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Beam transport systems in which the two transverse degrees of freedom of particle motion (x and y)
are coupled are often used to transport high-current, low-energy beams. Consideration of the
matching problem for such systems requires a formalism for the description of the evolution of the
beam envelope, including the effect of space charge. By defining a 4 x 4 beam covariance matrix, it is
possible to give a simple prescription for following the rms beam ellipse through an arbitrary linear
transport system, allowing the length of the axes of the ellipse and its angle of tilt to vary; the
prescription trivially reproduces the usual K- V envelope equations in the decoupled case. The
matching condition for the general coupled system is given, and the stability problem for the matched
solution in the presence of space charge is formulated in general and discussed in a particular
example.

1. INTRODUCTION

The familiar K-V envelope equations! are applicable to beams confined by
focusing systems that do not couple the two transverse degrees of freedom of
particle motion, x and y. The beam ellipse remains upright in these systems, and
the axes merely vary in length along the direction of beam propagation. Certain
focusing systems used for the transport of high-current, low-energy beams,
however, do couple the x and y motion. In some simple cases with azimuthal
symmetry, e.g. a solenoid, a transformation to a rotating frame decouples the two
transverse degrees of freedom, but in the general case the problem is most
directly treated in the coupled, "laboratory-frame" variables. Systems to which
the following analysis may be applied include the modified b~tatron2 (for all
stable values of field index), the bumpy torus,3 the reversing solenoid lens,4 and
the stellarator-focused betatron, or stellatron.5 For this last case, matched beam
solutions have been constructed,6,7 but the stability of these solutions in the
presence of space charge remains to be studied. The formalism outlined here
allows such an analysis to be carried through; this is done, as an example, below.

The stability of K-V distributions in quadrupole and solenoid systems has been
analyzed by Hofmann, Laslett, Smith, and Haber8 and by Struckmeier and
Reiser.9 Hofmann, et at. carried out a thorough analysis of the electrostatic
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modes of the K-V distribution, using the linearized Vlasov equation, whereas
Struckmeier and Reiser studied the linear stability of the matched solutions of the
K-V envelope equations themselves; the envelope oscillation modes they found
corresponded to the "second-order even" modes of Ref. 8. The stability analysis
reported here is the analog of that of Ref. 9, for coupled systems. Since we make
no assumption regarding the symmetry of the focusing system, this analysis
includes the "second-order-odd" modes of Ref. 8.

Three main sections follow: In the first, Section 2, the 4 x 4 beam covariance
matrix, ~, is defined, and its evolution equation is given; the size and orientation
of the rms beam ellipse at any location along the beanl axis are obtained from the
spatial components of ~. For the special case of the x - y coupled analog of the
K-V distribution, the space-charge term in the evolution equation is obtained.

Section 3 includes a discussion of the matching problem for a certain class of
distribution functions that includes the K- V distribution as a special case. We go
on to describe the stability of the matched solution for the K-V distribution in
the presence of space charge. As an example of envelope evolution in a coupled
system we discuss in some detail in Section 4 the propagation of an electron beam
in an l = 2 stellarator field, a continuously rotated quadrupole superimposed on a
constant longitudinal magnetic field. The nature of the matched solution is
described, including the dependence of the beam radii on beam current, beam
energy, longitudinal field strength, and quadrupole field strength. The stability of
the matched solution is then analyzed, and plots are presented of the growth rates
of the unstable modes as functions of these same parameters.

2. ENVELOPE EQUATION, WITH SPACE-CHARGE TERM

The single-particle equations in the paraxial approximation may be written in
matrix form as

v'(s) = M(s)v(s), (1)

where v(s) is a 4 x 1 column vector with the elements x(s), x'(s), y(s), and y'(s);
M(s) is a 4 x 4 matrix, independent of v; s is the independent variable measuring
distance from some reference point on the optic axis; and a prime mark denotes
d/ds. We consider a monoenergetic distribution of particles, forming a beam
moving in the s direction, and construct the averages

