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It is shown that continuous energy gain is possible in a static magnetic field for individual charged
particles subjected to a fixed-frequency rotating electric field. The static axisymmetric magnetic field
must have prescribed radial dependence 8:(r) which allows the particle's energy factor y(r) to
increase along a spiral orbit with y(r) nearly proportional to 8:(r). Axial stabilization is shown to be
possible using a co-rotating radial magnetic field, since the accelerated particles are bunched in phase.

I. INTRODUCTION

Auto-acceleration techniques for charged particles are receiving wide attention
sunce they appear to offer means for achieving high acceleration gradients,
thereby permitting design of compact beam sources for free-electron lasers
(FELs) and other generators of short-wavelength radiation. Auto-acceleration of
charged particles in traveling waves requires that the Doppler-shifted cyclotron
resonance frequency slip be kept constant. The frequency slip is given by
Q I y + k· v - w, where Q is the charged particle's gyrofrequency, w is the wave
radian frequency, k is the wavevector and y and v are the particle's Lorentz
energy factor and velocity. For any fixed frequency w, synchronism can be
maintained as both y and v increase. To achieve high acceleration gradients
using these techniques, the system parameters must be controlled with precision
over the particle path (which can, in some cases, amount to many tens of meters).

With a fixed-frequency source and a static magnetic field, it has not been
generally recognized that one can achieve continuous cyclotron resonance
acceleration to highly relativistic energies (y» 1) with v· B = 0 (i.e., in a plane
transverse to the static magnetic field B). Here the unshifted cyclotron resonance
frequency slip Q/y - w is held roughly constant during the acceleration. This
acceleration mechanism could permit the construction of relatively compact,
fixed-frequency, fixed-field cw cyclotrons suitable for many FEL applications.

Related configurations have been tested. McDermott el al. 1 have accelerated
electrons up to y = 2.3 by passing a beam axially through aTE••• rf cavity in a
nearly uniform static magnetic field. Furthermore, Golovanivsky el al. have
proposed2

•
3 pulsed acceleration to much higher y using a pulsed magnetic field. In

their scheme, acceleration is achieved by maintaining phase synchronism with a
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fixed-frequency rotating electric field by arranging Q(t) / y(t) to be nearly
constant as y(t) increases. Thus far, acceleration to y = 1.5 by this means has
been reported.4 Microtrons5 and certain isochronous cyclotrons6 achieve y» 1;
however, since acceleration occurs only within narrow gaps, these machines
provide lower energy gain per turn than would be possible with continuous
acceleration. Moreover, the isochronous cyclotrons require complex radial sectors
for axial stabilization; even so, y-values are limited to 2 or below 2. Therefore,
isochronous cyclotrons have been used in practice only for accelerations ions, not
electrons.

The purpose of this paper is to show how it is possible in principle to achieve
stable single-particle continuous acceleration to values of y well above unity using
a fixed-frequency rf source and an axisymmetric static magnetic field. A novel
method for stabilizing the motion against axial perturbation is also discussed. One
can conceive of applying this accelerating principle to construct relatively simple
continuous beam, low-current electron synchrotron radiation sources (this term is
used here to describe electrons radiating largely into the high harmonics of their
gyrofrequency). For ion acceleration, where radiation losses are unimportant,
one can correspondingly conceive of relatively compact accelerators for con­
tinuous GeV beams.

2. ACCELERATION MECHANISM

To demonstrate the principle of continuous acceleration we consider the motion
of a particle of charge e and mass m in a plane of symmetry tranverse to a locally
z-directed static magnetic field Bo(r) =ezBo(r). (In practice one could obtain the
electrons thermionically from a high-resistance thin wire located on the z-axis of
the azimuthally symmetric magnetic field. The wire could be biased negatively to
provide the necessary radial initial velocity of the electrons. The temporally
static, radially varying magnetic field might be achieved by means of a concentric
arrangement of coils of gradually increasing radii on both sides of the cavity. The
desired profile could then be produced by an independent current control in each
of the coils.) A rotating electric field E(r, t) = Eo(e, cos wt + eqJ sin wt) is imposed
upon this plane of symmetry. The equations of motion in cylindrical planar
coordinates (r, qJ), using normalized variables, are

and

U, = [a + (w - Q / y)]uqJ - wA cos a.

