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A new linearized, rigid-disk model of negative-mass instabilities in high-current betatrons is
presented. The beam and accelerator cavity cross sections are taken to be rectangular so that the
electromagnetic fields can be evaluated exactly in toroidal geometry. Growth rates from the model
agree well with results of three-dimensional numerical simulations for beams and cavities with
rectangular or circular cross sections. Generally, negative-mass-instability growth rates are greatest for
beam energies within a factor of two of the so-called transition energy, and in that energy regime,
they scale inversely with the square root of the toroidal magnetic field strength. At much higher
energies, growth rates are nearly independent of toroidal field strength. Growth rates increase with
beam current and toroidal mode number, but the scaling laws are complicated by competition
between capacitive and inductive components of the toroidal cavity fields. In some instances, the
negative-mass instability is supplanted by slower-growing instabilities which arise from resonant
coupling between longitudinal and transverse beam modes. Certain growth rate cutoffs predicted by
previous theories of the negative-mass instability are not observed either in our model or in computer
simulations.

1. INTRODUCTION

Betatrons employing toroidal magnetic fields,"* possibly augmented by strong-
focusing fields,>* hold promise for accelerating multi-kiloampere electron beams
to high energies. However, beam stability is an important issue not yet
completely resolved. Among instabilities, the negative-mass mode is probably the
most serious, as it has been for other electron ring devices.” In this paper, we
present a theory of the negative-mass and closely related instabilities for
high-current conventional and modified"? betatrons. Since the model we use
results in quite elaborate expressions (despite the fact that we treat only the case
of a monoenergetic beam in a smooth-walled, perfectly conducting cavity), some
explanation of our reasons for developing this model seems in order. In the
derivation of the well-known negative-mass instability result for long-wavelength
modes on a pencil beam,® toroidal corrections to the fields are ignored. In
addition, the approximation y, =(1—B3)”"?~7, is made, where B,c is the
toroidal phase velocity of the mode, and vy, is the beam relativistic factor. If the
latter approximation is not made, then the (presumably more exact) dispersion
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relation predicts that when the product of the beam current times the beam
energy is large enough, the instability disappears. For a fixed beam energy, this
leads to the counterintuitive conclusion that the beam becomes stable as the
current is increased. Furthermore, when this type of model is applied to the
modified betatron,’ the growth rates obtained are in significant disagreement with
particle-in-cell computer simulations.®

In a previous paper,'® we developed a model for negative-mass instabilities
which included first-order toroidal corrections to the electromagnetic fields. No
approximation was made for y,. The growth rates we obtained agreed quite well
with simulation results. However, growth rate cutoffs were again predicted both
for the conventional and modified betatron, while no cutoffs were seen in the
simulations. In addition, agreement deteriorated at large toroidal mode numbers
(i.e., short wavelengths). This calculation strongly suggested to us that the
discrepancies were due to inaccuracies in the treatment of the fields, rather than
due to the rigid-risk model for the beam.

To reduce the discrepancies between theory and simulations, we have
developed a model of negative-mass instabilities which relaxes many of the
approximations in the earlier work by ourselves and others. We use a Green’s
function method to evaluate exactly the fields of the electron beam in the
accelerator cavity for arbitrary beam and cavity dimensions and arbitrary aspect
ratios. No constraints are placed on instability frequencies or toroidal mode
numbers. In addition, the beam need not be centered radially in the cavity. These
improvements are made possible by taking the beam and cavity to have
rectangular minor cross sections. This requirement is not as limiting as it might
seem at first. Three-dimensional numerical simulations indicate that beam
behavior in cavities of approximately square cross section is little different from
that in cavities of circular cross section, provided the cross-sectional areas are
equal.

A simplified analytical dispersion relation derivable from the new model is
qualitatively similar to the dispersion relation of Ref. 10. Numerical coefficients
are, however, much improved, and the new model exhibits even better agreement
than its predecessor with negative-mass-instability linear growth rates from
numerical simulations. In particular, the discrepancies with the few simulations
performed at high energies and at large toroidal mode numbers have been
eliminated.’’ More importantly, the present analysis is on firmer conceptual
grounds, which permits us to apply it more confidently in new regions of
parameter space.

Interesting behavior is predicted by the revised model. Inductive electric fields
dominate electrostatic fields at large toroidal mode numbers, giving rise to a new,
slower-growing instability which supplants the negative mass there. The transition
between instabilities can, to a degree, be shifted to lower toroidal modes by
moving the electron beam toward the inner wall of the cavity. (The analogous but
simpler case of inductive effects in a fast-rotating electron layer immersed in a
strong azimuthal magnetic field is treated in Ref. 12. Besides providing a check
on the betatron results, the electron layer analysis permits greater physical
insight.) High-frequency electromagnetic phenomena also are encompassed by
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the dispersion relation. As expected, electromagnetic effects are small in modified
betatrons with moderate-size cavity cross sections. (Strong-focusing betatrons, on
the other hand, are subject to virulent narrow-band three-wave electromagnetic
instabilities in certain parameter regimes.)'> No growth rate cutoffs of the type
predicted by the models of Refs. 9 and 10 are seen in either the theory or the
simulations.

