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The so-called strong spin matching is proposed as a localized compensation scheme for spin-orbit
coupling, producing spin transparency, not only globally for the ring as a whole but locally for each of
its many subsections. Distortions of the spin motion will then accumulate to a lesser extent, and
polarization will be more stable. The method amounts to looking for a resonant compensation of
errors instead of merely avoiding resonant accumulation. It is shown how Siberian snakes can be used
to obtain strong spin matching, independent of energy, as a key to polarized proton acceleration to
very high energies. As an example, the method is applied to the sse ring, and a preferred snake
design is proposed.

It has now been more than 10 years since "Siberian snakes," originally called
"spin flips," were proposed by Derbenev and Kondratenko (D + K)1-3,4a.5 for
eliminating the intrinsic depolarizing resonances which are crossed by the beam in
a proton ring during acceleration. They suggested two types of snakes, sub­
sequently called the first and the second kind, with intrinsic spin precessions of
180° and 0°, respectively (see Section 2.2), and showed that such a pair of snakes
inserted between half rings will make the spin tune equal to one-half, independ­
ent of energy, and will thus remove the intrinsic spin resonances. D + K4a,5 also
pointed out that polarization could even be made much more stable by inserting
2M snakes, an odd number of each kind, but it did, to my knowledge, not
become generally understood what the optimum lattice configuration and
parameters would be, and which gain factor could be obtained.

Meanwhile, people began inventing snakes4b,6-16,18-20 and thereby discovered
snakes of a more general type,17 with continuously variable intrinsic spin
precession (see Section 2.2), that could be employed instead of the particular
kinds proposed by D + K initially. Numerical tracking studies indicated that in a
particular ring configuration employing these new snakes polarization was much
more stable,21,22 but a quantitative evaluation of the general ring layout with
snakes has, to my knowledge, not been obtained so far.

It is the aim of this paper to help to fill this need by presenting the concept of
"strong spin matching" and derive from it the quantitative design criteria for an
optimum ring, first without snakes, and then with snakes. Here it will turn out
that, in designing the ring for stable spin motion at all energies, the important
parameter is the intrinsic snake precession angle which, for a given configuration,
must be adjusted to particular values.
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In Section 3 of this paper, the rules obtained are applied to an example, where
I show how the next large accelerator for protons, the SSC ring in the U.S.,
would want to be equipped with snakes in case polarized beams were considered
a worthwhile goal in this machine.

1. ENERGY-DEPENDENT STRONG SPIN MATCHING WITHOUT
SNAKES

1.1. Strong Spin Matching for Vertical Betatron Oscillations in the Standard
Periodic Cell Lattice

Even in an ideal planar ring without errors, the spin motion is generally coupled
to the vertical orbital motion. A particle performing vertical betatron oscillations
sees horizontal field components which rotate the spin away from its vertical
equilibrium position. If the betatron frequency is in resonance with the spin
precession frequency, these rotations will accumulate, and the spin may approach
and precess near the horizontal plane and, thereby, due to energy variation, lose
its phase synchronism. An initially polarized beam will thus get depolarized when
crossing one of the "intrinsic" linear resonances:

v ± Qz =p, p integer. (1)

(2)

But even away from strong resonances, at a stationary working energy,
migrations of the spin away from the vertical will be detrimental to polarization,
and the spin should be prevented from straying too far in one period. Initially for
electron rings, Chao and Yokoya23 ,24a have proposed, with good success, to
match the optics such that the spin will return after one revolution. For proton
rings, tracking results21 ,22 have also indicated that there are large differences in
spin rigidity between comparable lattice configurations, probably again due to
differences in optical matching. Therefore, we want to find those particular
optical settings which tie the spin most closely and allow for minimum migrations
only.

Quantitatively, in a linear approximation in an flat, perfect ring, the change of
vertical spin component, i.e., of the polar angle between spin direction and
vertical precession axis, is given by the integral over the quadrupole strength k(s)
times the betatron oscillation amplitude, modulated by the spin precession:23 ,24a

I±(a) = LO
ei1/1(s)k(s)VfJAs)e±i1/1z(s)ds = LO kbei(1/1±1/1z) ds.

