
Particle Accelerators, 1989, Vol. 24, pp. 163-175
Reprints available directly from the publisher
Photocopying permitted by license only
© 1989 Gordon and Breach Science Publishers, Inc.
Printed in the United States of America

ON THE TOTAL RECOMBINATION BETWEEN COOLING
ELECTRONS AND REAVY IONS

H. F. BEYER, D. LIESEN and O. GUZMANt

GSI-Darmstadt, Postfach 110552, D-6100 Darmstadt 11, Federal Republic of
Germany

(Received January 20, 1988)

A model is presented that enables the determination of the toal electron bare-ion recombination-rate
coefficient for various values of the electron density and temperature and for all values of the ionic
charge.

1. INTRODUCTION

During the process of electron cooling of heavy-ion beams, cooling electrons may
recombine with ions, leading to a change of their charge state. Obviously, it is
important to know the rates for these recombination processes, because they
determine to a large extent the total loss of stored ions per second. The loss
becomes critical if the total recombination rate becomes comparable to the
cooling rate. Investigations of recombination processes in laboratory and
astrophysical plasmas can serve as a guideline in estimating the required rate
coefficient. However, these studies have been almost exclusively limited to
hydrogenic plasmas, and it is not obvious how these results can be applied to
heavy ions of both high nuclear and ionic charge. In the present paper a model is
developed that allows an easy estimate of the total recombination-rate coefficient
a' and of its physical constituents for various values of the relevant parameters,
such as electron density ne and electron temperature T, and for all values of the
nuclear charge Z.

For simplicity, we consider only the recombination between electrons and cold
bare heavy ions, which generally is a complicated sequence of events. If nand n'
denote the principal quantum numbers of the ionic levels concerned, and A +z a
bare ion, then these events may be classified as
radiative electron capture (REC)

A+z+e-~A+(Z-l)(n)+hm, (1)

three-body recombination

A +z + e- + e-~A+(Z-l)(n) + e-, (2)

t Instituto de Asuntos Nucleares, Bogota, D.E., Colombia; IAEA-Fellowship.
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re-ionization [the inverse process of Eq. (2)]

A+(Z-l)(n) + e-~A+z+ e- + e-,

collisional de-excitation

A +(Z-l)(n) + e-~ A +(Z-l)(n ') + e-(n' < n),

collisional excitation

A +(Z-l)(n) + e-~ A +(Z-l)(n ') + e-(n' > n),

and radiative de-excitation

(3)

(4)

(5)

(6)

Bates et al. 1 suggested that the net loss mechanism after a chain of interacting
processes like Eqs. (1)-(6) be called collisional-radiative decay. In the following
we shall summarize the processes of Eqs. (2), (3), (4), and (5) by the expression
collisional transitions and ascribe to the net loss the total recombination
coefficient.

The radiative electron capture in electron coolers has been treated in detail
elsewhere;2 therefore, we can omit a detailed investigation here by using the
results of Ref. 2.

Bates et al. 1 were the first to calculate, in a statistical theory, the collisional
radiative recombination for hydrogen-ion plasmas by a numerical solution of the
rate equations for the processes of Eqs. (1)-(6). Additionally, they showed that
their results could be scaled to bare nuclei of charge Z by means of a reduced
electron density and temperature and of a reduced recombination coefficient.
Unfortunately, their scaling .prescriptions are only of limited profit for the
parameters that are typical for the cooling of heavy ions (ne ~ 108 em-3,

kT :5 1 eV and Z > 10).
A more refined calculation of a for cold hydrogenic plasmas has been

performed by Stevefelt et al. 3 The improvement of these calculations consists of
the use of more-reliable expressions for the collisional-transition kernels4 that
enter the coupled-state equations and the use of an extension (to about 100) of
the number of bound states taken into account. Stevefelt et al. succeeded in fitting
their numerical results by a simple analytical formula. We will use this formula
for an extrapolation (certainly not stringent) to nuclear charges Z> 1 to compare
with the results of our model.