(2)

where i,j=1,2,3,4, corresponding to eX, x', y, and y', respectively, and the
averages are over all particles in a slice of the beam at s. [One may consider
formulating Eq. (2) in terms of canonical momenta instead of the variables x' and
y'. However, the gauge dependence of the canonical momenta and the resulting
unphysical nature of the ~ matrix and its determinant (related to beam emittance)
prompted the author's decision to formulate the present theory in terms of the
physical quantities x' and y'. It should be noted, however, that Gluckstern6 has
employed emittances defined using canonical momenta in an interesting example,
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discussed here in Section 4.] No assumption is made here, of course, about the
exact form of the distribution of particle initial conditions. Using Eq. (1) it
follows that the matrix ~ obeys the equation

(3)

where T denotes transpose.
The matrix M generally consists of two parts, one due to applied, extenal fields

and another due to self, space-charge fields. For magnetic focusing with
B = (Bx, By, Bz),

0 1 0 0

Mext(s) = Byx 0 Byy -Bz
0 0 0 1

(4)

-Bxx Bz -Bxy 0

where Bab == -q(aBa/ab)/pc, Bz == -qBz/pc, q is the particle charge, p is its
momentum, c is the speed of light, and cgs units are used.

The space-charge contribution ot M (s) will depend on the spatial elements of
~, viz., ~ll == axx , ~33 == ayy , and ~13 == ~31 == axy , that is, on the size and
orientation of the beam ellipse. The space-charge forces are linear, of course,
only when the ellipse is uniformly populated, as for the K-V distribution, which
here takes the form

(5)

where W is a positive definite, real symmetric matrix. If we define V(s Iso) as that
4 x 4 matrix solution to the single-particle equations of motion satisfying
V(so Iso) = 1, the identity matrix, then

W(s) = V-1T(S Iso)W(so)V-1(s Iso) (6)

andlo

(7)

The space-charge part of M is evaluated in terms of axx, ayy , and axy for the
K-V distribution in the Appendix. The result may be expressed as

0 0 0 0
j qxx 0 qxy 0

MSC(s) = ({3y)3 0 0 0 0
, (8)

qxy 0 qyy 0

where j = beam current in s direction/(mc3 /q), m is the particle mass, f3 and y
are the usual relativistic factors, qxx=Sy/D, qyy=Sx/D, qxy=-axy/D, D=
So(Sx + Sy), Sx = So + axx , Sy = So + ayy , and So = (axxayy - a';y)1/2.

With M(s) given by the sum of Eqs. (4) and (8), Eq. (3) describes the evolution
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(9a)

(9b)

(9c)

of the x-y coupled K-V beam envelope in the presence of space charge. In the
decoupled system, with M ext in 2 x 2 block diagonal form (Bxx = Byy = 0 = Bz )

and axy = 0, some algebra shows that Eq. (3) reproduces the usual K-V envelope
equations, for the radii rx = 2a;~2 and ry = 2a;~2. For axy =1= 0, the K-V beam radii
(r±) and the angle (a-) that the major beam axis makes with the x-axis are given
by

sin 2a- = 2axy / ao

cos2a-= (axx - ayy)/ao,

where ao = [(axx - ayy )2 + 4a;y]1/2.
In the decoupled case, the quantities axxax,x, - a;x' == £; rms and ayyay,y'­

a;y' == £; rms are conserved, in the absence of acceleration. When coupling is
present it follows from Eq. (7) or, more generally, from Eq. (3) that the
determinant of ~ is conserved. In the decoupled case, I~I = £; rms£~ rms' which
suggests that the quantity

_1~11I4£xyrms= ~ (10)

may be a useful definition of beam quality in the coupled case; such a quantity is
easily calculated by particle-tracking codes.

3. MATCHED SOLUTIONS AND THEIR STABILITY

We consider the simplest definition of a matched solution to Eq. (3) in a periodic
focusing system with period L; for all s

~(s + L) = ~(s). (11)

A slightly more general definition, which specifies that the beam ellipse rotates by
some angle (J every period, is possible but greatly complicates the analysis in the
general case. This more general definition is important to consider for focusing by
a longitudinal field; in that case one can find matched solutions that rotate at the
Larmor frequency. We will assume here, however, that the beam ellipse returns
to its initial shape and orientation every period, as specified by Eq. (11). If Eq.
(7) is used, the matching condition for any distribution of the form f(Q), where
Q = vTWv, is

(12)

where ~o = ~(so) and ~ = V(so + L Iso). The solution of Eq. (12) for ~o gives the
matched launching condition for the beam matrix.

