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We start with the dIfference equations for cumulatlvt btam brtaleup In a multi·cavlty hnac structure.
modified to Include coupling between adJacent cells In the deftecting mode. These equations are
solved analytically for small coupling and results are given for the starting current (above which there
are runaway OSCIllations). We obtaIn approximate unIversal curves for the startIng current as a
functIon of x = 1/IeQ. where Ie is the coupling constant and Q the quahty factor of the structure The
results are shown to be In excellent agreement WIth numencal simulatIons. gOIng over to the
previously obtained cumulat,vt btam brtaleup results for large x (small Ie) and to the rtgtfltrat;vt
btom brtaleup results for small x (large Q)

I. INTRODUCTION

Beam breakup in a multi-cavity linac occurs when a transverse excitation in
one section causes a deflection of the beam, which is then capable of generating
or enhancing an excitation in a subsequent section. One extreme case is
cumulative beam breakup, in which the cavities are assumed to be identical and
coupled to one another only by the displacement of beam bunches. In the
absence of external focusing. a transient growth of the beam displacement can
produce a large magnification of the initial displacement. 1.2 Our analysis has
recently been extended) to include random fluctuation of parameters such as
initial beam displacement, charge per bunch, and the frequency of the dominant
transverse mode. In a companion paper. the analysis is extended to include
smooth variation of parameters such as the energy, the charge per bunch, the
frequency of the dominant transverse mode, and the external focusing force.

At the other extreme, regenerative beam breakup occurs. Here, the cavities
are strongly coupled to one another, and the preferred analysis treats the
multi-cavity accelerator as a single long tank whose modes of transverse
excitation can be represene:ed as points on the transverse band of a dispersion
curve for a periodic structure. llte beam will then interact most strongly with
those modes in the transverse band which travel with a phase velocity close to the
velocity of the beam. In this model of regenerative beam breakup, one mode, in
which the phase slip between the beam and this mode is approximately 1t for the

t Work supported by the U. S. Department of Energy.
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12 R. L. GLUCKSTERN AND F. NERI

transit through the tank, will dominate and lead to instability. for beam currents
above a "starting current". The model assumes that the modes in the transverse
band are well separated from each other.

The object of this paper is to treat the case where the conditions for neither
extreme model are present. We assume sufficient electromagnetic coupling
between the cavities to make the relative separation between adjacent modes
comparable with Q-I (the relative width of each mode). The result of our
analysis (which is compared with computer simulations) is then shown to
correspond to cumulative beam breakup as the coupling goes to zero and
regenerative beam breakup as Q goes to infinity for finite coupling. Finally, we
present numerical results which are applicable to the intermediate case, which is
often the one encountered in actual multi-cavity accelerators.

II. ANALYSIS

Q. Difference Equations Without Coupling

We first review the equations for a coasting beam in the absence of focusing and
coupling. The difference equation for the displacement ;(N, M) of the Mth
bunch as it enters the Nth cavity is

where

and

with

;(N + 1, M) - 2;(N, M) + ;(N - 1, M) = rep(N, M),

ep(N, M) = 1m [V(N, M»)

M-I

V(N, M):= L ;(N, l)ei(M-/)a,
1=0

(lI.A.l )

(II.A.2)

(II.A.3)

(II.A.4)a = arc(1+ 2~)'

Here w/2rc and Q are the frequency and quality factor of the deflecting mode, l'

is the time interval between bunches, and r is defined as

r:=eICr(Z.lT
2

) 2
2W LQ L. (II.A.S)

Here, r is proportional to the current I and to Z.l / Q, the ratio of the transverse
shunt impedance to the cavity's Q; it is also inversely proportional to the energy
w. The cavities, all of length L, are assumed to be touching, and T is the transit
time factor. If we change variables from V(N, M) to

V(bl, l~I) := e-iMaV(N, M),

Eq. (II.A.3) can be rewritten as

U(N, M + 1) - U(N, M) = ;(N, M)e- iMa,

(II.A.6)

(II.A.7)
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and the difference equation (1I.A.l) becomes

6~[;(N, M») = r 1m [eiMOU(N, M»),

where
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(11.A.8)

(11.A.9)

Equations (1I.A.7) and (1I.A.8) are the usual equations governing cumulative
beam breakup.

b. Field Equalion wilh Coupling/No Beam

Our model for the coupled cavities is a circuit chain with coupling constant k,
where the field amplitude in the Nth cavity, VN(/), satisfies the differential
equation

(1I.B.l)

where k may be either positive or negative. Changing the variable from VN(/) to

UN(/) =e-ior/TvN(/),

and assuming UN(/) is slowly varying, we find

or

d . I ikw. I . I- [e-,ot TV (I)] == - (e-'or TV (I) + e-,ot TV (I)]dl N 4 N+l N-l·

(1I.B.2)

(11.B.3)

(11.8.4)

The independent variable in Eq. (11.8.4) is the time I, which is connected to the
cavity number and the bunch number by the relations

I = My; + NL/c = (M + Ns)y;, s = L/cy;. (11.8.5)

On the left side of Eq. (11.8.4) the time derivative at constant N can be replaced
by a partial derivative with respect to My; (M is considered to be continuous). On
the right side, the time in the (N ± l)sl cavity must correspond to bunch number
M =f s. Thus with VN(/) rewritten as V(N, M) we have

a . .
aM [V(N, M)e-'O(M+N.f)] ==

ik:l' (V(N + 1, M - s)e-ia(M+N.) + V(N -1, M + s)e-ia(M+N.)). (11.8.6)
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In terms of the variable U(N, M) defined earlier, we have

au~M) == ik:-r [U(N + I, M - s)e- isW
< + U(N - 1, M + s)eisW1, (II.B.7)

where we have approximated Q' by CJJT on the right side.
As a final point, we express the group velocity in terms of the coupling constant

k. The dispersion curve for mode m in a cavity with No cells is obtained from Eq.
(II.B.1) as

(11.8.8)

The corresponding wave number is mrc/NoL, from which the group velocity can
be obtained as

Vg = -k(CJJL/2) sin (mrc/No). (11.8.9)

Here L is the single cavity length and mrc/No is the phase advance per cavity for
mode m. The relevant portion of the dispersion curve for the deflecting band is
that for which the phase velocity is equal to c.

c. Difference/Differential Equations With Beam and Coupling

It is reasonably straightforward to perform numerical simulations in which the
field impulse due to each beam bunch is given by Eq. (11.A.7) and the evolution
of the fields between beam bunches is described by Eq. (11.8.1). It is then a
simple matter to derive a propagator corresponding to Eq. (1I.B.l), with the
appropriate boundary conditions for the field in the end cavities. This is in fact
the basis for most of the simulations described in this paper.