Since, to our knowledge, appropriate data for the collisional-transition kernels
in hydrogenlike, high-Z ions are not available at the moment, we developed a
model based on the simplifying considerations of Byron et al. 5 rather than
performing coupled-state calculations. This model will be outlined in Section 2,
and its results will be presented in Section 3 together with a comparison with
extrapolations of hydrogen-ion data to high Z.



HEAVY ION-ELECTRON RECOMBINATION

2. CALCULATIONS
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In our calculations we follow the line of arguments given by Byron et al. 5 They
realized that under equilibrium conditions a pronounced minimum exists in the
total rate of de-excitation of atoms as a function of the principal quantum number
n of the excited states. This minimum occurs because, on the one hand, the
collisional de-excitation probability strongly increases with the principal quantum
number, whereas, on the other hand, the radiative-transition probability rapidly
decreases with n, and the equilibrium population of excited states passes through
a minimum.

Let n * be the principal quantum number of the excited state at which the
minimum appears. The net rate of the total recombination is limited to the rate of
de-excitation of the level n * or of a bottleneck of levels around n *. The sharper
the minimum, the narrower the bottleneck. It is obvious that n * is a function of
the electron temperature T, because in collisional excitation and de-excitation
processes the exchange of kinetic energy between the electrons concerned will be
on the order of kT. For a given temperature, the minimum will be sharp for small
n*-as sharp as for light ions, which have small values of n* corresponding to
binding energies around kT. Due to the strong increase of the density of bound
states with increasing principal quantum number n, the minimum will become
shallow for high-Z ions at a given value of kT. The position of the minimum
depends also on the number density ne of the electrons. 3

,4 This is because, in
addition to collisional excitation and de-excitation, radiative processes also must
be considered, processes which populate and depopulate the states around n * by
transitions n~n* (n >n*) and n*~n (n <n*), respectively.

The total transition probability for the radiative decay of a state with principal
quantum number n* to all states with n <n* is proportional to l/n*40 5.6 Thus,
one can expect a shift of the position of the minimum towards larger values of n *
if radiative transitions are added to collisional transitions. The ratio of collisional
transition rates to radiative transition rates depends on the electron density.
Consequently, the value of n * will be a function of ne • This dependence has been
found in detailed numerical calculations of the collisional-radiative recombination
in cold hydrogenic plasmas. 3

The most extensive computations of collisional transition rates for hydrogenlike
atoms have been performed by Mansbach and Keck4 based on Monte Carlo
trajectory calculations. Their result for the net recombination coefficient [Eq.
(IV.18) of Ref. 4l may be scaled to hydrogenlike ions with nuclear charge Z by
noting that the characteristic three-body collision rate Ro scales as

(7)

where Ro(l, ne, kT) is given by

Ro(l, ne, kT) = [Nz le[nel;(kT/m)1I2(e2/kT)5. (8)

In Eq. (8), [Nzle, [nele, m, and e denote the Saha-equilibrium number densities
of ions and electrons and the mass and charge of the "electron, respectively.
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The Z3 scaling in Eq. (8) can easily be verified using the calculation of Hinnov
and Hirschberg7 for the three-body recombination rate, if the hydrogenic energy
eigenvalues En(Z = 1) = -Rln2 are replaced by En(Z) = -Z2Rln2, where R is
the Rydberg unit of energy. The same result is obtained from simple classical8

and dimensiona12 arguments. Inserting Eq. (7) into Eq. (IV.18) of Ref. 4, one
finds for the collisional-recombination coefficient

-27 ne Z
3

3 -1
(t'coll = 2.0 · 10 (kT)4.S [em s l, (9)

(10)

with ne in cnl-3 and kT in eVe
An estimate of the total radiative decay probability of the states involved in the

recombination process is obtained under the following assumption: The net
radiative transition rate is determined by the decay of the level n * plus the sum of
radiative transitions of all states n above n * to all states below n *. The average
probability for the radiative decay of the state n * is given by (Ref. 6)