uqJ = -[a + (w - Q / y)]u, + wA sin a,

; = u, / y,

a= (jJ - w = uqJ / ry - w,

(I)

(2)

(3)

(4)

y= (Aw / y)(uqJ sin a - u, cos a); (5)

where (... . .. ) =d(...) / dT. 1: = te w = w / e, Q(r) = eBo(r) / me
2

, A ==
eEo / wme2

•
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The ith component of the particle momentum is U; = yv / c, and a = cp - W'l' is
the phase angle between the radius vector of the particle and the E-field. For the
sake of clarity this discussion is restricted to planar motion: axial motion will be
discussed below.

Clearly, maximum acceleration occurs when the E-field is along the direction of
the velocity vector. If we impose this condition, e.g. a = 1'C / 2 and a= 0, upon
Eqs. 1-5, using u<p = w(yr + ry), we obtain the following relationship between
O(r), y(r), and ur(r):

Q(p) = wy(p)[2 - A(l- p2) / UI(P»), (6)

where p = wr. One sees from Eq. (6) that resonance is present initially [i.e.,
0(0) = wy(O») for ur(O) =A, and that this resonance is preserved as p -+ 1 if
u,(p)~ A (1 - p2). If this condition were satisfied throughout the motion, one
would find y(p) = y(O)(I- p2)-1/2 and p(y) = [1 + 1 / (AW'l')2J-II2. These ap­
proximate solutions' (which are the known basis for isochronous cyclotrons)
indicate that acceleration to arbitrarily high y might indeed be possible. However,
exact solutions for the equations of motion can only be obtained numerically.
One such exact solution is shown in Figure 1 for OJ/21'C = 300 MHz, ur(O) = 0.1,
u'I'(O) = 0, A = 0.1 (corresponding to. Eo = 3.2 kV/cm), and a(O) = 1'C / 2, with
Q(p) given by Eq. (6). One notes from the figure th~t constant phase. can be
maintained, that acceleration can be continuous, and that y-values well above
unity can be achieved. Figure lc shows the radial magnetic field profile required
to achieve these results; the field increases from about 100 Gauss to about
850 Gauss for the example given. The trajectory is spiral-like, as shown in Figure
Ic, asymptotically approaching an outer radius r = c/ OJ, corresponding to one
turn per rf cycle for a particle with velocity equal to that of light. The energy gain
thus approaches 21'CEoc/0J eV/turn; for the example cited, this amounts to
300keV/turn, with y reaching a value of 7 (corresponding to an energy of about
3 MeV) in 12 turns. For a typical isochronous cyclotron, energy gain values are in
the range of 100 keY/turn.

Some further approximate analytic features can be gleaned from Eqs. (1-5).
For Q' = 1'C / 2, since y = pdy / dp = (urw / y) dy / dp, then dy / dp = Apy / Ur.
Thus, using y2 = u~ + u~, one finds dy / dp = Apy[y2(1 - p2) - 1]-112. This equa­
tion does not appear to have a readily accessible analytic solution, but it is easy to
show that y2 = 1 + (3A p2 / 2)213 + · .. for p« 1 and y(O) = 1, and also that
dy / dp-+oo as p-+ 1. The practical limit of acceleration to high y, then, is given
by limitations in constructing a static magnetic field with a sufficiently steep
positive gradient, following Eq. (6). Of course, particle injection occurs for all
values of phase a, not only for a = 1'C / 2, so it is important to understand the
dynamics for different initial phases. From Eq. (1) Q' = (wA cos a) / u<p +
u, I u<p - (w - Q / y), so phase trapping would appear possible if wA > IUr +
wUQ?[l + A(1 - p2) I ur]l, where Eq. (6) has been used for Q(p): that is, if
magnetic field profile that optimizes acceleration for 0'(0) = 1'C/2 is chosen. Since
ur~O and ur --.A(l- p2) as p-+ 1, this trapping condition will ultimately be
satisfied for p « 1. This issue has been examined by numerical integration of Eqs.
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FIGURE 1 Continuous energy gain for an electron with relative phase a = 1'C /2. In this cxan'pk
A = u,(O) =0.1 and ucp(O) = O. (a) Energy factor y versus time in units of T. (b) Spiral orhit in th('
x - y plane. (c) Radial profile for axial magnetic field.