It is, however, also possible to continue an approximate analysis by combining
Eqs. (II.A.7) and (11.B.7). Specifically, we consider the displacement to have
rapid oscillations (with frequency CJJ /2rc) and write

~(N, M) = z(N, M)e iMa + z*(N, M)e- iMa *, (II.C.I)

where z(N, M) and z *(N, M) are slowly varying functions of Nand M. If we
neglect rapidly varying terms (valid except near integral values of CJJT/rc), Eqs.
(1I.A.7) and (II.A.B) can be written as

and
U(N, M + 1) - U(N, M) == z(N, M),

2 r
lJNz(N, M) = 2i U(N. M).

(II C.2)

(II.C.3)

We now write Eq. (1I.B.7) in a centered difference form:

U(N, M +s) - U(N, M -s)

ik6 "8 '8== 2 [U(N + 1, M - s)e-' + U(N - 1, M + s)e' ] + 2sz(N, M - s), (II.C.4)
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where

(J =SWT, (1I.C.5)

and where we have divided or coalesced the beam bunches so that they are
separated in space by 2sTC = 2L. (Our experience with cumulative beam breakup
shows that, except near resonance, the variable M can be considered continuous.)

The system of equations (II.C.3), (II.C.4) can be viewed as a single difference
equation in the variable M for the 2N,-dimensional complex vectors U(N, M),
with the appropriate boundary conditions in the first (N = 1) and last (N = N,)
cavities. It is also possible to treat both M and N as continuous variables to obtain

au ikWf
- == -(U(N + 1, M - S)('-,8 + U(N - 1, M + s)e'8) + z(N, M), (1I.C.6)
aM 4

and

(1I.C.7)

These equations serve together as the starting point for later analysis.

d. Causality

(1I.D.l)
1>0,

Two methods have been used to determine the starting current numerically. The
primary one which is unphysical, uses the Green's function derived from Eq.
(1I.B.l). For large Q, it can be written as

~ sin QAI
G" = LJ 1J1A(i)1J11(j)--n-e-o.II2Q,

A ~~A

G,,=O, 1<0.

Here 1J1A(i) is the ith element of the eigenvector of the matrix operator

1 kl2 0

Q2 = w 2 k12 1 k12
o kl2 1

(1I.D.2)

satisfying

(11.D.3)

with eigenvalue Q~.

Note that the formulation in Eq. (II.D.l) does not satisfy causality, since the
impulse in cavity i produced by a bunch in cavity j is felt instantaneously for I > O.
In other words, Eq. (1I.B.l) predicts precursor waves which travel with infinite
velocity. An alternate numerical method uses the difference scheme in Eq.
(1I.C.4), which relates the field in cavity N - 1 for bunch M + S to the field in
cavity N for bunch M + S, corresponding to a signal velocity of LIsT = c.
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Although both schemes give unphysical precursor signals, they lead to the correct
dispersion band (frequency Wb vs phase advance per meter k b ) for the coupled
cavity chain. The group velocity vg = awblakb is proportional to the coupling
constant k and both schemes lead to no significant energy transport at velocities
much larger than Vg'

We therefore expect both schemes to give reliable results as long as k is not
large. Here the precursors are unimportant, and numerical tests of each are in
good agreement with one another. These schemes, however, are not reliable for
large k where the precursor and main signals will be mixed with one another. In
this range one needs to use a realistic wakefield derived from Maxwell's
equations, but this is beyond the scope of the present paper.

l"hus we use the model of Eq. (11.0.1) for numerical calculations of both the
starting current and the magnitude of the transient below the starting current.

III. APPROXIMATE FORMULAS FOR STARTING CURRENT

Q. Solution to the Differential Equation for Small Coupling and Large N

The solution to Eqs. (11.C.6) and (11.C.7) in the absence of coupling has already
been given in an earlier paper.4 To reiterate: U(N, M) and z(N, M) are assumed
to be of the form

UtlV , M) == A expIf(M)g(N)],

z(N, M) == B exp [f(M)g(N)],

(III.A.I)

(1II.A.2)

A and B are treated as slowly varying functions of Nand M, and derivatives are
taken of the exponential only when substituting into Eqs. (II.C.6) and (II.C.?).
This leads to the result

f(M) = M 1/3 , g(N) = ~N2I3rI/3e-;1f/6. (11I.A.3)

The real part of the total exponent for V(N, M), including the factor e iMa in Eq.
(II.A.6), iss

M WT 3V3 1/3 213 1/3e=---+-r N M
2Q 4 '

which reaches a maximum value

eo = (n3/4N(~~) 1/2

at
Mo = (~)3/4Nrl/2(Q / WT)3/2.

(III.A.4)

(III.A.S)

(III.A.6)

Typical parameters for which beam breakup is serious are small r, large 0 and
large N, leading to the hierarchy

1 «eo« N «Mo. (1II.A.7)
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In exploring the behavior for small k, we assume that the hierarchy in Eq.
(liLA.?) is still valid, and we approximate U(N + 1, M - s) by

aU(N, M)
U(N + 1, M - s) == U(N, M) + aN. (III.A.B)

The validity of Eq. (III.A.B) is based on the expectation from Eq. (III.A.3) that
the following order of magnitudes apply:

au u au u
-'-- and -'--
aN N aM M·

Using Eq. (III.A.B), we can write for Eq. (II.C.6)

au ikwT: 8 kWT: sin 8 au
aM==-2-cos u + 2 aN + z.