Z4
A n * = ~ An*n = 1.66 .1010

*4.5 [s-l].
n<n* n

Correspondingly, the average radiative decay rate of a state n to all states
below n * is obtained from

n*-1 n*-1 1
A:* = ~ Ann' = 1.58 · lO

1O
Z

4
~ 3,( 2 '2) ·

n'=1 n'=1 n n n - n
(11)

In Eq. (11) the terms Ann' are expressed in the Kramers approximation.9 Since
for large n* the sum in Eq. (11) may be replaced by an integral, one finds

(12)

From Eqs. (10) and (12) one finally gets the radiative recombination coefficient

[
1 ~ n* ] Ne(n*)

ll'rad:::::::: .• A n* + N ( . *) L.J An Ne(n) [N] [ ] .
e n n=n*+1 Z e ne e

(13)

(14)

In Eq. (13) it is assumed that the population of the state n* is close to the
Saha-equilibrium population given by

(
21'Ch2) 3/2

Ne(n*) = n*2[Nz ]e£nele mkT exp (-En*/kT),

with

(15)

Inserting Eqs. (10), (12), (14), and (15) into Eq. (13) and again replacing the
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sum by an integral one finds for the radiative recombination coefficient

Z1.5

2 1 10-13 (*)1.25 - E*
ll'rad= .• (kT)0.25 -E e

-14 Z2 fO -E {(n* -1)2[n(E)2 -ll}
+9.6-10 (kT)o.5 _E.

e In. n(E)2-(n*-lf dE,

where we have used the reduced energy

RZ2

E=---
n 2kT·
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(16)

(17)

(18)

The third contribution to the total recombination coefficient ll' stems from the
process of radiative electron capture (REC) of continuum electrons into bound
states. The recombination coefficient for this channel is given by2

1.92 ·10-
13

Z
2

[5.66Z (k1\1I3J 3 -1
ll'REC= YkT In YkT +0.196 Z"2) [em s ].

Thus, one obtains for the total collisional-radiative recombination coefficient ll'

for a bare nucleus of charge Z

(19)

with ll'colb ll'rad' and ll'REC given by Eqs. (9), (16), and (18), respectively.
The problem still to be solved is the determination of the energy E* of the

position of the minimum that enters into Eq. (13). Following the suggestion of
Byron et al., 5 E* corresponds to the energy of the state at which the total
transition rate has a minimum (i.e., to the position of the bottleneck). For the
calculation of E*, the REC can be neglected because this process populates
predominantly the deepest-lying bound states. 2

The total equilibrium transition rate is the sum of the collisional de-excitation
rate R (E) per energy interval E and of the radiative transition rate An times the
equilibrium density [8Nz - 1(E)/8E]e of ions per unit E. An appropriate expression
for R(E) may be obtained from Eq. (111.7) of Ref. 4, if Ro is scaled according to
Eq. (7) of the present paper:

R(E) = 7.8Z3Ro(1, ne , kT)e- E
( _E)-3.83. (20)

R(E) has a minimum at E = - 3.83 and approaches infinity at the ionization
limit E = O. Because of the strong, almost-unscreened Coulomb field of the
nucleus it certainly is not obvious that Eq. (111.7) of Ref. 4, which holds for
hydrogenlike atoms, may be scaled to hydrogenlike ions. One should note,
however, that the position of the maximum of the cross section for electron
impact ionization as a function of the electron energy (the time-reversed process
of the three-body recombination) is almost the same for atomslO and for
hydrogenlike ions. I! Thus, the position of the minimum at E = -3.83, which
corresponds to the cross-section maximum, should not change very much going
from neutral atoms to ions. In addition, the equilibrium collisional transition rate
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between two highly excited levels Ei , Ef of an ion calculated in the Born
approximation9 agrees rather well with the rate calculated in Ref. 4, if the Z3
scaling of Eq. (7) is applied. In the present paper we use the expression of
Mansbach and Keck, because it overcomes the difficulty in the Born approxima­
tion for small energy transfers lEi - Etl.