This paper is organized as follows. In Section 2, the beam currents and
equations of motion are specified in the rigid-disk approximation. The self-
consistent electromagnetic fields of the perturbed beam in the toroidal accelerator
cavity are then evaluated exactly using Green’s functions. Although the resulting
dispersion relation is algebraically very complicated, useful analytical growth rate
expressions can be derived in most cases. The analysis is developed in Section 3,
and Table I catalogues most of the findings. Typical numerical coefficients
appearing in the analytical expressions are determined in Section 4. In Section 5,
the full dispersion relation is solved numerically for 1- and 10-kA beams over a
wide range of electron energies, magnetic fields, and mode numbers. Com-
parisons with three-dimensional simulation code data are provided. The analytical
expressions, numerical growth rate curves, and simulation results generally all
agree quite well. Our results are summarized and their implications discussed in
Section 6.

2. DERIVATION OF THE LINEAR DISPERSION RELATION

We consider a rectangular beam in a rectangular torus with dimensions as shown
in Fig. 1. In general, the beam cross section need not be the same shape as that of
the torus, and the beam need not be centered radially. Axial centering is, of
course, required for a static equilibrium.

As in earlier works,”!*"* we treat the beam as a string of rigid disks. The disks
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FIGURE 1 Cross section of rectangular beam in rectangular betatron cavity.
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are free to move in any direction, but have no internal degrees of freedom. Thus,
the internal dynamics of the beam, and temperature effects in particular, are
ignored. (Instability stabilization by a spread in electron circulation frequencies
has been discussed by various authors.)®*¢ The rigid-disk model relies on the
assumption that the transverse dimensions of the beam are small compared with
those of the cavity. For the modes we are concerned with, the scale length for the
transverse variation of the fields is on the order of the minor radius of the cavity.
Within this context, the beam centroid equations of motion are obtained by
integrating the single-particle equations over the beam cross section. Thus, the
beam-equilibrium radial-force balance equation is given by

1 Vo ) Ve_
AI(E,+RrBZ dA +y—2=0. (1)

In arriving at Eq. (1), we have taken the beam density to be constant and,
consistent with the rigid-disk approximation, the beam velocity to vary linearly
with radius. R is the charge-weighted equilibrium radius, Vj is the velocity at that
location, A is the cross-sectional area of the beam, and dA =rdrdz:

=%erA, A=fdA. @

Note that the speed of light and the electron charge and mass are scaled out of
our equations. This has the effect of measuring distance and time relative to an
arbitrary scale length, and potentials relative to the electron rest energy.

The linearized equations for beam motion about its equilibrium position are

obtained in a similar manner.*'°
~ OE, Vq aB>
y 8% = f(aE raB)dA+Bear+Af( 2rS2)aasz, ()
JE, Vg )
=— dA &
y OF f(6E+ réB)dA Be(Sz+Aj< R F" r

(8% ¥ o4 pro6, @)

. 1 (r
3 = B8 +— | — 5
v°R 66 ﬂ6r+AfR6EodA, )
with Vo E
B=r& V. (6)

Perturbed quantities are preceded by a delta (e.g., 8z), while unperturbed
quantities are not. Total time derivatives of perturbed beam quantities are
represented by dots above those quantities (e.g., 6z). By is the toroidal magnetic
field, averaged over the beam cross section.

Perturbed beam current and charge densities arising from these motions are

8J,=p 6z, @)
8J, = p OF, 8
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1. Ve
r(SJg—p66+R6p, ©)]
and
9 10 d
6p——5p62—;5rp6r—56p60 (10)

where p is the uniform equilibrium charge density. With the exception of Eq. (9),
which has been modified to take account of the beam azimuthal velocity variation
with radius, these equations are taken directly from Ref. 10. It is easy to show
that they satisfy the continuity equation.

For the calculations outlined below, it is convenient to express Maxwell’s
equations for the perturbed field quantities as a vector wave equation for the
electric fields:

2
(%—vz) O = ——6J v 5p. (1)

Once Eq. (11) is solved, the magnetic fields are determined simply from
3
B OB = -V X dE. (12)

The solution of Egs. (1)-(12) is straightforward but very lengthy. It proceeds as
follows. The perturbed quantities are taken to have azimuthal and temporal
variations of the usual form, namely, exp [i(/6 — wt)]. Equation (11), together
with its source terms, Eqgs. (7)—(10), are then solved for the perturbed electric
fields, using a vector Green’s function in cylindrical coordinates.'”'® The
construction of the Green’s function is described in the Appendix. Next, the
perturbed magnetic fields are obtained by direct substitution in Eq. (12). The
equilibrium fields are determined in a similar manner. Eliminating the various
field components from Egs. (3)—(5) then leaves a 3 x3 Hermitian matrix
equation in ér, 60, 6z. Its determinant is the desired dispersion relation.