If we- make the substitutions

U(N, M) = D(N, M) exp (ikMwT: cos 8/2),

and

z(N, M) = i(N, M) exp (ikMooT: cos 8/2),

(III.A.9)

(III.A.IO)

(III.A.II)

corresponding to a frequency shift from 00 to 00(1 + k cos 8/2), we can write for
Eqs. (III.A.9) and (II.C.?):

au au a2i r-
- - E- = i and - =- u. (III.A.12)
aM aN aN2 2i

We now change variables from N, M to n, m, with

m=M and n=N+EM,
where

E = kWT: sin (J /2.

We then obtain

(III.A.I3)

(III.A.I4)

aD _
-=zam ' (III.A.I5)

which is identical in form to Eqs. (II.C.6) and (II.C.?) for k = O. Thus it appears
that the solution for the exponent in Eq. (III.A.4) can b,e written, with small
cOupling, as

MOOT: 30
ek = - --+- r ll3

M
1I3(N + EM)2J3

2Q 4 '

which, to first power in k (or E).. IS

MooT: 30 0ek == - --+- r 113M 1I3N2J3 +- rl/3M4/3EN-1I3
2Q 4 2

(III.A.I6)

(III.A.I?)
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At this point we can make several observations:

(III.A.18)

(1) Eq. (III.A.I?) suggests that beam breakup is enhanced for small positive E

and suppressed for small negative E. This is confirmed in the simulations, which
show that the "starting current" (current above which the displacement grows
exponentially with M) is smaller for positive E than it is for negative E.

(2) If one assumes that Eq. (III.A.16) is valid for large M, then, in this limit,

(30 lOT)ek(large M) == - r l13
E

2J3
- - M.

4 2Q

This suggests a "starting current" given by

8 (lOT)3
Te

2

=810 Q '
or, in other terms,

rQ 32 1
lOT = 810 k 2Q2 sin2 8 .

(III.A.19)

(III.A.20)

Surprisingly, this result is the same for positive and negative coupling. As we shall
discuss later, it is confirmed in the simulations for positive E but not for negative
E, for reasons related to the validity of Eq. (III.A.16) for finite N.

(3) We have not applied the boundary conditions on the end cavities in
deriving the solutions Eqs. (III.A.16)-(III.A.20). This may explain the fact that
the results may not be correct for all values of the parameters (For our
simulations we assume that the fields in cavities N =0 and N = Nt + 1 vanish,
corresponding to a structure made up of Nt cavities.)

b. Solution to the Difference Equations for Finite N

It is possible to solve Eqs. (II.C.3) and (II.C.4) for the starting current.
Specifically, this solution of Eq. (II.C.3) has the correct causal behavior:

r
z(N, M) =U[U(N - 1, M) + 2U(N - 2, M) + 3U(N - 3, M) · - .j, (1II.B.l)

with U(O, M) = O. If one now tries a solution of the form

U(N, M) = ePMU(N),

z(N, M) = ePMz(N),
we find

(e2ps - I)U(N) = ik8 [e- i8U(N - 1) + e2ps+ i8U(N + 1)]
2

2sr
+ 2i [U(N - 1) + 2U(N - 2) + 3U(N - 3) · · -j.

(III.B.2)

(IILB.J)

(111.8.4)
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The equation for the starting current is then the solution of the corresponding
determinantal equation for the homogeneous equations tor U(lV) given in Eq.
(111.8.4). Specifically, the starting current is the value of r for which the
determinant vanishes, with

(III.B.5)

since the exponential growth rate for the field and displacement, corresponding to
Eqs. (111.B.2), (1II.B.3), is

exp ( - ~M + MRe(p»). (III.B.6)

For small values of WT:/2Q, one can expand Eq. (111.B.4) in powers of p,
leading to

ikw-r ·0 ·0 r
pU(N) =-4- [U(N + I)e-' + U(N -I)e' ] + 2i [U(N - I) + 2U(N - 2) +. · .j.

(III.B.7)
Changing to the universal variables

rQ
y==-,

WT:

.w-r
p == -l-q

2Q
(111.B.8)

gives

qU(N) +~ [U(N + l)e-i8 + U(N -1)ei8
] - y[U(N -I) + 2U(N - 2) + · · .] = O.

(111.B.9)

For a chain of Nt coupled cavities, the secular determinant of order Nt for Eq.
(IILB.9) is

q a* 0 0 0

a-y q a* 0 0

DN == -2y a-y q a* 0 =0, (111.N.10)

-3y -2y a-y q a*

where we have implicitly set U(O, M) equal to U(Nt + 1, M) = O. Here

e'O
a=

2x'

e-iO

a*=
2x'

(1II.B.11)

and the starting current is the smallest real value of y for which the solution to
Eq. (111.8.10) has

1m (q) = 1. (111.B.12)

Clearly the solution will be a universal curve giving y = (rQ / w-r) as a function of
x = (l/kQ) for different N, as in Eq. (111.A.20).
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(111.B.14)

The N x N determinant can be expanded by minors ·to write the recurrence
relation

DN - qDN - 1 + aa*DN - 2= y[a*DN - 2- 2a*2DN _ 3+ 3a*3DN _ 4 ···]. (111.B.13)

Equation (111.B.13) can be considered as a recurrence relation with

DN=O, N<O

Do=l, D1 =q,

from which one readily finds DN for N ~ 2.

c. Solution for Two Cavities

The solution to DNf =0 for two cavities (Nt = 2) is

D2= q2 - (aa* - a*y) =0,
leading to

where

(111.C.l)

(111.C.2)

2 2 1 yu - v = - - - cos (J
4x2 2x '

2uv =L sin 82x . (111.C.3)