The radiative transition probability is given by Eq. (10), and, since the
influence of radiative transitions of the type n~ n * on the equilibrium number
density [aNZ - 1(E)/aE]e is negligibly small, this quantity can be expressed via the
Saha-equilibrium density

(21)[
aNZ - 1(E)] = 3[aNz (E)] = 3[ ] [ ] jf3/2 (£) e-

E

OE e Z OE e Z Nz e ne e 2 kT (_E)5/2'

Thus, one finally must solve the equation

:E {R(E) + [ON~-:(E)lA(E)} = 0, (22)

with R(E) given by Eqs (8) and (20), [aNZ - 1(E)/aE]e by Eq. (21), A(E) by Eq.
(10), and E by Eq. (17).

FrOITl Eq. (22) one finds the position of the minimum at an energy E* that
satisfies the equation

(kT)3.7S
-(E* + 3.83) + 1.87 .1013 0 S (_E*)3.S8( -E* - 0.25) = 0, (23)

ne • Z·

with ne in cm-3 and kT in eVe
In Eq. (23) [ne]e has been replaced by ne, becau~e usually in an electron cooler

ne - [ne]e is negligibly small for Saha-equilibrium, as may easily be verified using
Eq. (14). In this context one should note that the expression [Eq. (23)] for the

10

Z = 1
5

2
*w

0.2I

1 eV

0.5

o. 2 L-....L_----JL--.-_~_---I...--_~_----"-__'-----~

109 1010 1011 1012 1013 1014 1015

Electron Density (cm-3)

FIGURE 1 Reduced binding energy -E* = RZ2/(n*2 kT) for protons as obtained from Eq. (23) as
a function of the electron density for three values of the electron temperature.
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FIGURE 2 Same as Fig. 1 but for uranium ions.

0.5

minimum corresponds to Eq. (26) of Ref. 3. In the collisional limit ne~OO E*

approaches -3.83, independent of Z. This can be considered as a support for the
argument expressed in Ref. 5, which means that it is not the details of the
wavefunctions that are essential for the position of the minimum but the energies
of the bound states involved.

Obviously, Eq. (23) must be evaluated numerically. The results are plotted in
Fig. 1 for Z = 1 and in Fig. 2 for Z = 92 as a function of the electron density in
cm-3. The parameter of the curves in both figures is the electron temperature in
eVe As expected, the dependence of E* on Z is rather weak. The collisional limit
-3.83 is reached for high Z at smaller electron densities than for low Z at a given

Z 1

kT =

106 108 1010 1012 1014 1016

Electron Density (crn-3)
FIGURE 3 The total collisional-radiative rate coefficient for protons as a function of electron
density for three values of the electron temperature. Solid lines represent our results and dotted lines.
the coupled-state calculations by Stevefeldt et aI., 3 respectively.
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value of the electron temperature. The qualitative expectation expressed above
that the position of the minimum will shift towards larger values of n * (thus,
smaller values of -E*) is confirmed by the results shown in Figs. 1 and 2: The
lower the electron densities, the more important the radiative transitions are and
the smaller -E* becomes.

A comparison between rather extensive numerical calculations by Stevefelt et
al. 3 and our model for the total collisional-radiative rate coefficient a' for Z = 1 is
shown in Fig. 3.

At fixed values of kT both calculations agree rather well in the collisional limit,
whereas for medium densities--depending on the electron temperature--our
model predicts values of a' about a factor of 3 larger. This is because in our
calculation the second term of a'rad in Eq. (16), which is proportional to (kT)-V2,
is computed up to the series limit, whereas Stevefelt et ale take only a limited
number of states into account. Since we use Ne(n) '- n2 up to the series limit, our
model probably overestimates this contribution. For smaller values of the
electron density, the discrepancy between the two sets of data becomes smaller
than a factor of two.

3. DISCUSSION OF THE RESULTS

Figures 4 and 5 show the total collisional-radiative coefficient a' according to Eq.
(19) for Z = 1 and Z = 92, respectively, as a function of the electron temperature
kT for an electron density of ne = 108 cm-3. The dashed curves represent a'colb the
dashed-dotted curves a'REC, and the dotted curves a'rad. At low temperatures, the
collisional recombination dominates, whereas for high temperatures the REC
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FIGURE 4 Rate coefficients for recombination of protons with electrons of density ne = 108 cm- 3

.