(1 )-(5), for various initial phase angles £1'(0), as well as for various initial radial
momenta u,(O). Th~ caJc'tlationc; wer~ p~rformed with the DGEAR code, which
solves systems of ordinary differential equations, on a CDC Cyber 1HO-H55
computer; relative tolerance of 10-6 was achieved. We found that the orbit
evolution is strongly insensitive to variations in ur(O). Results for «(T) and y( T)
are shown in Figure 2 for ufP(O) = 0 and ur(O) = 0.1 and initial phases «(0) =
1r / 2, 21r / 5, and 31r / 2. The case for £1'(0) = 21r / 5 shows, first approach to
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FIGURE 2 Energy gain and phase development for electrons with initial phases a equal to (1) 1f 12,
(2) 31f 12, and (3) 21f 15. (a) Energy factor y versus T. (b) Phase a versus T. Phase trapping occurs
for a(O) near 1f 12 (the limits are discussed in ref. 8), and that energy gain ceases for an untrapped
electron. Other initial conditions are the same as in Figure 1.

a = 1r / 2 phase and then shows a slow instability after l' = 1000, corresponding to
10 acceleration turns. In order to understand this instability, we shall perform the
following perturbation analysis.7

Let X o describe all the relevant parameters of motion for the optimal phase
Q' = 1r / 2. Then for a small deviations of the phase from 1'C / 2, i.e., a = 1r /2+ fJ,
we write where Xl (1') is the perturbation due to fJ.

(7)X(-r) = X o + X 1(-r)

We adopt the eikonal approximation, namely

X 1(-r)=Xl(1')exp[icp] (8)

Then after the substitution of Eq. (7) into Eqs. (1)-(5) and linearization, we
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obtain and define Il( T) = dcp( T) I dT. It enables us to write the equations in the
following form:

(9)

(13)

where E= E(Il, T) is the slowly varying local dispersion matrix, and L(X) is a
linear differential operator acting on Xl(T). To the lowest order, we set
det (E) = 0 which defines Il = Il( T). This function then allows us to solve the first
order of equations i.e. L(Xl) = O. Thus defining the solution completely here, we
shall only consider the zero order part of the solution. For this optimal phase
(a = 1f / 2), we may use Q / y = w, u<p = wry, wr = p = 1, and u, = O. Also, Eqs.
(1)-(5) in this case yield:

ill 0 0 -(ill + A) -w

0 ill 0 ill 0

E= -l/y 0 ill 0 0 (10)

0 w/y -w2 ill w/y

0 Aw/y 0 0 -(ip + Aw / y)

The dispersion relation det (E) = 0 immediately yields one trivial solution,
Ilo = O. The four other solutions satisfy

.11
(1l 4

- W21l2) +1«1- A)W31l3 + 2AW31l2) - + w2(2A1l2+ Aw2(1- A» - =0, (11)
Y y2

where the terms are arranged in powers of y. Seeking the asymptotic solution for
y» 1, we write the solution of (11) as

ml m2
p = mo + - + -. · · (12)Y y2

Substituting (12) into (11) and collecting the terms that are of the same order in
y, we obtain, to the order 1 / y:

iAw
PI2=-. Y

(
. (A + 1»)

113 = w 1 + I 2y

114 = -w(1 - i(A2~ I».

Now consistently with our assumptions of y»l, we substitute y=wAl' in (13)
ans see that roots P3 and P4 predict a weak time growth (as a power of 1') of the
perturbation, while other roots are stable. rhis weak InstabIlity, also observed in
the numerical simulations (see Figure 2), suggests that successful acceleration
may occur if the number of turns required to achieve final desired energy is not
too large.
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3. AXIAL STABILIZATION
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Stability with resepct to axial perturbations must be seriously addressed for this
acceleration technique. Since the equilibrium we have demonstrated requires use
of an axisymmetric static magnetic field B with aBz / ar > 0, it follows, from
V· B = VX B =0, that ifB z / az 2 < O. Thus the plane of acceleration is a plane of
maximum B z with respect to z, and particles acquiring a small U z will experience a
destabilizing force uqJQr, which will accelerate them rapidly off the equilibrium
plane. This phenomenon can be overcome by use of a non-axisymmetric static
field, i.e., a field in which both BqJ and aBqJ / aq; are nonzero. Such a stabilization
scheme (Thomas focusing8

) has been successfully applied in isochronous cyclo­
trons, but is rather cumbersome from an engineering viewpoint.