Following Yokoya's notation,24b we have written this "spin-orbit coupling
integral" in complex form, with both signs of 1/Jz, in order to include in its 4
components (real and imaginary) the two orthogonal phases for each of the two
oscillations. If this integral vanishes over a certain period, then the change of
vertical spin component over this period is zero for all phases, and the period is
said to be "spin transparent for vertical betatron oscillations," which means that it
causes zero spin-orbit coupling.
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In a periodic lattice, the integral [Eq. (2)] over a string of n identical cells may
be written

(3)

using the quasi-periodicity of the integrand, with 2.1lvo and ±2.1lQzo being the
phase advances of spin precession and betatron oscillation per cell. Thus,
summing up,

1 - en.2ni(vo±QzO)

I± = 1 _ e 2ni(vo±QzO) • Icen ±. (4)

(5)

This formula tells how, for a given betatron tune per cell, one can choose certain
spin tunes, Le., working energies, which make the string of n cells spin­
transparent. This procedure is called "spin matching over n cells." Technically, it
means achieving a resonant cancellation of spin-orbit coupling, instead of merely
avoiding a resonant enhancement by considering the resonant deonominator of
Eq. (4). The modulus of the fraction in Eq. (4) is

1

1 - e
in
. l) 1 __ 1sin !n6

1 ' with 6 = 2.1l(vo ± Qzo),I-e,l) sin!6

and is shown for the example of n = 8 in Fig. 1. It has, on the resonance at 6 = 0
or 2.1l, the value n and is zero at 6 = k ·2.1l/n, k = 1, 2, ... , n - 1. We are, of
course, already familiar with related behavior: In a perfect machine with
superperiodicity N, we only expect linear resonances of the form v = k ± Qz to
appear with k =pN; p, k integer. If k is not a multiple of N, i.e., for
k = 1, 2, ... , N - 1, resonances are suppressed by the superperiodicity.25

To maintain maximum polarization in a collider ring, the working energy

. !Sin 1/2nD!FIGURE 1 The function sin 1/2D for n = 8.
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should be chosen such that the spin-orbit coupling integral I± vanishes over each
string composed of the smallest possible number, or at least a small number n, of
cells. Then, the vertical component of the spin will return as quickly as possible to
its initial value, independent of betatron phase and amplitude, and the interven­
ing deviations which give rise to depolarizaton will be kept minimal. Expressed
differently, it means that the beat of the spin-orbit coupling integral is being kept
small. The spin matching over a small number n of cells, as compared' to the
standard spin matching over, say, one revolution, may be seen to be analogous to
strong focusing in comparison to weak orbit focusing. Matching over a small
number of cells means that we have strong "focusing" of the spin, and we thus
propose to call this technique strong spin matching. In large rings, it means a
localized compensation of spin-orbit coupling instead of a global one, and it thus
goes beyond the original spin-matching scheme that was proposed by Chao and
Yokoya23

,24a for the ring as a whole and that has meanwhile become standard.
This new localized compensation technique may possibly lead into a qualitatively
new regime where the vertical match will, at the same time, also serve to partly
cure the depolarizing effect of horizontal oscillations in the case of magnet errors,
as will be explained below.

If one wants to compare the stability of various proton ring designs against
depolarization, the concept of strong spin matching permits a quantitative
evaluation, suggesting as an inverse quality factor q the mean square value of the
spin-orbit coupling integral of Eq. (2), taken over one revolution:

(6)

If q varies significantly with ring position, its average value must be used.
In practice, typical values of the betatron phase advance per cell are qJ = 90°,

72°, and 60°; i.e., qJ = 3600 /c, with c = 4,5,6, thus, Qzo = 1/4,1/5, 1/6,
respectively. Considering a string of n cells, with n = 1, 2, ... ,20, all possible
values of Vo for obtaining spin transparency over this string are given in Table I,

TABLE I

Local spin tunes Vo per cell for strong spin matching over a string of n cells. (p = 0, 1,2, ... )

betatron number of cells
phase
per cell n = 2 n = 3 n = 4 n =5 n = 6 n = 8 n = 9 n = 10 n =12 n =15 n =16 n =18 n =20

lp=90o
P 1 v _p+ 1

Vo=~' VO=~,
2p+ 1

Vo=;,
P 1

vo="2:t "8 0-2- 25 vO=36'

- - vo=% - vO=2:t 12 and - and but - but but but

(Oza= 1;) Vo=~ v-.E+i * + 1 * + 1 * + 1 * + 10- 2- 20 Vo P-L; Vo P-L; Vo P- 4 Vo P-L;

4>= 7?J vo=-f ' vo= fa I vo=fs, vo=fo '

- - - but - - - but - but - - but

(Qza=~) vo*p:t! voiP:tf VoiP:tt va;P:tt

lp =f{f Vo=P+t va=P+t vo=f2, v -l2..!l vo=fa,0- 30 '
- vo=P:t~ - - and - and - but but - but -

(Oza=i) v -.E. vo=%:t~ vo*p:t -t vo*P:tt vo*p:ti-a - 3
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where Vo is the local spin tune per cell. The table shows that the mInImum
numbers of cells in the string are n = 3 or 6 for ffJ = 60°, n = 5 for ffJ = 72°, and
n = 4 or 6 for ffJ = 90°, but corresponding Vo values may not lie within the energy
range of the machine, and one will then go to somewhat higher n values. In any
case, the· recipe for strong spin matching is to satisfy one of the matching
conditions by choosing the corresponding number n of cells in the string, the local
betatron tune Qzo, and that particular working energy which, in the periodic cell
lattice, will give the corresponding local spin tune Vo.