The dashed line represents the collisional contribution a eoll ' the dotted curve the radiative
contribution a rad , and the dashed-dotted curve the contribution due to radiative electron capture
aREe, whereas the solid curve represents the sum.
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FIGURE 5 Rate coefficients for recombination of bare uranium ions with electrons of density
ne = 108cm-3. Meaning of the lines is the same as in Fig. 4.

becomes the most important process. In between, the total rate coefficient lY is
determined by the radiative recombination coefficient lYrad.

The variation of the total collisional-radiative recombination coefficient with
electron temperature and density as a function of the nuclear charge Z is shown
in Figs. 6 and 7. Although for small temperatures and high densities a ~ aeoll for
Z 2:: 5 due to the ne Z 3 /(kT)4.5 dependence (Fig. 6), the REC aREC and the
radiative recombination arad are the dominant processes at smaller densities and
higher temperatures for all Z. Thus, for the latter parameters ne and kT, which
are typical for most of the cooler rings planned at the moment, the collisional
recombination is of minor importance.

kT = 0.04 eV

10050201052

10-4

10- 5

10- 6

10- 7

10-8

10-9

10-10

10- 11

Nuclear Charge Z
FIGURE 6 The total recombination-rate coefficient and its contributions as a function of the nuclear
charge for an electron temperature of 0.04 eV and a density of 1010 cm-3. Meaning of the lines is the
same as in Fig. 4.
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The dependence of a on the electron temperature for a nuclear charge Z = 92
is plotted in Fig. 8 with the electron density as parameter. At temperatures
kT > 0.4 eV the rate coefficient becomes almost independent of the density,
because the REC (whose recombination coefficient is independent of ne )

dominates. At lower temperatures (kT < 0.05 eV), the influence of the collisional
recombination can be clearly seen. Obviously, for very small electron tempera­
tures the electron-ion recombination in an electron cooler may become very
critical.

Figure 9 shows a as a function of the nuclear charge at two electron
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FIGURE 8 Total rate coefficient for recombination of uranium ions with electrons at three densities
as a function of temperature. At high temperature the three curves merge because REC, which is
independent of density, dominates.
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FIGURE 9 Comparison of the present results (solid curves) for the total recombination-rate
coefficient with extrapolations using either a Z2.4 scaling (dashed curves) of the collisional-radiative
rate coefficient calculated by Bates et al. or applying the Z scaling of temperature and density to the
«cad term calculated by Stevefelt et al. (dotted curves). The REC contribution is the same in all cases.

temperatures; the electron density is 108 cm-3 (solid lines). The strong increase of
the total recombination coefficient with decreasing temperature is obvious.

The result of our model of the Z dependence of the total recombination
coefficient may be compared to scaling prescriptions based on rather sophisticated
numerical calculations of a in Hand H-like plasmas. 1 Realizing that a /Z, kT /Z2,
and ne / Z7 are appropriate reduced quantities, Bates et al. 1 found from their
calculations that for electron densities that are typical for an electron cooler, a
scales approximately as Z2.4. The corresponding results are given by the dashed
lines in Fig. 9 for kT = 0.2 and 1 eV at ne = 108 cm-3

•

However, one has to keep in mind that the Z2.4 scaling strictly applies only
for values of charge Z and temperature. kT that are far beyond those plotted in
Fig.9.

One can also try to scale Eq. (29) of Ref. 3, which applies to hydrogen
plasmas, to higher Z using these reduced quantities. However, one finds that the
expression adopted for the REC is not precise enough for a large extrapolation.
To remove this drawback, this contribution to a has been fixed according to Eq.
(18) (See Ref. 2.). The two other terms in Eq. (29) of Ref. 3, which both contain
the electron density and temperature, have been scaled by ne / Z7 and kT /Z2,
respectively, to calculate a /Z. Note that this scaling gives for the collisional­
recombination coefficient the proper Z3 behaviour. The results are plotted as
dotted lines in Fig. 9. The rather good agreement between our simple model and
the extrapolations of detailed numerical calculations is quite satisfying.

