field as a lens, we shall eventually locate the
"focal point" on the median plane through which a reflected ion passes after
entering the lens parallel to the median plane but with a displacement in z. Hence
the initial conditions to be applied in the solution of Eq. (8) are z = Zo and i = O.



The solution is:

RING MAGNETS IN MIGMA SYSTEMS

(
11

Z = Zo 1 +24 (wVO/YO)2t4+2688 (wVO/YO)4t8

plus higher order terms in t12
, etc.)

i = (zo/6)(wVO/YO)2t3(1 +5~ (wVO/YO)2t4+ · · · .)
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(9)

(10)

At Y = Yo, t =YolVo and the terms in the z series are in multiples of (roYolVO)2.
This quantity will usually be on the order of unity, so the (8 and higher terms can
be neglected.

At B, the entry conditions for the region BC will be:

z = Z1 =zo(1 +2~ (wYO/VO)2)

i = U1 = (W2Yozo/6Vo) (1+ 5~ (wYo/vof).

5. ORBITS IN THE REGION BC

Between Band C the magnetic field can be represented by

Bz = Bo(1- ay), (11)

where Y now represents distance from B,

By = -aBoz. (12)

1 dBzHere a, which equals = ---d ,is a measure of the field gradient. We expect
Bo Y

that desirable values for a will be of the order of 0.1 to 0.2, i.e., field gradients of
10-20% per meter.

The equations of motion in the median plane are

x= roy(l- ay)

y = -rox(1- ay),

where (J) = eBolm as before.
From Eq. (13) we obtain

x = Vt + roy(1- ayI2),

where Vt is the value of x at y = 0 (see Eq. (7)).
The value of y follows from

(13)

(14)

(15)

(16)

At the maximum excursion into BC, y will drop to zero and x will become equal
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to Vo. Hence, from Eq. (15), YI, the maximum value of Y, is given by

1
YI =- (1- V1- 2a(vo - vI)/w)

a

= Vo : Vt { 1 +~ (Vo : Vt) +~ (Vo - Vtr+ ...}

The solution to Eqs. (13) and (14) is

i = Vo sin w(t - aJy dt)

(17)

(18)

(19)

Evidently, so long as a is relatively small, the motion is roughly sinusoidal in
time. Detailed analysis shows that Eq. (18) includes a constant term (av~/2w)

which represents the azimuthal precession of the orbit.
For simplicity in studying the effect of the orbital motion on the paraxial

motion we rewrite Eqs. (18) and (19) neglecting the a contribution. We assume a
time origin that allows us to impose the initial conditions x =Y = 0 and i = VI.

Then

~ = vo_ sin w(t + to), }
y = Vo cos w(t + to),

Vosin wto= VI.

The orbit returns to Y =0 when t = 1r - 2to. At this point,
w

i= VI

Y= - VV~- vi= -Vo·

6. PARAXIAL MOTION IN THE REGION Be

(20)

(21)
(22)

(24)

(23)

Motion in the z direction must satisfy

z= wiBy/ Bo•

From Eqs. (12) and (20), we find

z= - wavoz sin w(t + to).

The solution to this equation is

Z = Zt{ 1 - a:
o

[wt cos wto+ sin wto - sin w(t + to)]}

+~ {wt - a:
o[2 cos wto - 2 cos w(t + to) - wt(sin wto - sin w(t + to))]} (25)
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i = avozo{cos 00(1 + (0) - cos Wlo}

+ U 1{ 1- a;o [sin w(t + to) - sin wto- wt cos w(t + to)]} · · · (26)

(In these solutions we have neglected certain terms, including (avo/ w)Z and
higher powers thereof.)

Here Zt is the initial value of z and} ( )
. h ... I I f see Eq. 10Ut IS t e Inltla va ue 0 i

As noted in the previous section, the ion will return to y = 0 at a time given by
wt = 1r - 20010 , Taking into account that Vt/vo, Vta/w, and Wlo/1r all are smaller
compared with 1, and that we are neglecting higher powers of avo/w, Eqs. (25)
and (26) yield for final values as the ion leaves the region BC:

(
avo )z = Zz = Zt 1 - --;;; (1r - 200(0) cos 0010

Ut ( 4aVo )+ 00 1r - 20010 - --;;;- cos 0010

i = Uz = -2avOZt cos 0010

(
avo )+ Ut 1 - --;;; (1r - 200(0 ) cos 0010

7. ORBIT IN THE REGION BA

(27)

(28)

It is reasonably evident that the median-plane return orbit through the region AB
will be a mirror image of the initial passage, since the conditons when the ion
returns through point B are mirror images of its state when it entered. The ion
will emerge at A with its original velocity reversed and with zero azimuthal
velocity.

8. PARAXIAL MOTION IN THE REGION BA

In the region BA the equation to be solved for motion in the z direction is Eq.
(8), but this time with both an initial velocity and an initial displacement. The
solution at point A, neglecting higher-order terms, is

z = Z3 = Zz +Youz/vo

i = U3 = Uz + wZYozz/6vo.