This holds for the group of strings that can be placed in each section of the
periodic arc lattice in the ring. Between these, the insertions must also be made
spin-transparent for vertical betatron oscillations at the chosen particular energy,
using standard spin-matching procedures. Thereby, the overall spin tune of the
ring can be adjusted to be away from resonances, no matter what the contribution
of the spin-transparent groups of regular cells to the spin tune will add up to by
themselves.

In the ideal flat ring considered so far, the spin motion is not coupled to
horizontal orbit oscillations, since the periodic spin direction n is vertical
everywhere. Magnet errors, however, will distort the closed orbit, and the
periodic spin direction n(s) will then vary along this orbit and will locally precess
about the vertical with the spin precession frequency, and so will its horizontal
component. If this precession stays sufficiently uniform over one period of strong
spin matching (n, cells), the spin-orbit coupling integral for horizontal betatron
oscillations will assume the same form as in Eq. (2), since the change in polar
angle between spin direction and n(s) is again given by the quadrupole strength
k(s) times the betatron oscillation amplitude, modulated by the precession of the
projection of n(s) onto the horizontal plane:

J J
1 - e n .2.n'i(vo±Qxo)

1 == e i1P(s)k(s)Yf3 (s)e±i1/Jx(s) ds = kb e i(1/J±1/Jx) ds = . · I
x± x x 1 _ e 2.1rl(vo±Qxo) x cell ±.

(7)

Considering here only the simplest case with Qxo = Qzo, which is often chosen in
practice, we see that strong spin matching for vertical betatron oscillations may
imply that at the same time one also obtains an approximate strong spin matching
for horizontal betatron oscillations in a machine with magnet errors.

Carrying this further, one observes that a similar argument also holds for the
horizontal orbit deviations due to an offset in energy. In this case, the betatron
amplitude in the integral [Eq. (7)] must be replaced by the horizontal dispersion
trajectory which, although not looking quite sinusoidal, can in a FODO structure
effectively be approximated by its main Fourier component that has one
oscillation per cell. Spin-orbit coupling is then approximately given by

1 - e n .2Jri(vo±1)

1 == ·1s± 1 _ e2.n'i(vo±1) s cell ± , (8)

and therefore becomes small for noninteger Vo =pIn; p = 1, 2, .... Comparing
this local spin tune per cell with the Vo values for strong spin matching composed
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(9)

in Table I, it appears that in almost all listed cases with noninteger Vo the integral
given by Eq. (8) will vanish together with that given by Eq. (4), and we may have
an approximate strong spin matching also for the effect of the horizontal
dispersion in a machine with errors.

In the vertical direction, the closed orbit deviations generated by errors will,
similarly to betatron oscillations, also cause a spin-orbit coupling. To the extent
that, over one strong spin-matching period, the vertical closed orbit will maintain
its similarity to a vertical betatron oscillation trajectory, the coupling of this orbit
to the spin motion will also cancel over this period.

Finally, it should be mentioned that even the spin motion due to nonlinear
orbit effects may be subjected to strong spin matching. As an example, let us
assume that the field of the cell quadrupoles has a 12-pole component giving a
spin rotation proportional to the fifth power of the vertical betatron amplitude.
Then, in a lowest-order approximation, where one ignores the effect of the
nonlinearity on the orbit, the coupling of this nonlinearity to the spin over a string
of n cells is given by

J J
1 - en -2.1ri(vo±5QzO)

/(5) = ei1J1kb5e±5i1J1z ds = kb 5e i(1J1±51J1z) ds = . . /(5)
± 1 - e2.1rl(Vo±5QzO) cell ±

and therefore is made to vanish at all noninteger values of

p
Vo ± 5Qzo =-;

n
p = 1, 2, ...

(lOb)

1.2. Particular Energies for Strong Spin Matching in LEP and HERA

As an example of strong spin matching without snakes, we shall select from Table
I the particular local spin tunes that lie within the energy ranges of the LEP ring
at Geneva and the HERA electron ring at Hamburg. Generally, the spin tune Vo

and the orbit deflection angle ~ per cell are related by

E[GeV] ~
Vo = .- for electrons, (lOa)

0.44065 2Jr

and
E[GeV] ~

Vo = .- for protons.
0.52335 2Jr

With the deflection angles per cell, ~, equal to 0.03020762 rad in the HERA
electron ring and 0.02261280 rad in the LEP regular cell lattice,26 and the energy
ranges of, say, 27.5 GeV < E < 35 GeV for HERA and 45 GeV < E < 60 GeV for
LEP, Phase 1, we find from Table I the particular energies at which, in these
machines, strong spin matching is obtained over a string of n cells (n :5 20). They
are given in Table II. At these particular energies, polarization is expected to be
particularly stable, provided that the insertions between the regular arc sections
are also matched to be spin-transparent at these energies.
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TABLE II