The eigenvalues of Vo all have complex modulus 1 (since, by assumption, the
single-particle motion is stable) and occur in conjugate pairs. When the
eigenvalues are all distinct the eigenvectors of Vo are complete, which we assume
to be the case. If we define a matrix U that has, as columns, the normalized
eigenvectors of Yo, then any 4 x 4 matrix, in particular ~o, may be written

~o = UDUT (13)
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for some matrix of coefficients D. Substituting Eq. (13) into Eq. (12) and
ordering the eigenvalues of Vo such that A1A2 = A3A4 = 1, one obtains the result
that only the elements D 12 , D21 , D34 , and D43 of D are non-vanishing. Requiring
that ~o be symmetric and real means that D is symmetric and real; that is, the
matched solution ~o depends on just two arbitrary real parameters, D 12 and D34 •

In the decoupled case, of course, these parameters are related to the x and y
emittances.

For s > So the matched solution, from Eq. (7), is

LO(S) = F(s)DFT(s), (14)

where F(s) == V(s Iso)U is the matrix containing the four Floquet solutions of -Eq.
(I); F satisfies

F(so + L) = F(so)A, (15)

where A is diagonal and contains the eigenvalues of yo.
In the presence of the K-V space-charge term, Eq. (8), one cannot calculate Vo

from Eq. (1) before knowing the matched solution for~, and an iterative solution
is necessary; the most direct technique is to neglect space charge at first, calculate
lID and the matched solution for L, then recalculate Yo, and so on. This method is
used successfully in the example treated in Section 4.

Once a matched solution is obtained one may ask whether it is stable; that is, if
a beam is launched with a distribution that is close to being matched, does it
remain close to the matched solution for s > so? This is an important question for
highly artificial distributions such as the K-V distribution that are never exactly
(but that may be approximately) realized in practice.

In the absence of space charge the matched soiution is clearly stable with
respect to slight variations in ~o; replacing ~o by Lo + <5Lo in Eq. (7) clearly does
not affect the stability of ~(s) since the single-particle solutions V (s Iso) are
assumed to be stable.

In the presence of space charge one examines stability by linearizing Eq. (3).
Writing L(S) = Lo(S) + Ll(S) and M(s) = Mo(s) + M1(s), where a subscript 1
denotes the perturbation, one obtains the linearized equation for Ll:

(16)

Only the space-charge part of M, Eq. (8), contributes to M1 in Eq. (16). The
actual linearization of M SC is completely straightforward, if a bit tedious. The nine
quantities needed are

1 aqxx _ ayy d
qxx aaxx - 2SoSy - xx

~ aqxx = 1 + axx /2So_ d
qxx aayy Sy yy

1 aqxx _ -axy d
qxx aaxy - SoSy - xy

(17a)

(17b)

(17c)
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~ aqyy = 1 + ayy /2So_ d (17d)
qyy aaxx Sx xx

1 aqyy aXX d
(17e)qyy aayy = 2SoSx - yy

~ aqyy = - axy _ d (17f)
qyy aaxy SoSx xy

~ aqxY=_d (17g)a xxqxy axx

~ aqxy =-d (17h)a yyqxy ayy

1 aqxy _ 1 d
(17i)------ xy'

qxyaaxy axy

ayy
(18a)dxx =2S~ + qxx

Oxx
(18b)dyy =2S~ + qyy

-axy
(18c)dxy = S~ + 2qxy.