The starting current condition, v = 1, leads us to

y2. 1 2y
4u2 = - sln2 8 = - - - cos 8 + 4

4x2 x 2 X '

whose solution is
-4x cos 8 ± (16x2 + 4 sin2 8)"2

y=
sin2 8

(111.C.4)

(III.C.S)

(111.C.6)

The asymptotes for the hyperbola in Eq. (III.C.S) are

(2) _ 41xl
y :too - 1 ± cos 8 '

and the simulation for N = 2 suggests that the ± sign in the denominator must
correspond to the sign of k.

d. Solution for Several Cavities

The solution to DNf = 0 for Nt ~ 3 involves the roots of an NIh-order algebraic
equation. It is possible to obtain the asymptotes for general Nt by recognizing in
Eq. (111.B.13) that a*--+O ~rt:! yc* r~rria;i. (iilile as Ixl--+ oo• Equation (111.B.13)
then reduces to

(111.0.1)
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which has the general ~uluiion, ~atisfying r=q. {1!~.B.14),

D
_ Z~+l - Z~+l

N- (111.0.2)

where
ZI.2 = q/2 + (q2/4 + a*y)112 (111.0.3)

The lowest root of DN =0 is

~ = e2i1t/(N+l),

Z2
(111.0.4)

(111.D.5)

which is equivalent to

(
2y )112 . 1r (2Y )112. (1r)q = - e'(1t-812)cos-_= - e-('812~cos -- ,
x N+1 -x N+1

where the second form is to be used for negative. k (or x). The condition
1m (q) = 1 then gives

1
0'

cos(~)cos-
N+1 2

1

(
1r ) . 0'

cos N + 1 sln2"

x>O

x<O

(111.0.6)

from which we can write

(111.0.7)y
Ixl (1 + tan2 -.!!..-)

N+1
1 0 for x ~O.

±cos

It is also possible to extract the associated intercept for the linear relation in
Eq. (111.0.7). This term comes from Eq. (111.B.13) by adding

(111.0.8)

to the right side of Eq. (111.0.1). One now treats this term as a perturbation and
constructs a Green's function from z~, z~, the solutions to Eq. (111.0.1). The
integral of this Green's function multiplied by the perturbing term in Eq~

(III.D.8), with DN - 3 given by its unperturbed value in Eq. (111.0.3), leads to the
final relation for the asymptotes

(1+ tan
2

_

1r
) [ (1 + Nt cos~)]N+1 . N+1

y= [ Ixl=F2sinO f for x~O. (111.D.9)
l±cosO (l+Nt )

It should be noted that Eq. (111.D.9) reduces to Eq. (111.C.6) for Nt = 2.
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(1II.D.I0)

The validity of Eq. (111.0.9) depends on la-I« 1, since, for large Ixl. la-y), q,
and DN are all of the first order. Equation (1II.B.ll) requires that Ix) »1 here
The quadratic form in Eq. (1II.A.20), which can be rewritten as

32 x 2

y =81 V3 sin2 8 •

is therefore expected to be valid for Ixl < 1, and the transition from Eq.
(111.0.10) to Eq. (111.0.9) should take place for Ixl of order one. This is
confirmed in the simulations, and will be discussed later.

e. Validity of Quadratic Behavior for Large N

Simulations show that the quadratic behavior for y against x in Eq. (1II.A.20) is
valid for E > 0, but does not appear to be valid or E < o. The reason for this is
discussed in Appendix A.

IV. REGENERATIVE BEAM BREAKUP LIMIT

a. Model and Assumptions

The concept of regenerative beam breakup involves the interaction of a beam with
the transverse modes of a long cavity. In particular, if the cavity is excited in a
transverse mode, a beam on axis will be deflected in its transit through the cavity.
As the beam moves off axis, it couples to, and can either take energy from that
mode or give energy to it. The change in field amplitude from one beam bunch to
the next is proportional to the bunch charge as well as the existing field
amplitude. In addition, the field amplitude will be decreased (due to the wall loss)
by an amount proportional to the field amplitude and to the inverse of the quality
factor Q. There is therefore a "starting current" above which the increase due to
the beam bunch exceeds the decrease due to wall losses.

The analysis corresponding to the preceding description6 assumes the excitation
of a single mode which travels with a phase velocity close to the velocity of the
beam bunches. The relative parameters can be understood by examining the
dispersion curves in Fig. 1. drawn for 1l-mode acceleration in a tank of N, = 5
coupled cavities. The slope of the line OA is proportional to the velocity of the
beam bunch. The result of the analysis, expressed in terms of our parameters, is
the starting current

where

(IV.A.I)

(IV.A.2)
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FIGURE I Accelerating and deflecting bands for a five-cavity structure with 1l'-mode acceleration.

Here,
woN,L . NfL

1Jl =--- J1'l =- (wo - wo')
v v

(IV.A.3)

is the slip of the jlh mode of frequency wo/21'l with respect to the beam bunch.
The function g(1Jl), shown in Fig. 2, is normalized to have the value 1 at 1Jl = 1'l,
and has a maximum value of 1.05 at 1Jl = 2.65. For small coupling constant k, the
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FIGURE 2 Slip function vs, slip angle for regenerative beam breakup.
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FIGURE 3 Regenerative-beam-breakup starting current as a function of deflecting mode frequency

deflecting band is approximately horizontal and the change in slip from one mode
to the next is approximately Jr. The dominance of a single mode is then
guaranteed by the sharpness of the function g( 1J1).

TIte main assumption of the foregoing model is that the width of each mode is
small compared to the spacing between modes; that is,

w kw-«-.
Q Nt

If we change the frequency of the transverse band, the slip for a single mode,
which is proportional to Wo - Wo" will change rapidly. In particular, the
dominant mode will rapidly give way to an adjacent mode whose slip is closest to
1J1 = 2.65. The variation of starting current with frequency will therefore. have a
scalloped character, such as that shown in Fig. 3, where the vertices correspond
to the change in identification of the dominant mode.