Particular energies for strong spin matching over n cells in the HERA and LEP electron rings

spin tune HERA betatron. number of cell s LEP
per cell energy phase per energy

cell n

VQ E [GeV] \jl 3 I 4 I5 I 6 IB I9 110 112 h5116 hB 120 E [GeV]

3/10 27 497 90° I I I I I I I I I I IX
72° I I I I I IXI I I I IX
60° I I I , I I I IXI I I

11/36 28.006 90° I I I I I I I I I Ixi

5/16 28.642 90° I I I I I I I I IXI I

~ 30 552 Gev}"~9~~- -1/3 - t -i -1- t- t -t ""i.X1 I I I

------~
I I I I I I I IXI I I

60 X) I I IXIXI IXI

7/20 \. 32 079 Gev)=r@ X] I I I IX
72° I I I I I I I I I I IX

~~~-=-~~j: ~- r- t-+ -1-1-1-1- +- +-t -f~L13/36 \9.9~- - 44.214

11/30 33607 60° 1 I I I I I I IXI I I 44894

\.34371 Gev)==@3/8 Xl I I I IXI I 45.915

7/18 35644 60° I I I I IXI I I I IXI 47.615

2/5 36.662 90° I I I I I I I I I I IX 48.976

72° I IXI I I IXI IXI I IX
60° I I I I I I I IXI I I

5/12 90° I I IXI I I IXI I IXI 51016

60° I I I I I I IXI I I I

13/30 60° I I I I I I I IXI I I 53 057

1- 7 /16 .-
90° I I I I I I I I IX' I 53 567

4/9 60° I I I I I I I I I IXI 54.417

9/20 90° I I I I I IXI I I I IX 55.097

72° I I I j I I I I I I IX

7/15 72° I I I I I I I IXI I I 57 13B

17/36 90° I I I I I I I I I IXI 57 B1 B

1/2 90° IXI I IXI IXIXI IXI IX 61 219

72° I I I I I IXI I I I IX
60° XI I IXI IXI IXI I IXI

51

HERA, as well as LEP, are intended to start operation at a betatron phase
advance of qJ = 60° per cell, with the option of changing to qJ = 90° later, when
going to higher energies. In HERA, the spin rotators for longitudinal polarization
at the interaction points must, for each period of operation at a fixed working
energy, be geometrically set for this energy. It appears from Table II that, to start
polarized beam work, 30.35 GeV should be a good choice, since there, with
qJ = 60°, every string of n = 6 cells will be spin-transparent. With 52 cells in each
of the four arcs, eight such strings can be placed in each arc, provided that there
will remain enough optical flexibility for spin-matching in the insertions outside.
The question of which tolerances on energy and phase advance must be met27 for
an effective strong spin matching, will not be answered here and needs a separate
investigation.
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2. ENERGY-INDEPENDENT STRONG SPIN MATCHING WITH
SNAKES

2.1. How to Obtain Strong Spin Matching Independent of Energy?

The spin-transparency conditions obtained in the previous section have the
principal drawback of depending on spin tune and thus on energy. They are very
useful in a collider ring with a polarized beam at a fixed working energy', but
during acceleration, the ring does not remain strongly spin-matched. How then
can this be achieved?

As a first step in this direction, resonance crossing can be avoided by applying
the ingenious topological trick invented by Derbenev and Kondratenko
(D + K).4a,5 It consists of introducing into a ring composed of two identical half
rings a so-called "Siberian snake" at the end of each half ring. Each snake inverts
the spin from upwards to downwards, or vice versa, such that the energy­
dependent spin precession accumulated in the first half ring is spun backwards to
zero again in the second half ring. If, then, an energy-independent spin
precession of 1800 is designed into one of the snakes, the spin tune of the ideal
ring without errors will be v = 1/2 at all energies. The intrinsic resonances will
thus be avoided if the betatron tune is not half-integer, and the spin tune spread
due to energy spread in the beam will vanish over one revolution. It was pointed
out by J. Huon that spin flips by snakes are used in a similar way as the flips of
magnetization employed in the well-known NMR spin-echo technique; the
underlying principle is the same in both cases. 28 But staying away from
resonances does not mean that one has a spin-transparent machine; by itself, it
does not even ensure that the spin-orbit coupling over one revolution will be
small.

The ingenious second step toward an energy-independent strong spin matching
is the notion of D + K4a,5 that by increasing the number of superperiods from one
to M, with 2M snakes in the ring, the sensitivity of polarization against magnet
errors can be reduced by a factor 1/M. They wrote in 1978:5 "Using multiple flips
of the vertical polarization for increasing spin stability can be compared to using
strong focusing instead of the weak one for betatron oscillations of the particles.
For a storage ring with 2M spin flip sections, ... the requirements to the magnetic
system are M times weaker."