Equation (16) represents ten coupled linear equations with periodic
coefficients; the ten quantities are the distinct elements of the 4 x 4 symmetric
matrix ~1' By reassembling the ten quantities into a column vector w, Eq. (16)
may be formally written

w'(s) = N(s)w(s), (19)

where N(s) is a 10 x 10 matrix with period L. In the usual way, one now defines
another 10 x 10 matrix T(s Iso), each column of which satisfies Eq. (19); T is
defined to satisfy the initial condition T(so Iso) = 1, the identity matrix. The
eigenvalues of T(so + L Iso) then determine the stability of the system; an
envelope mode is (stable, unstable) if the modulus of the corresponding
eigenvalue is (less than or equal to, seems greater than) 1. There are ten eigenvalues
of T(so + L Iso), the product of which may be shown to be 1. If A is an eigenvalue
then so is A*; 1/A is not also necessarily an eigenvalue, as it is in the decoupled
case. 9 The ten eigenvalues are accounted for as follows: In the decoupled system,
Eqs. (3) and (16) both reduce to two 2 x 2 matrix equations, one each for x and
y. Each 2 x 2 submatrix of ~ is symmetric so there are 2 x 3 = 6 independent
variables, giving 6 eigenvalues in the decoupled case. (Struckmeier and Reiser
restrict perturbations to those that do not change the emittances Ex and Ey , and so
find 6 - 2 = 4 eigenvalues.) The remaining four eigenvalues are attributable to the
x - y coupling.
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4. AN EXAMPLE: BEAM TRANSPORT IN AN l=2 STELLARATOR
FIELD

It has been suggested that an l = 2 stellarator field may have some advantages for
the transport of high-current, relativistic electron beams. 5 Such a field consists of
a continuously twisted magnetic-quadrupole superimposed on a constant longitudi­
nal field. The analysis of the form of the matched K-V beam in the continuous
quadrupole case has been treated by Gluckstern;6 inclusion of a longitudinal field
requires only a redefinition of certain quantities in his analysis. Here we sketch
out the solution in our own notation7 and go on to study the envelope stability
problem.

The quadrupole field takes the form

Bx(x, y, s) ~ kBo(-x sin 2ks + y cos 2ks) (20)

By(x, y, s) ~ kBo(x cos 2ks + y sin 2ks) , (21)

where k and Bo are constants. In the presence of the space-charge fields Eqs.
(A-I, -2) the paraxial equations for a particle near the axis may be written

compactly as . ( a - b )
f=" + ib f=' - n f= + II e2iks + n -- e2ia f=* = 0 (22)'=' l'=' sl'=' rl sl a + b '=' ,

where; =x + iy, b l = -eBs/pc, III = -kBoe/pc, nsl = (Wb/f3YC)2/2, Wb = beam­
plasma frequency, -e and p are the electron charge and momentum, and a, b,
and ll' are the radii and orientation angle of the ellipse (see Appendix).

The matched beam consists of an ellipse of fixed radii that rotates with the
quadrupole field; that is, a and b are constants, and ll' = ks. The substitution
; = 1jJeiks then allows the following solution to Eq. (22):

1jJ = A+eiK+S+ a+A~e-iK+S + A_eiK_S+ a_A~e-iK_S,

where A± are arbitrary complex numbers,

K 2 = -k2+! b2± [b2(! b2 _ k 2) + 11
2 ]1/2± 2 2 2 2 4 2 2 r2 ,

(23)

(24)

(25)

(26a)

112

112 Ki - b2K± + k~'

where k~ = k2+ kb i + nsl, b2= b i + 2k, and 112 = III + nsl(a - b )/(a + b). In the
interesting special case where b2 = 0, corresponding to the situation in which the
period of the quadrupole field equals the electron cyclotron wavelength,7 one
finds a± = ±sgn (1l2).

The betatron oscillations are stable (K± are real) when

b~G b~-k~) + Il~ > 0

!b 2
- k 2 > 0

2
22

Ik~1 - 11121 > o.

(26b)

(26c)
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FIGURE 1 Stellarator stability plane. The quantities u and v are defined in the text following Eq.
(26c).

These conditions may be illustrated using the auxiliary quantities

u == 1 - 4k~/b~, v == 1,u21/b~,

as shown in Fig. 1. In the absence of space charge, only Eq. (26c) represents a
nontrivial constraint.