The scheme we suggest here is to superimpose a rotating stabilizing field on the
rotating accelerating field. Since the accelerated bunch is localized near a = 1t I 2,
it is only in this range of a that stabilization is required. One now extends Eqs.
(1-5) to include z-motions and the stabilizing TE 1l3 mode components. The
crucial equation to be added is

Uz = [uqJ(Or + 0 10) + urQqJ] / y + wAz(a), (14)

where Q 10 -.. W
2y3pz is the approximate radial static magnetic field (from

Q(p) = wy(p) and V X B = 0, which holds for z -.. 0 and p -.. 1), while Q r and A z

are co-rotating rf magnetic and rf electric stabilizing fields. Thus we see that
stabilization would require

ywA z (1t / 2) + urQO(1t /2) + uqJ Qr(1t /2) < -UqJQ1O = -yCQ1O. (15)

One means for achieving this is to employ a cylindrical microwave cavity to
support both the accelerating and stabilizing fields, which would be in degenerate
modes excited with the appropriate phase difference. The proper combination of
modes is chosen to satisfy the following two requirements. (a)The field equations
in a cylindrical waveguide show that, in order to maintain the proper phases of
the accelerating AqJ and stabilizing '1r components, the modes have to have a
phase shift of 1r / 2. (b) We require the stabilizing mode to affect the accelerating
mode and the magnetostatic field as little as possible. Thus, for example, if the
acceleration in the cavity mid-plane is performed by the electric field of rotating
TMll1 , then the stabilization can be achieved by a rotating TE1l3 mode, via its '1r

component which varies as CJi(I.841r / R) sin (31tz ! L) cos a. (Other mode
acceleration-stabilization pairs are possible, such as TE1l3 ! TE211 , TEllt ! TM2ll ,

or TE 1l3 ! TMllt ). Note that for all these examples, the Q z component of the
stabilizing mode vanishes on the mid-plane, and therefore does not perturb the
magnetostatic '1zo(r) component.

The chosen example is the most favorable one from the point of view of the
required input power and the cavity design complexity. Degeneracy occurs for the
TEl13 and TMt1t modes in a cylindrical cavity of radius R and length L when
R/L =0.378, in which case the resonant frequency-radius product lresR =
19.2 GHz-cm .. An example of this stabilization is shown in Figure 3b, which
depicts the z-coordinate for an electron injected with initial momenta uz(O) =
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FIGURE 3 Stabilization against axial perturbation. (a) Energy factor y versus 1". (b) Axial
coordinate z versus 1". In this example u,(O) =0.3, u4>(O) =0, and uz(O) =0.01, the stabilizing rf
amplitude Alit = 1.5, and the accelerating rf field A acc =0.3. Axial stabilization persists up to 1" = 150,
beyond which the rotating rf radial magnetic field at phase 1r/2 falls below the static radial magnetic
field.

0.01, ur(O) =0.3 and u<p(O) =O. The peak rf magnetic field corresponds to about
160 G at a frequency of 300 MHz. One can see that once Eq. (8) is violated (at
T = 150 em-I), the particle runs rapidly off the mid-plane and the acceleration
process stops. Particle dynamics issues that apply after V z grows due to the
instability are outside the interest of this study because the synchronism is
destroyed and the acceleration process stops.

4. CONCLUSIONS

We have shown in principle how stable isochronous cyclotron acceleration to
relatively high y can be achieved. A carefully tailored radially-increasing static
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m;u~netic field is employed, and particle acceleration is continuous J using the
£cp:field at the mid-plane of a rotating cavity mode such as the TM111 made ~ ,,:!?1
~tabilization in the radially-increasing static magnetic field is achievable using the
8, field of a second rotating cavity mode such as the TE llJ mode. This
acceleration scheme may lend itself to the design of compact electron synchrotron
sources. The coherent synchrotron radiation properties of the azimuthally
hunched beam created in such an accelerator could be of considerable interest as
a novel tunable radiation source.
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