This points in the direction of strong spin matching with snakes and thus is at
the root of it, but again a localized half-integer spin tune for each superperiod
does not guarantee that a short string of superperiods will be spin-transparent; it
only ensures that resonance accumulation of errors in spin motion is avoided
locally, although with a spin-orbit coupling that may not be small.

To make the integral vanish in the general periodic lattice with snakes, the
snake precession angle (see Section 2.2) must be adjusted to the betatron tune
and number of cells. In doing this third and last step, we will, as in Section 1.1 for
the case without snakes, write down the spin-orbit coupling integral for a string of
m superperiods that each include a pair of snakes, and will thereby obtain a
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quantitative formulation of energy-independent strong spin matching as a recipe
for an optimum ring design with snakes.

2.2. General Properties of Snakes and Snake Configurations

By "snake" we mean any composite system of magnets that, in the orbit­
following spin coordinate system, rotates the spin by 1800 about an arbitrary axis
that lies in the horizontal plane. Then, the overall rotation of the spin can be
thought to be obtained by two consecutive rotations:

1st rotation: by 1800 about the transverse horizontal axis,

2nd rotation: by an angle a about the vertical axis.

If both rotations are combined into one, the effective rotation axis is at an angle
a/2 with respect to the transverse horizontal axis. a is called the precession angle
of the snake. 17 Snakes for any positive or negative value of a can be designed,17
and examples are given in Section 3.

In the most general ring with 2M snakes, as shown in Fig. 2 for 2M = 4, the
equilibrium spin direction between snakes will alternately point upwards and
downwards, and the spin tune is

1 n .

V = 3600~ (-1)'(Cl'; + Wi), (11)

where the spin precession angles between snakes, 1JJi' depend on energy, while
the snake precession angles ai do not. The alternating signs in Eq. (11) account
for the fact that the spin coordinate system is flipped in every snake, and the
direction of the spin precession is reversed. To make v independent of energy,
the places for the snakes must be chosen such that

2: (-I)i 1JJi = 0,
i

and then the spin tune is the alternating sum of the snake precession angles:

v=2: (-I)iai.
i

(12)

The next section will show how the positions and precession angles of the snakes
must be chosen for strong spin matching.

FIGURE 2 Sketch of a general ring with 2M snakes; here 2M = 4.
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2.3. Strong Spin Matching for Vertical Betatron Oscillations in a Periodic Cell
Lattice Equipped with Snakes

Since we are first of all interested in the periodic lattice that makes up most of the
ring, we will here ignore any insertions and assume a "circular" ring made of a
periodic lattice, into which, between cells, M identical pairs of snakes are
inserted, with constant intervals between individual snakes. The ring is thus
broken down into M superperiods which each contain a pair of snakes.

Denoting by n the number of cells per half superperiod, i.e., between snakes,
and by ll't and ll'2 the spin precession angles of the snakes at the end of the first
and the second half superperiod, the spin-orbit coupling integral over the
superperiod (SP) is, for vertical betatron oscillations, given by

Isp±=1 ei1JJ · kV13ze±i1JJzds +1 ei(n.2:TrVO-CXt-1JJ)kV13ze±i(n.2:TrQzO+1JJz) ds. (13)
n cells n cells

In this notation, 1/J and 1/Jz are chosen to be zero at the beginning of each half
superperiod. In the first hald superperiod, the spin precession phase increases by
n · 2Jrvo, and the first snake adds the precession angle -ll'l; in the second half
superperiod, the phase decreases again by -n ·2Jrvo, spinning backwards, before
the angle ll'2 is added by the second snake. Therefore, the energy-dependent part
n · 2Jrvo cancels, and the spin precession phase advances by ll'2 - ll't = 2Jra per
superperiod, independently of energy, while the betatron phase advances by
±2n . 2JrQzo. Over a string of m superperiods, the spin-orbit coupling integral
may thus be written as

m-l 1 _ em'2:Tri(a±2nQzo)
I - ~ k·2:Tri(a±2nQzO) l - I

± - L.J e . SP± - 1 2:Tri(a±2nQ 0) • SP±·
k=O - e z

(14)

By analogy to Section 1.1, we can now make the string of m superperiods
spin-transparent at all energies by choosing for the "snake tune" a = (ll'2 - ll'1)/2Jr
one of those values that make the integral [Eq. (14)] vanish by fulfilling the
conditions

but