We construct a K-V distribution that is independent of the phases of A±:

(27)

(29a)

(29b)

where 10, f± are constants. The amplitudes may be expressed as functions of the
real and imaginary parts of 1/J:

IA+12 =~ [K_(1- a_)1jJr - (1 + a_)1jJ;]2 +~ [K_(1 + a_)1jJi + (1- a_)1jJ;f
D1 D2

(28a)

IA_12=~ [K+(1- a+)1jJr - (1 + a+)1jJ;]2 +~ [K+(1 + a+)1jJi + (1- a+)1jJ;]2,D1 D2

(28b)

where D 1 = -K+(1- a+)(1 + a_) + K_(1 + a+)(1- a_), and D2 = K+(1 + a+) x
(1- a_) - K_(1- a+)(1 + a_). One may alternately6 express the amplitudes in
terms of 1/Jr, 1/Ji' and the canonical momenta Pr == 1/J; - !b2 1/Ji and P; == 1/J; + !b2 1/Jr.

Using Eqs. (28) in Eq. (27) and integrating over 1/J; and 1/J; one finds that the
beam radii in the real and imaginary directions are

2 (1 + a+)2 (1 + a_)2
a = +---

f+ f-
b2= (1- a+)2 + (1- a_)2.

f+ f-
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(30a)

(30b)

(31a)

(32)

Similarly, one may calculate the emittances in the real and imaginary directions
by integrating Eq. (27) over (1/Jn 1/J;) and (1/Ji, 1/J;):

2 _ 2 [K~(1 + a+)2 K=-(1 + a_)2]
E, -a f+ + f-

2 _ 2 [K~(1 - a+)2 K=-(1 - a_)2]
Ei - b f+ + f- .

In the quadrupole-only case, Gluckstern has defined the emittances as areas in
the Pr - 1/Jr and P; - 1/Ji planes instead. For the present problem these are given by

2 2 (C~ c=-)£ =a -+- (31a)
Gr ,f+ f-

2 2 (d~ d=-)
ECi=b f+ + f- '

where c+ = K+(1 + a+) + !b2(1- a+), c_ = K_(1 + a_) + !b2(1 .~ a_), d+ =
K+(1- a+) + !b2(1 + a+), and d_ = K_(1- a_) + !b2(1 + a_).

Using the definitions of ~ and 1/J and Eqs. (27) and (28), the value of the
matched ~ matrix may now be calculated. The nonzero elements at s = 0 are

1 + a+
~14 = ~41 =-- [k(1 + a+) + K+(1 - a+)] + (+~ -)

f+

1
~22 = - [k(1 - a+) + K+(1 + a+)]2 + (+~ -)

f+

1- a+
L23 =L32 = - ~[k(l- a+) + K+(1 + a+)] + (+~ -)

1 2
~33 = 4b

1
~44 = - [k (1 + a+) + K +(1 - a+)]2 + (+~ - ),

f+

where the notation + (+~ -) means add the previous term with all + subscripts
replaced by -. The matched ~ matrix is clearly divided into a sum of two
contributions, one from the fast (+) betatron oscillation mode and one from the
slow (-) mode, corresponding to the decomposition in Eq. (13). The determinant
of ~, a constant of motion, is given by

(33)

The specification of ~ depends on the two unspecified constants f±, which may
be determined in a variety of ways. One reasonable choice would seem to be to
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specify a value for I~I and to require that £r = £i in Eq. (30). This choice,
however, gives the unsatisfactory result that the matched beam radii are
decreasing functions of beam current unless the operating point is in the "second
stable region" of Fig. 1, where u > 1. Curiously, instead of specifying £r = £;, the
choice £Gr = £Gi, from Eq. (31), avoids this problem, leading to beam radii that
are increasing functions of current; we make this choice in the numerical
example, below. The corresponding condition on f± is, using Eq. (31),

11- a=-If+ = 11- a~lf-, (34)

except in the special case7 bz= 0, for which a± = ± sgn (f.lz); in that case Eq. (34)
. is replaced by the condition K-f+ = K+f-.