9. SIMPLIFICATION AND SUMMARY OF RESULTS

(29)

(30)

Our formulae will be greatly simplified if we assume some correlation between
parameters.
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From Section 5, Eq. (17), the radial extent of good field, which we shall call D,
is approximately equal to (vo - VI)/ ro. So we shall write

Vo- VI = roD. (31)

It seems reasonable to assume that the vertical aperture in the ring field will be
approximately D. Hence, as was pointed out in Section 2, we can assume that

Yo= D/2.

Now we can evaluate VI from Eq. (7):

VI = roYo/2 = roD/4 = (vo - vI)/4.

Then we find that:
VI = 0. 2vo,

sin ~o = Vl/VO =0.2'}
wto - 0.201,
cos roto= 0.98,

and

roD = Vo - VI = 0. 8vo.

Incidentally, Eq. (35) indicates that

Bo(Teslas) = 2.5f3y/D(meters) for protons }

= 5f3y/D(meters) for deuterons.

Using these abbreviations we can summarize the z motion as follows:

Initially z = Zo and i = 0

After traversing AB (from Eq. (10)):

ZI == Zo }

UI == rozo/12.

Returning to B after traversing Be (from (27) and (28):

Z2 = zo(I.23 - 3.77aD)

U2 = zo(0.083 - 2.55aD).

Returning to A after traversing BA (from (29) and (30):

Z3 = zo(1.29 - 4.79aD)

U3 = zo(0.165 - 2.80aD).

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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FIGURE 4 Focal length of ring system as a function of total change, aD, in magnetic field.

10. SYSTEM FOCAL LENGTH

The particle, which entered the "magnetic lens" traveling parallel to the median
plane, will cross the median plane at a distance f from point A given by:

f /
1.25D(1.29 - 4.79aD)

- v z u - ------.;....-----..:...
- 0 3 3 - 0.165 - 2.80aD · (41)

This defines a "focal length" for the system.
Note the important fact that, to this order of approximation, the ratio of f, the

focal length, to D, the depth of the field pattern, depends only on the total
fractional field drop aD across the region BC.

In Fig. 4 we show f /D as a function of aD. In the region where aD is less than
about 0.06, the focusing strength of the region BC is not enough to overcome the
defocusing in AB and there is net defocusing, Le., the focal length is positive and
the beam emerges as though from a virtual focus outside of A. For aD greater
than 0.06 there is net focusing. If, however, fis less than the distance from A to
the axis of the ring, particles will be lost due to "overfocusing." They will reach
the opposite ring field with an axial displacement greater than Z3 and eventually
will be lost axially. This phenomenon was first noted by H. J. Berk and H. V.
Wong6 who point out that it will occur for ions energetic enough to penetrate too
far into the focusing part of the ring field.

For example, in a system where the inner radius of the ring field is five times
the distance D, overfocusing will occur if aD is greater than 0.12.
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11. ACCEPTABLE ENERGY SPREAD

For small values of a, the useful radial extent of the bending-focusing field is
large; therefore a wide range of energies can be accepted. To establish the order
of magnitude of the acceptable energy spread, it was assumed that the upper limit
of the energy range is set by aD = 0.12. A revision of the analysis presented
above was carried out to determine the minimum energy, below which defocusing
will occur. The minimum energy proved to be less than half of the maximum.
Thus it appears, for low values of a, that a 2 to 1 energy spread can be accepted.

For large values of a, the analysis here presented makes approximations that
are no longer valid. As a is increased, it is evident that the extent of the focusing
field in the radial direction will decrease and so will the energy acceptance. To a
first approximation, it appears that the energy spread will become approximately
inversely proportional to a for large values of a. In the next section we treat a
case where a steeper gradient of field results in a marked decrease in energy
acceptance.

12. SINUSOIDAL FIELD PATfERN

Orbits have been traced throgh a ring field in whch the paraxial field is

Bz = Bosin (ny /Yo).

Around the acceptable range, the focal length is given approximately by

f = Yo(1.4 - O.6try /Yo)
1.85 - ny /Yo

The limit for defocusing is at ny/yo = 1.85 where Bz = 0.96Bo. The upper limit on

axis
Bz

DEFOCUSING

~
~
~ OVERFOCUSING

~

OVERFOCUSING

FIGURE 5 Comparison of focusing properties of two field patterns. If the maximum excursion of an
ion lies in the shaded area, it will be focused acceptably.
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y for overfocusing in a system where the ring radius is 5yo is given by f = -5yo,
which occurs at 1Cyjyo= 1.9 where Bz =0.946Bo.

In summary, the acceptable range of changes in B is from 4-5.4%. We recall
that corresponding figures for the field pattern of Fig. 1 were 6-12%.

In the sine-wave case, the minimum acceptable ion velocity proves to be 96%
of the maximum acceptable velocity. Hence the energy range accepted is about
8%.

In Fig. 5, we indicate the acceptable field ranges for the case of Fig. 1 and for
the half-sine-wave case. The acceptable range is shaded in both cases.

13. CONCLUSION

For simplicity and clarity in the above treatment, a number of approximations
have been made, some fairly drastic. Accordingly, numerical results presented
will differ from precise computer determinations of the same parameters. This
rough presentation is meant to show the general character of the particle
behavior. The final version of Fig. 4 may turn out to have somewhat different
scales, but its general shape must be what we have shown.
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