m(a ± 2nQzo) = p, p = 1, 2, ...

p
a ± 2nQzo = - =1= q, q = 1, 2, ...

m

(15a)

(15b)

For maximum stability of polarization, one will here again apply 'strong spin
matching by choosing a sufficiently small number 2n of cells per superperiod, i.e.,
installing a sufficient number of snake pairs in the ring, and by then making the
number m of superperiods in the matched string as small as possible, or at least
small, in accordance with Eqs. (15).

The combinations of parameters a, m, n eligible for strong spin matching are
given in Table III for a phase advance of cp = 90° per cell, and in Tables IV and V
for phase advances of 72° and 60°, respectively. Selecting the snake tune
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TABLE III

Snake tune a = (£1'2 - £1't)/2:rc per superperiod for energy-independent strong spin matching over a
string of m superperiods, each composed of 2n cells with qJ = 90°, plus one snake pair with snake

precession angles £1'1' £1'2

~
cells

no. of
n=2 n = 3 n=4 n=5 n=6 n=7 n=8 n=9 n =10Sp's

m= 2 a = ! 1/2 a = 0 a = ! 1/2 0=0 a = ! 1/2 a=O a = ! 1/2 a = 0 a = ! 1/2

f------- • I---~. ------ --- _.__ ._- -----

m= 3 a={ ! 113 0=t1l6 a={!1/3 a=t
1/6 0= {! 1/3

a=t
'/6 0= {! 1/3 0= {! 1/6 0= {' 1/3

! 2/3 :! 5/6 ! 2/3 ! 5/6 ! 2/3 ! 5/6 ! 2/3 ! 5/6 ! 2/3

-- f..---.-.--.. - ~ ----- - _.-

{!1/4 a={!~/4 {! 1/4 0= {!~/4 f114 a={!~/4 f1/4 a={!~/4 f1/4
m = 4 a = ! 1/2 a = .! 1/2 a = ! 1/2 a = ! 1/2 a = ! 1/2

!3/4 !3/4 !3/4 ! 3/4 ! 3/4 !314 :!: 3/4 ! 3/4 !314
-- ~---- '-- ,_.- -

a = :!: k/5.
0= {! 1110

a = :!: k/5.

a=t
1l1O a = ! k/5.

a={!1/10
a= :!: k/5,

a=t
1/1O a= :!: k/5,

m= 5
k = 1. 2.3.4

!3110 k =1.2.3.4
!3/1O k= 1.2.3.4

!3/10 k=1.2.3.4
!3/10 k = 1.2.3.4

---

:={!~:
f---- ..--.-

a = ! k/6. { 0 a= :!: k/6. a={!~/6. a = ! k/6.
0= {!~/6. a= :!: k/6. a= :!: k/6,

a-
m = 6 - ! k/6.

k = 1. .... 5 k = 1.2.4.5 k=1. .. 5 k=1,2.4.5 k = 1. .5 k= 1,2.4.5 k= 1. .. 5 k= 1,2.4.5 k = 1, .5

TABLE IV

Snake tune a = (£1'2 - £1't)/2:rc per superperiod for energy-independent strong spin matching over a
string of m superperiods, each composed of 2n cells with qJ = 72°, plus one snake pair with snake

precession angles £1'1' £1'2

~
cells

no.O
Sp's n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

m = 2 -- - -- a = :!: 1/2 - - -- - a = ! 1/2

m = 3 -- - -- a= :!: 1/3 - -- - - a= :!: 1/3

( !1/4 r1l4
m = 4 -- - -- a = ! 1/2 -- -- - - a= :!: 1/2

:!:3/4 :!: 3/4

{ 0 { 0 { 0
a=!k/5, r {O { 0 r a=!k/5,

m = 5 a- a- a- a- a- a- a-

:!: 2/5 ! 2/5 ! 1/5 k=1.2.3.4 ! 1/5 ! 2/5 :!: 2/5 :!: 1/5 k = 1. 2.3.4

a = :!: k/6. a = :!: k/6.
m = 6 - - - - - - -

k = 1,.,5 k = 1. ,5
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TABLE V

Snake tune a = (£l'2 - £l't)/21C per superperiod for energy-independent strong spin matching over a
string of m superperiods, each composed of 2n cells with qJ = 60°, plus one snake pair with snake

precession angles £l't, £l'2

I~
cells

no. of
n = 2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n = 10Sp's

m = 2 - 0= ! 1/2 - - 0= ! 1/2 - - 0= ! 1/2 -

m:: 3 0=0 0= ! 1/3 0=0 0=0 0= ! 1/3 0=0 0=0 0= ! 1/3 0=0

r1/4 f1/4 r1/4
m = 4 - 0= ! 1/2 - - 0= ! 1/2 - - 0= ! 1/2 -

! 3/4 ! 3/4 ! 3/4

o = ! k /5. 0= ! k /5. o = ! k /5.
m = 5 - - - - - -

k = 1.2.3.4 k = 1.2.3.4 k = 1.2.3.4

o ={ ~ ~/5, o = ! k /6. 0= {~~/5, 0= {~~/5, 0= ! k/6, { 0 { 0 0= ! k /6.
0= L~/5,0= 0=

m = 6 ! k/6. ! k/6.

k = 1,3.5 k = 1. ... 5 k = 1.3.5 k = 1.3.5 k = 1, ... 5 k = 1,3.5 k =1.3.5 k = 1, .... 5 k = 1.3.5

a = (£1'2 - £1'l)/2:Jr means, in practice, that the two types of snakes in the pair will
be so designed that the difference of their intrinsic precession angles will assume a
certain value. Since only the difference matters, one of the individual values may
be freely chosen to get for example, a compact design and maximum stability of
snake performance, as shown in Section 3. To ensure that the matching
conditions [Eqs. (15)] are satisfied at all energies, it may be necessary to regulate
or program the spin tune, since Qzo generally wobbles a little during
acceleration.29

After the polarized beam has been accelerated in the ring so equipped with
snakes, the ultimate strong spin matching will then be achieved by choosing a
particular working energy such that each half superperiod becomes spin­
transparent in itself and the integrals over n cells in Eq. (13) will vanish. This
means applying an additional, energy-dependent strong spin matching to the half
superperiod by making the local spin tune Vo per cell satisfy the condition given in
Table I for the chosen number n of cells, as explained in Section 1.1.