Based on our results for the recombination coefficient a, an estimate of the
time constant 'floss can be obtained determining the lifetime of a stored ion beam.
If TJ denotes the ratio of the length of the cooler to the circumference of the
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FIGURE 10 The time constant 1'1088 of a uranium beam as determined by recombination losses as a
function of electron temperature. At high ion-beam velocities, the time constant shown must be
multipled by the relativistic parameter y2.

storage ring, and y denotes the relativistic variable, then

2(. )-1 ( )-1
1"loss = Y ane'YJ ::::=: atle'YJ· , (24)

because y is of the order of 1 for present heavy-ion cooler rings.
Figure 10 shows the liftime 1"loss of an uranium beam as a function of the

electron temperature, where a value of 0.02 has been adopted for 11. The
temperature dependence divides into two regions, with the radiative electron
capture dominating at high temperatures (1" ex: kTo. 5

) and the collisional recom­
bination dominating at low temperatures (1" ex: kT4

.
5
). For an electron density of

108 cm-3 and temperatures of kT > 0.2 eV, beam lifetimes can exceed 10 s.
However, Fig. 10 clearly shows the increase of problems encountered when
electron cooling of heavy ions is envisaged at substantially lower electron
temperatures.

Finally, we mention a critical point, the discussion of which is far beyond the
scope of this paper, namely, the assumption that in Saha-equilibrium the
statistical weight of the excited state is simply n2 [ef Eq. (12)]. In the presence of
the magnetic guiding field in the cooler and of the strong electric field due to the
electronic and ionic space charge, the electronic structure of the ions will be
changed, especially for large principal quantum numbers n. Obviously, it is
inevitable that this problem must be treated theoretically in more detail. Some
information about these states can be obtained from experiments in which the
radiation emitted during the recombination process will be studied. Intensity
ratios, line shifts, etc., will probably tell something about these exotic states.

REFERENCES

1. D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. Roy. Soc. 267A, 297 (1962).
2. V. M. Katkov and V. M. Strakhovenko, Sou. Phys. JETP 48, 639 (1978); M. Bell and J. S. Bell,



HEAVY ION-ELECTRON RECOMBINATION 175

Part. Accel. U, 49 (1982); D. Mohl and K. Kilian, "Phase Space Cooling of Ion Beams",
CERN-EP/82-214, 1982; D. Liesen and H. F. Beyer, "On the Radiative Capture of Free Cooling
Electrons: Total and Differential Recombination Coefficients", GSI-ESR/86-04, 1986, and to be
published.

3. J. Stevefelt, J. Boulmer, and J. F. Delpech, Phys. Rev. AU, 1246 (1975).
4. P. Mansbach and J. Keck, Phys. Rev. 181, 275 (1969).
5. St. Byron, R. C. Stabler, and P. J. Bortz, Phys. Rev. Lett. 8, 376 (1962).
6. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms,

(Academic Press, New York, 1957).
7. E. Hinnov and J. G. Hirschberg, Phys. Rev. US, 795 (1962).
8. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature

Hydro-dynamic Phenomena, Vol. I (Academic Press, New York, 1966).
9. I. I. Sobelman, L. A. Vainshtain, E. A. Yukov, J. P. Toennies Ed., Excitation of Atoms and

Broadening of Spectral Lines, Springer Series in Chemical Physics 7 (Springer Verlag, Berlin und
Heidelberg, 1981).

10. H. S. W. Massey and E. H. S. Burhop, Electronic and Ionic Impact Phenomena, Vol. I
(Clarendon Press, Oxford, 1969).

11. R. K. Janev, L. P. Presnyakov, and V. P. Shevelko, G. Ecker Ed., Physics of Highly Charged
Ions, Springer Series in Electrophysics, Vol. 13, (Springer Verlag, Berlin und Heidelberg, 1985).