We shall now examine the way in which the analysis of Sections II and III can
be applied to the regenerative beam breakup limit.

b. Meaning of the Parameter x

In the previous section, we derived a universal curve for the starting current
(y =rQ/wr) as a function of the coupling constant (x = l/kQ). The derivation
started as a departure from cumulative beam breakup for small coupling. The
simulations confirm the universal curve's lack of dependence on the coupling
constant k, particularly for all except the smallest values of x.
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(IV.C.l)

It IS instructive to explore the meaning of the parameter .r = IIkQ. In the
presence of coupling, a dispersion band exists which has a relative bandwidth k,
and which has NI + 1 distinct modes whose relative frequency separation is of
order klNI except near the band edges. The relative frequency width of each
mode is of order Q - I. Thus, .r = 11kQ > 1 corresponds to the case where the
width of each mode is larger than the width of the band and all modes are
expected to participate simultaneously; this situation corresponds to cumulative
beam breakup as k --+ O. For.r = IIkQ < IINI , the width of each mode is smaller
than the separation between modes, and only one mode is expected to participate
(or possibly two modes). This· is the regenerative beam breakup limit. For
I < x < IINI , several modes' will participate, and the situation will fall between
these limits.

c. Solution for Small x; Regenerative Beam Breakup

As discussed above, the conditions appropriate to regenerative beam breakup are
expected to apply for small x. 1n Appendix B we will demonstrate that the
regenerative beam breakup limit given in Section IV.A can be derived from the
beam breakup formalism in Section III.B. Specifically we will show that

15
YRBBU ~ N 2

I

as x --+ 0, is agreement with the result of Wilson.6

d. Dependence on Frequency and on the Strength of the Coupling

If the coupling k is very small, the dispersion curve is approximately horizontal.
In this case the value of 1JJ in adjacent modes differs by re, as can be seen from
Eq. (IV.A.3) where Wo is the same for all deflective modes. The minimum
starting current occurs at the frequency for which the slip 1JJ is approximately
5Jr16, corresponding to the point F in Fig. 2. The adjacent mode has a slip of
approximately llrel6, corresponding to the point F' in Fig. 2, clearly correspond
ing to a higher starting current. As the frequency Wo is decreased, the point F
moves to the point E, corresponding to a slightly higher starting current; that is,
lower g( 1JJ). Once again the adjacent mode is not excited (point E'). As the
frequency continues to decrease one progresses to point C, but now the adjacent
mode at C' takes over. since g( 1JJ) at C' is slightly larger than g( 1JJ) at C. The
starting current now begins to decrease, again reaching a minimum after the
progression from C' to B' to A' to F. Thus the dependence of the starting current
on frequency shown in Fig. 3 has a scalloped character, as the excitation jumps
from one mode to the next. The frequency interval per scallop is clearly

rev
~WD =NL'

I
(IV.D.l)
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If the coupling constant k is not negligible, it is clear from Fig. 1 that the
difference in slip between adjacent modes is less than 1t if dw/dk is positive, and
greater than 1t if dw/dk is negative. Where the difference in slip is less than Jr,

the depth of the scallops is less than the factor 1.6 in Fig. 3 likewise, where the
difference in slip is greater than 1f, the depth of the scallops is greater than the
factor 1.6. This behaviour will be seen in simulations discussed later.

One final point regarding the preceding analysis: if the value of the coupling
constant is sufficiently large, there will be multiple intersections between the
deflecting band and the line OAD'. In this case the picture becomes far more
complicated, and our universal curves will no longer be valid. This will occur for
1f-mode acceleration when k is of order

(IV.D.2)

(V.B.I)

where wa /21t is the accelerating mode frequency.

V. GROWfH RATES

a. General Comments

We have shown that the presence of coupling between cavities leads to the
existence of a starting current, above which the field amplitudes and transverse
displacement grow exponentially. This may not be harmful if the beam pulse is
short. For this reason it is often useful to be able to estimate the growth rate for
the instability above the starting current.

b. Low Coupling Constant

The result in Section III can be used directly to obtain the growth rate when the
coupling is small. Specifically, from Eqs. (111.8.6) and (1II.B.8), the growth rate
per pulse is

r/I = exp [;~ (1m (q) - 1)1
We calculated q for different values of N in Section Ill.e. For N = 2, we have
1m (q) = v, where v can easily be obtained from Eq. (IIl.e.3). For higher N the
result in Eq. (111.0.5) represents the leading term for large lxi, namely

I { (J \ -=- (')" " I) 1/2 ~ {COS (8/2), x > O} 2)
.m ,.J ,-.I' ,x, cos N + I sin (8/2), x<O· (V.B.

This estimate is for the root with the greatest growth rate, although there is some
evidence from numerical work that the roots occasionally cross as x is changed
continuously.
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c. Regenerative beam breuAup Liitli,

(V.C.I)

In order to estimate the growth rate in the regenerative beam breakup limit, we
need to determine the dependence of the impulse to the cavity field on the
entering phase £0/0 of the beam bunch. This is most easily done by calculating the
trajectory x(z) for each beam bunch in the cavity and then calculating the field
impulse. The field impulse is proportional to

[

L aE
o x(z) ax' (z, I) dz,

where aEzIax is evaluated at x =y =0, 1 = 10 + z Iv. Rapidly oscillating terms are
neglected. The final result is

2yN2

1m q =--I- (g(lP) + h(lP) sin (2£0/0 - 11'»), (V.C.2)
]'C

(V.C.6)

(V.C.4)

(V.C.3)

(V.C.5)

where g(1J1) is given in Eq. (B.15), and

1J1- sin 11'
h(1J') = 4(1J'/Jr») .

The field amplitude is then modified by the factor

A + B cos X,

as a result of the transit of the ilh beam bunch, where

£OT[2YN} ]A = 1 + - --g(lP) - 1
2Q ]'C3

B = £OT[2YNj h( )]
2Q]'C3 1J1.