In the idealized "circular" ring considered so far, strong spin matching will shift
the overall spin and betatron tunes to integral or half-integral values, which is of
course not acceptable. However, in a large real ring, there will be insertions with
matched special lattices that have less or no bending, and these can be used to
adjust the overall spin and betatron tunes to be away from resonances. At the
same time, these insertions must be equipped with snakes and thereby made
spin-transparent, independent of energy. Depending on the insertion lattice, this
may be a more complex problem that will not be treated in this paper and calls
for further investigation.
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Again, in the general ring with snakes, the value of the spin-orbit coupling
integral I±(a) can be determined in a step-by-step integration over the sections
between snakes, as in Eq. (13), and then Eq. (6) permits one to assign an inverse
quality factor q for comparing the benefit of different ring designs.

3. STRONG SPIN MATCHING WITH SNAKES IN THE SSC

3.1. Missing-Magnet Scheme and Insertion of Snakes in the Periodic Cell Lattice

The 2 x 20 TeV proton storage ring projected in the U.S., the Superconducting
Super Collider (SSC), has two (almost-) half rings, each composed of 143 FODO
cells with a betatron phase advance of cp = 90°. 30 To make room for the snakes, it
is suggested to leave out a small fraction of the bending magnets, in a regular
pattern so chosen that the spurious dispersion generated will periodically cancel
and thus remain small. 31

,32a,33 Eligible missing-magnet patterns are shown
schematically in Fig. 3 for phase advances of cp = 90°, 72°, and 60° per cell. In the
SSC, it would be a good choice to leave out half a dipole magnet in every sixth
cell. Since there are 12 dipole magnets per cell, this would amount to decreasing
the average bending strength by 0.69%, and the remaining dipoles would have to
be made 0.69% stronger for the same energy. The average tunnel radius could
remain unchanged, but slight lateral magnet readjustments of up to ±2.5 cm

4> =90° 4> =72°

2=4~

3~

4~pX~~-

6 ~l+l+--l-+-(~-­

=t?i~H+t-lt+-+-0-

2 2:s=2:L
3~

4 -Z¥+\=

4> = 60°

8 -Z~0+-&£4 +-+--1\-­

9 44 §i~ ++-----1\--

10 44~¥&f+4--~ -
FIGURE 3 Spurious dispersion in regular missing magnet patterns, with ffJ = betatron phase
advance per cell; 1 bin = 1 cell.
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would be required. The dipole length is 16.54 m, and snakes can be built at half
that length, as shown in the next chapter.

A total of about 48 snakes at a spacing of 1.37 km would then be installed in
the arcs of the SSC, with n = 6 cells between them. The snakes would alternate
between two types that have snake precession angles £1'1 and £1'2, respectively. An
inspection of Table III tells that, with n = 6, strong spin matching is achieved
over m = 2 superperiods, i.e., over 24 cells, if the snakes are designed to have
precession angles with £1'2 - £1'1 = 180°. Practicable examples of snake pairs which
satisfy this requirement are given in the next section.

Consulting Table I, we find those particular working energies at which, after
acceleration, the ultimate strong spin matching is achieved, where not only pairs
of superperiods are spin-transparent, but even every half superperiod by itself
(n = 6 cells). With a deflection angle of ~ = 0.01967681 rad per cell we have, with
Eq. (10),

P 1 E[GeV] ~

Vo = 2" ± 12 = 0.52335 . 21C' P = 1, 2, ... ,

and thus the particular energies

Eparticular = 83.558(p ± i)GeV, p = 1, 2, ....

3.2. Snake Design

As an array of horizontal and vertical bends in an alternating sequence, the snake
must rotate the spin by a given amount in each magnet, independently of energy.
The magnetic fields, therefore, must stay constant during acceleration, and the
snake, being part of a fixed ring geometry, must be straight. It will thus consist of
matched horizontal and vertical beam bumps which are folded into each other
and can be characterized by their initial horizontal and vertical spin rotation
angles VJH and VJv. Several such topologies have been investigated, looking for
small beam bump amplitudes, and it was discovered that one of them, for certain
combinations (VJH, VJv), yields a continuous family of snakes with a continuously
varying snake precession angle £1'.17

In this family of snakes, the magnet sequence is (-H, - V, 2H, 2V, - 2H,
- V, H) and the locus of points (VJH, VJv) where the array acts as a snake is shown
in Fig. 4. It looks almost like a circle and thus lends itself to an obvious clock