Figures 2a, 3a, 4a, and 5a illustrate the dependence of beam radii on beam
current, beam energy, longitudinal field strength, and quadrupole field strength,
respectively. All cases have k = -2Jt/18 cm-1 and f3y 1~11/4 = 2.78 X 10-3 rad-cm,
which correspond to typical values for a beam-transport experiment presently
being carried out. 11 Each point on the plots, except those for zero current,
requires an iterative procedure to obtain because the betatron wavenumbers K ±

depend on current density, that is on the beam radii, which makes Eqs. (29)
implicit relations for the beam radii, for nonzero current. Once the beam radii are
found, the elements of the matched ~ matrix at s = 0 follow from Eq. (32).

One may study the stability of the matched solution, using Eq. (16). One might
expect that since the matched solution is a constant in the frame rotating with the
stellarator field, one could carry through the stability analysis to calculate
oscillation frequencies and growth rates analytically for this example. Actually,
even in the rotating frame [the frame of the 1J1-variable of Eq. (23)] the two
degrees of freedom, 1J1r and 1J1i' are coupled, requiring the calculation of the
eigenvectors of a full 4 x 4 matrix to find the matched solution. Note however
that in the special case where bz = 0, described following Eq. (25), the coupling in
the rotating frame vanishes, and the formalism described here may be shown to
reproduce the K-V envelope equations, with constant focusing terms, in the
rotating frame; in this case the envelope oscillation frequencies are easily
calculated9 analytically, and agree with those obtained numerically from Eq. (16).
To study the linear stability problem in the coupled case, Eq. (16) must be
integrated simultaneously with Eq. (3) for the matched solution, using Eq. (32) as
the initial condition. One then forms the matrix T(L 10), defined following Eq.
(19) and finds its eigenvalues Aj , j = 1, 2, ... , 10. We define the growth rate per

period as r
j

== In lAo;!. (35)

Figures 2b-5b show plots of the growth rates for the unstable (rj > 0) envelope
modes as functions of system parameters. One sees that, depending on parameter
values, the dominant mode has a fairly large peak growth rate, which suggests the
probability of large emittance growth for a real system at this point. The
growth-rate curves of Figs. 2b-5b are typical of an instability due to a system
resonance, which is detuned when system parameters are varied slightly; in fact,
this is an example of a "confluent resonance" for the stellarator system.9 We note
that calculation of linear growth rates for the K-V beam, although not



FIGURE 2 Equilibrium beam radii and growth rates for unstable envelope modes versus current for
Ebeam = 1 MeV, Bs = 5 kG, and kBo = 500 G/cm.
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(A-I)

quantitatively important for real beams, may suggest values of parameters
(external field strengths, beam currents and energies, etc.) required to avoid
significant emittance growth in real beams. Numerical simulations need to be
done to test this conjecture for the stellarator system, though simulations in the
decoupled case show that emittance growth is observed in simulations of beams
with realistic profiles when the growth rates for corresponding K-V beams are
large.8 ,9
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APPENDIX

Space-Charge Contribution to Matrix M for K-V Distribution

We consider the self-fields of an elliptical beam of axes a and b; axis a is tilted
at an angle a to the x-axis. The electro- and magneto-static potentials are simply
obtained by rotation of coordinates:

_ A 2 2
ep(x, y) - - 2(qxxx + 2qxyxy + qyyy )

A(x, y) = f3<Ps,
where Ais the line-charge density and

_ 4 (COS2 a sin2 a)
qxx- a+b -a-+-b-

4 (COS2 a sin
2 a)q =-- ---+--

yy a + b b a

qx =_4_ sin a cos a (! _!).
y a+b a b

The values of the spatial a's for a uniformly populated ellipse are

I
a = - (a 2 cos2 a + b 2 sin2 a)xx 4

(A-2)

(A-3a)

(A-3b)

(A-3c)

(A-4a)

(A-4b)

(A-4c)

It is now simply a matter of algebra to eliminate a, b, and a from Eqs. (A-3) in
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favor of axx, ayy , and axy , using Eqs. (A-4). The intermediate results

ab = 4(axxayy - a;y)1I2, (A-5)

a2+b2=4(axx+ayy) (A-6)

are useful for this exercise. The results for qxx, qyy, and qxy, cited in the text,
follow.
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