The average growth rate rg will then be given by the product over many beam
bunches:

M

r;' =n (A + B cos X,).
,=1

(V.C.?)

(V.C.8)

If we average over X" which is related to the entering phase, we can write

1 1211

In '3 = 2Jr 0 dX In (A + B cos X)·

The integral can be evaluated by conversion to a contour integral over z = eix,

where the contour encloses the branch points of the logarithm at

-A + (A 2 - 8 2 )1/2
Z =0 and z = .

B
The final result is

(V.C.9)
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As a check, the starting current is given by,. = 1, or

8 2

A-I=-.
4

This corresponds to

(V.C.IO)

(V.C.1I)2yN}g(1J1) = 1 + WT[YN} h( >]2
Jr3 2Q Jr3 1J1 ,

which agrees with Eq. (8.16) for values of yNj/Jr3 of order I. In the limit

the growth rate is

,N2

r, =21C~ [g( 1J1) + (g2( 1J1) - h2(1J1»1(2). g( 1J1) > h( 1J1),

or

VI. SIMULATIONS

a. Low Coupling Constant

(V.C.12)

(V.C.13)

(V.C.14)

N =30
I ' (VI.A.l)

The parameters which are used in the simulations are similar to those used in our
earlier papers. 1.3.4 Specifically we use the nominal values

r = 2.88 x 10- 3 wl/2Jr = 1. 70 Q = tOOO

s = 0.5 (Jr-mode acceleration)

although we will vary these parameters as we proceed.
Figure 4a shows the ratio of the displacement to the initial displacement for a

single displaced pulse, as a function of M, in the absence of coupling. This shows
the general behavior of cumulative beam breakup discussed in detail in an earlier
paper. In Figs. 4b, 4c, 4d, 4e, 4f, and 4g we show this ratio for the values of
k ::= 0.0040, 0.0045, 0.0050, -0.0010, -0.00144, and -0.0015. Clearly the
starting current

rQ
y=

WI
(VI.A.2)

is reached for positive k at about 0.0045 and for negative k at about - 0.0015.
This is consistent with Eq. (II I. A. 17) where the sign of k is critical.

In order to test Eq. (1II.A.17) more quantitatively, we compute an equivalent
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FIGURE 4a I Displacement vs. bunch number for cumulative beam breakup without coupling.

exponent from the envelope of the simulatIons. Specifically, we compute

(VI.A.3)w(k) = In 1;lmax
~o

and plot w(k) - w(O) against ,113 N- 1I3 M 4
/
3 for the different values of k or E. 'l'he

result is shown in Fig. 5, where the linear behavior, with slope proportional to k
or E, is clearly shown.

Nf = 30. wT/21r = 1.70

s = 0.5. r = 2.88 X 10-3

k = 0.0040

-15

4000 50002000 1000
M

1000
-25-t---..........------y-------r---~

o

FIGURE 4b IDisplacement vs. bunch number for cumulative beam breakup with coupling,
Ie = 0.0040.
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FIGURE 4c Displacement vs. bunch number for cumulative beam breakup with coupling.
Ie =0.0045.

In order to test the validity of Eq. (III.A.16), we compute

w(k) -- w(O)
,'/3M"3

(VI.A.4)

and plot it against (N + EM)2J3. The result is shown in Fig. 6 for k = ±O.Ol, where

10

Nt c: 30. wT/2ft - 1 70
s = 0 5. r c: 2 88 X 10-3

60 k - +00050
.....

,.'"
I' I"

20 ,.. '"
~

~
&.AI

-20 '"~
\'''#
• v

\..

-60

4000 5000300020001000
-10+------r------"'T""-----,---~--__t

o
M

FIGURE 4d Displacement vs. bunch number for cumulative beam breakup with coupling.·
Ie =0.0050.
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FIGURE· 4e Displacement vs. bunch number for cumulative beam breakup with coupling,
k = -0.00100.

it appears that Eq. (III.A.I6) is confirmed for positive E (negative k, because
sin (J is negative in Eq. (III.A.I4», but not for negative E. The sl~~ of the
straight line for positive E is 1.1, in approximate agreement with 3'/3/4 in Eq.
(1II.A.I6). But Eq. (III.A.16) does not appear to be valid for negative E for the
reasons discussed in Section III.E and Appendix B.

30000·
Nt :0 30. wr/21r =>0 1 70
S=05,r=288X10-3 1 k=-OOO144
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8000 10000600040002000
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o
M

FIGURE 4f Displacement vs. bunch number for cumulative beam breakup with coupling,
k = -0.00144.
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FIGURE 4g Displacement vs. bunch number for cumulative beam breakup with coupling.
/(=-0.00150.

b. Starting Current us. x

Having established the validity of the low-k analysis, we now compute the starting
current. The method used is that described at the stan of Section II.C. For
pedagogical purposes, however, we will assume that W~ are dealing with the

10

k = -001
05

~ = -00003

0' k = -0003 I
j' k = -0001
I

0:;-

I'f k = 0001

kll:0003

-05 k - 00003
k - 001

403010
-1 0+---------------------~

o

FIGURE 5 Test of the M4!l behavior of the exponent in cumulative beam breakup with ~.ncla

wupllng.
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FIGURE 6 Test of the (M + tN)2J) behaVior of the exponent In cumulative beam breaking with
\mall couphng.

smoothed difference equations (1I.C.3) and (1I.C.4), written in the form

f(M + s) =~f(M - s) (VI.B.l)

where f is an Nt-dimensional vector and ~ is an Nt x Nt dimensional matrix
whose coefficients are contained in I:qs. (1I.C.3) and (II.C.4). We are trying to

2001 SO

k'~ -0001.'
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.-..-......----k = -001
/4----

l
k ~ - 003

y - 2 521 xI - 3 78 ~.
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O+----__---__----r------1
o
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k • 0001----~

k • 0003
k • 001------......
k - 003

, 50 y _ 0 ~Ixl + O~....,,- ...