notation. The snake precession angle a is indicated for a number of points; its
sign can be inverted by inverting the sign of all horizontal bends. We have
a' = ±90° at the 9.00 h point, for example, and £1'= 180° at the 6.00 h point.

Since, in our SSC example, a snake pair with £1'2 - £1'1 = 180° is required, one
simple solution will be to employ everywhere the 9.00 h snake, with alternating
sign of £1'. But it appears from Fig. 4 that there probably is an even better choice.
At the, say, 10.00 hand 5.00 h points where the tangential lines from the origin
touch the locus of snakes, the corresponding snakes have a singular and valuable
property: They do, in linear approximation, maintain their snake action, i.e., give
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a =spin precession angle
of the snake

FIGURE 4 Vertical and horizontal spin rotation angles 1/Jvand 1/JH in the novel-type Siberian snake.
Versions I and IIa are the fixed snake designs recommended for SSC in this paper. Version II is the
origin of the "unsymmetric" Version lIb that is described in the text and in Fig. 5. The straight lines
indicate why versions II are less sensitive than version I to proportional variations of 1/Jv and 1/JH'

an exact spin flip, even if the angles 1/JH, 1/Jv deviate from the design value by an
equal proportion. The precision required of the (common) magnet power supply
will then be greatly reduced. In turn, if a very stable power supply is employed, it
can be used for fine adjustment of the snake tune. The difference of snake
precession angles between the two singular points, however, is close but not equal
to 180°. But, by introducing in the 5.00 h snake slightly unsymmetric slopes in the
horizontal beam bump, the difference a2 - at can be adjusted to be 180° exactly,
with the added advantage of making the snake shorter. The result is shown in Fig.
5, where I is the 9.00 h snake pair with a ± 90°, IIa the 10.00 h member of the
singular snake pair, and lIb the second member, the unsymmetric version of the
5.00 h snake. The beam excursions shown in Fig. 5 correspond to the injection
energy of 1 TeV; they stay below 1.8 mm.

3.3. A Note on Terrain-Following

The often-held belief that polarization cannot survive in a terrain-following
machine is not correct. It is possible to design vertical bends with a spin rotation
equal to the rotation of beam direction such that, in the orbit-following
coordinate system, the spin direction stays unchanged at all energies. Such a
"spin-trailing" hinge is shown in Fig. 6. It is based on a proposal by J. Buon32b

which has here been modified33 in order to become, in linear approximation,
independent of common errors in horizontal bending strength. For an error of
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FIGURE 5 Snakes for SSC: (I) Left/right-pointed snake with precession angles a = ±900
; (IIa,b)

Snake pair with az - at = 1800 and singular insensitivity to current variations.

-1% in the strength of the horizontal magnets, the angular offset of the outgoing
spin from the orthogonal direction to the beam will be less than 20 Jlrad (!) for all
vertical spin rotation angles. This is shown in Fig. 7, which also shows that, at the
same time, a small error in spin precession will result (less than 13 mrad).

Such vertical hinges can be inserted into the ring to make it follow the slopes of
a shallow valley, for example, without distorting the spin motion.

3. 4. Concluding Remark

Based on the foundations laid in this paper, and on the proposed snake scheme,
the author believes that, at little expense, polarization in the sse can be made
very stable during acceleration, and even more so at the stationary working
energy. Ways to incorporate snakes in the insertions, however, have not been
devised and need further work.

r----------------- 35.48m ------------ -..1

6.27.8 .8 .8

V

6.27

v

6.27.8 .8 .8

5mm H

9Jmm at lTeV

H V
--+----+------'~-. ----t-~++_t_+__+_--.-~-_t_ 8~ =180 0 \p v = 633mrad,

'PH =1.644 mrad at. 1TeV

v

6.27

Bv =6.74 T

BH =6.85T

FIGURE 6 Spin-trailing vertical hinge replacing about 2 standard SSC dipoles; maximum vertical
deflection: 4q;v = 2.53 mrad.
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f.1 rod ~'lJv

20

10

10

5

'Vv
1800

FIGURE 7 Spin-trailing error of vertical hinge, as a function of vertical spin rotation per magnet,
for a common error of -1% in the strengths of the four horizontal bends. ~1/Jv is the overall error in
vertical spin rotation (in jlrad), and ~ 1/JH the overall error in spin precession (in mrad).
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