100

200

050

250

100
lxl

FlGURE 7 ~tartlnl cunent y vs. coupling parameter ..t for a 15-caV1ty structure,. including linear
uymptotes.
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FIGURE 8 Starting current y vs. coupling parameter x for a 3O-eavity structure.

obtain the behavior of f for large M. Clearly, repeated application of IDl to an
arbitrary starting vector will filter out all but the mode with the largest growth
rate, and we will be able to determine this growth rate (equivalent to Re (p) or
1m (q) in Eq. (111.8.8». We thus can obtain the starting current at which the
growth rate of f exceeds the decay rate due .to Q.

This procedure, as mentioned above, is appJied with the difference equations
and propagator described at the start of Section II.C in order to obtain the

Nt = 2. wT/21r = 1.70
s = 0.5

.~ ~ -' -' "y = 2 52jxj
~

~ ,,~y = 9.70jxl
,,'k = 0001, 0.003. 001, 0.03

200

400

6.00

8.00

10.00

1000750.25
0~---.......-------,r--------r----1

a 0.50

IxJ

FIGURE9 Starting current y vs. coupling parameter x for a 2-cavity structure, including linear
asymptotes.
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FIGURE 10 Starting current y vs. coupling parameter x for a 5-eavity structure, including linear
asymptotes.

starting current. The results are shown in Fig. 7 (Nt = 15) and Fig. 8 Nt = 30). In
Figs 7 and 8, the starting current is given by y ( =rQ / lOt') as a function of the
parameter Ixl = 1/ Ikl Q; we compute it for several different values of k.
(Variation of x is obtained by varying Q.) The quadratic behavior of y vs. x is
evident for negative k (positive E) for values of x < 1, but it appears that the
curve becomes more linear for x > 1. The approach to linearity predicted in Eq.
(1II.D.I0), is shown in fig. 7 as the asymptotes plotted as dashed lines.
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FIGURE 11 Variation of starting current with deflecting-mode frequency.
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FIGURE 12 Starting current for regenerative beam breakup as a function of deflecting-mode
frequency for different coupling constants.

The approach to linearity is even more clearly visible in Fig. 9 (Nt = 2) and 10
(Nt = 5), where the asymptotes Eq. (1IILD.I0) are again shown as dashed lines.
Note the crossing of the curves for k < 0 and k > 0 for Nt ~ 5.

c. Regenerative Beam Breakup Limit

In Fig. 11 we plot the starting current in the high-Q, low-x region for different
values of the deflecting mode frequency. The sensitive dependence of the starting
current on the frequency reflects our discussion in Section IV.E concerning the
slip of the beam bunch with respect to the individual tank modes. To illustrate
this better, we plot the regenerative beam breakup starting current (Q~oo, r~
0) as a function of l1rr/21f in Fig. 12 for different values of k. The scalloped
behavior is clear, as is the dependence of the depth and width of the scallops for
different k.

VII. SUMMARY

We have started with the difference equations for cumulative beam breakup
(CBBU) and have modified them to include coupling between adjacent cells in
the deflecting mode to obtain the difference equations in Eqs. (11.C.3) and
(11.C.4). To obtain the effect of small coupling, we approximated these by the
differential equations in Eqs. (II.C.7) and (Jll.A.9), and from these obtained the
modification to the CBBU transient exponent for small k given in Eqs. (111.A.16)
and (1II.A.l?). Figures 5 and 6 show the confirmation of these results, obtained
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by using the simulations. Figure 4a-4g show the dramatic effect of a small
coupling on the CBBU transient.

The coupled system in Eqs. (11.C.3) and (11.C.4) is examined for finite Nand
shown to correspond to the existence of a starting current above which there is a
runaway excitation. Values of the starting current for different parameters are
obtained from a numerical procedure which solves for the roots of an N x N
determinantal equation. The analysis is Sections (II.B), (II.C), and (111.0)
suggests that the starting current, in the form of y = rQlwT, is approximately a
universal function of the coupling constant, in the form of Ixl = I/lkl Q. Results
are shown in this form in Figs 7-10 for various values of N. These are the results
which should be useful in making estimates for particular linac configurations.

Finally, a physical interpretation of the parameter Ixl is developed; it
corresponds to the relative width of the multi-cell modes of excitation Q -1, their
relative separation kIN" and the deflecting band relative width k. It is shown that
Ixl» 1 corresponds to CBBU and that Ixl« 1 corresponds to RBBU. The usual
results for RBBU5 are derived from our formalism in the small x approximation.
The transition region, for which Ixl is between lIN, and 1, is the one for which
the universal curves in Figs. 7-10 appear to apply and will be most useful.
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APPENDIX A

Validity of Quadratic Behavior for Large N

In order to understand the validity of Eq. (III.A.20), we explore the derivation
for large N by starting with Eq. (III.A.12), with z(N, M) written in the form
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given in Eq. (III.B.I), namely
r N

z(N, M) = 2ii~ jU(N - j, M). (A.I)

(We have dropped the tilde in i(N, m) and U(N, M).) For large N ·we will
rewrite Eq. (A.I) as

r QO (-I)mamV QO .m+l rN2

z(N, M) =--: 2 -,---2 2 J == -. U(N, M)F, (A.2)
21 m=O m. aN j=l 21

where

(A.3)

We now assume that the exponent for V(N, M) and Z(N, M) has the form
suggested in Eq. (III.A.16), namely

arl/3Ml/3(N + eM)2J3, (A.4)

where a is a complex parameter to be determined later. As before, we take
derivatives of the exponent only, and obtain

! amv == (! au) = [2a r l/3( M )1/3]m
vaNm vaN 3 N+eM ·

Thus we can write F as
QO ( I)m m

F=ft(q)= 2 - q
m=o(m + 2)m!

where

(2a) (M )113q = - r1l3N .
3 N+eM

(A.5)

(A.6)

(A.7)

(A.9)

Multiplying Eq. (A.6) by q2 and then differentiating with respect to q leads to

d QO (_I)mqm+l
- [q 2F(q)] = 2 ,= qe-q

, (A.B)
dq m=O m.

from which we obtain

q2F(q) = rqe-q dq.

If we now explore the limit for large N, we obtain

F(q) ;;:~ ' z(N, M) = r2~2 U(N; M) (A. to)
q 1 q

provided that Re (q) > o.
The first equation in Eq. (III.A.12) assuming the same exponential form ·for

V(N, M), leads to the condition

( ~)rIl3 (N + EM)213 = rN
2=~~(N + eM) 213 _1_ (A. I I )

3 M 2J3 2iq 2 Sa2 i M r1l3 '
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which is correct provided that

l 27
a" si' (A.12)

(A.14)

Let us now explore the condition Re (q) > 0. For positive E, this leads, from
Eq. (A.7), to Re a > 0, or

30
Re a =- for £ > 0, (A.13)

4

consistent with the exponent derived in Eq. (111.A.17). For negative E however,
the large 1 M limit for q is

(2a) (M )113 2a r
1l3N

q= 3 r
ll3

N N+£M --31£1 1/3 '

thus requiring

30
Re a = - - for E > 0,

4

implying an exponent

e = - Mlln: _ 3V3,1/3M1/3(N + EM)213
k 2Q 4

(A.15)

(A.16)

instead of the one in Eq. (111.A.16). For large M, this does not correspond to a
runaway displacement, and the starting current corresponding to Eq. (1II.A.20)
or Eq. (111.0.11) is therefore valid for positive E, but not for negative E. This is
consistent with the simulations, as discussed earlier.

APPENDIX B

Starting Current for Small x; Regenerative Beam Breakup

In this appendix, we explore the small x limit and show that the results agree with
those previously derived for regenerative beam breakup. Our starting point will
be Eq. (111.B.13), with the change of variable

DN= (aa*)NI2FN= (2x)-NFN (B.1)

leading to

where

and

N-l

gN = 2yx L (-l)mme-imBFN_m
m=l

(B.2)

(B.3)

qx == - cos cp. (B.4)

the sign ot cos ep is chosen so that t/J is the phase advance of the field from one
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cell to the next. For small x, y will be finite andgN can be treated as a ,small
perturbation.

The solution to Eq. (8.2) with gN =0 is readily obtained. It is

_(_ )N sin (N+l)tP
FN - 1 . '*' 'sin 'I"

N~-l (B.5)

(B.6)

which is consistent with Eq. (111.B.14) and which now can be used on the right
side of Eq. (8.3). The solution to Eq. (B.2) can be readily seen to be

_(_ )N sin (N+l)tP ArFN - 1 . + urN,
sin tP

where
(-I)N N

~FN = - -.- L gl( -1)1 sin (N -/)tP·
sin tP 1=0

(B.7)

Using Eqs. (IV.B.3) and (IV.B.S), we can write

2x(-I)NN I .
~FN = - y. 2 L L me,m8 sin (I - m + l)tP sin (N -/)4>

sin tP 1=0 m=O

x(-I)N N . N
=-Y.2 L me-Im8 L [cos(2/-m-N+l)tP-cos(N-m+l)tP)·

sin tP m=O I=m
(B.8)

We shall assume that, for large N, the first term in the brackets [ ] will oscillate
rapidly with 1 and can be neglected, while the second term is independent of I.
We can therefore write

yx(-I)i+N N
~FN =. . 2 L (-I)mm(N - m + 1)[e-im(8- cP ) +e-im(8+ cP )], (B.9)

2 sin tP m=O

where we have used the approximate value tP == j1l(Nt + 1) on the right side of
Eq. (B.8).

Before proceeding further, we will apply the condition for the starting current,
namely FN, =O. From Eq. (B.6), the solution for t/J is then given by

sin (Nt + l)tP = - sin tP( -1)N!:J.FN,

or

This leads to

-.. jff ( )tv. +. sin tP~FN( ItP=--- -1 I J •

Nt + 1 Nt + 1 cP=i1f/(N,+I)
(B.10)

cos~
q = _ cos ep == _ Nt + 1_ (-l)N+i sin

2
epI1FN( I (B. 11)

x x (Nt + l)x cP=j1f/(N,+t)

The starting current condition in Eq. (111.B.12), namely 1m (q) = 1, then
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becomes

(B.I2)

or

sin2
eJ>_(_I)N,+i Im!:iR = 1

(Nt + I)x N/,

N/ 2(N + 1)
1m L m(N

f
+ 1- m)[e-im(8-4» + e-im(8+4»] = - f .

m=O Y
The lowest value of the starting current, Y, therefore corresponds to the largest
value of the left side of Eq. (B. 12). This will occur for small 18 - eJ>t, since
otherwise there will be cancellation due to the oscillation of the exponential term.
If we write

(B.13)

(B.15)

replace the sum in Eq. (B.12) by an integral, and neglect the rapidly oscillating
term in (8 + eJ», we obtain

1m {II du(1 - u )ue-i'V"} == - -;-. (B.14)
o Nty

The integral on the left side is readily evaluated to be -4g(1J1)/llJ
, where

1
1J1 .

- cos 1J1 - - sin 1J1
2

One therefore obtains for the starting current

(B.16)y = 2NJg(1/1) ,

in agreement with the result in Eq. (IV.A.l).
The parameter 1J1 can be written for large Nt, using Eqs. (11.C.5) and (11.8.5),

as

(B.17)

which is the slip of the beam bunch with respect to the wave corresponding to the
jth mode in a tank of Nt cavities, as explained if! Section IV.A. Equation (B. 16),
which is that derived by Wilson,6 implies that the lowest starting current occurs if
the slip 1J1 has the value 2.65, for which

15
YRBBU=2 as x--.O. (B.18)

Nt

What we have accomplished here is the derivation of the starting current for
regenerative beam breakup, starting with Eq. (111.B.9), which applies in general
for coupled cavities.