The dispersion relation, cast in the form used in our earlier work,' is

2 (02 2 4 N:
(Q —a)z) Q _wr_Q—zl—g -Q 7=0, (13)

where Q = w —lw, and wy,= Vy/R. The axial and radial oscillation frequencies
are given by

B: »p { (pkpE)
2 z EPE 2 2y/72 2
2= —nwy 22— L - Q)3
0= 00T T A& W - wtya) (K T B AE— (wok)]
(P5PE)°K? (0kph)k> (0hph) k>
N AP Ny e AP (kZ:";g)%g}’ (14)
B: B, B_p (P5PE)’

0} =nw,—+ 0f——wo+—— { 22 — @2
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the longitudinal oscillation frequency (squared) by

P [ ? » (050E)

(5P%) ]

= — | — IAZ — m2) — 2
= AR & W - o ET )T 2 g o
16
and the coupling coefficient by (16)
Bo. P |! OEPEPE o
={—=Q+—|= Az —
Y217 A R - o )
l 2
o5 (Vitthos ~gosh)oh || o
+ —=(Q*-¢). 17
® k,ZAB (k2+lA.2B— wZ)IA% Y4 (Q 8) ( )

B! is the applied vertical magntic field, and » is the betatron index. The vertical
field is determined from radial-force balance, Eq. (1):

pVe 5 (P5)°P5P%
B=-p8-=—2 A P a4
WP (18)

with, from Eq. (6),

Py (P5)’PEPE
VgA k,olE k2 + OAZE ’
Sums in the preceding six equations are performed over the axial and radial

eigenvalues of the vacuum electromagnetic fields in the toroidal cavity. The axial
eigenvalues are given by

B=r'wo— (19)

44

2a

The axial form factors p% and p% are obtained by integrating the corresponding
eigenfunctions, sines and cosines, over the beam cross section:

k=2-j (0=j<). (20)

2b .
Voa (J=0),
pt={0 (j odd), 1)
2 sin (kb
\%E% (j even, j >0),
(2 sin (kb) :
—= d
ph=1{Va k (j odd), 22)
L0 (j even).

The radial eigenvalues satisfy the usual vacuum dispersion relations:

Ji(CAen)Yi('Agrs) = J(Agr)Yi(‘Agr) = 0, (23)
JI’(IABrl)YI’(IABrZ) - J;(IABrZ)YII(IABrI) =0. (24)
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For low / mode numbers, these eigenvalues can be approximated as

(0 (7=0),
1
Ap={ @& . . (25)
=r’ (>0,
L =0
Np =1 (26)
T (j>0)
—rl Y7Y

The eigenvalue ‘Az(j = 0) is not included in the sums since the eigenfunction itself
vanishes in this case. As [ increases, the values of the low-lying electric and
magnetic eigenvalues are pushed up.

The radial form factors are expressed as integrals over the vacuum eigenfunc-
tions, because simpler expressions do not, in general, exist:

w2
pk= f grrdr, 27
wy
AL __ l " Ar
pr=—4hs [ ghrar, (28)
w
i AT
Py = gBErdr, (29)
W
AR ! o
Pp=—"Ap | gB jrdr, (30)
W R
"2 R
pr=| gk=rdr, (31)
W r
and
a =gk —"Aergk 2/ o} (32)

Recall that «, which typically is of order unity, occurs only in Eq. (15). The
eigenfunctions entering into Egs. (27)-(32) are
gt = CElL(Aer)Yi(Agrs) — I(Agr) Yi('Agr)], (33)
g% = CElD[JI(IABr)Y;(IABrz) - J;(llBrz)K(llBr)]. (34)
The quantities J; and Y, are standard Bessel functions of the first and second

kinds. A prime indicates differentiation with respect to the argument. The
normalization constants in these expressions are'’

Ce =P (eI G9)
=4 (r-52) @] (36)

Accurate solutions of Egs. (13)-(36) clearly must be obtained numerically.
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However, a qualitative picture of instability scaling can be developed with
surprising ease.

3. APPROXIMATE INSTABILITY GROWTH RATE SCALINGS

The negative-mass and related instabilities typically occur at frequencies ap-
proximated by Q = 0. Thus, provided lw, is well below the electromagnetic cutoff
for toroidal mode / of the betatron cavity, which is usually the case, we can safely
replace w by lw, in the denominators of the field contributions (the sums) in Eqgs.
(14)-(17). Making the same substitution in the numerators of the field contribu-
tions in Eqgs. (14)—(16) is less accurate but still tolerable. This is not true of Eq.
(17), however, due to a strong cancellation between electrostatic and inductive
contributions. With these approximations, the terms occurring in the dispersion
relation take the form

2v
w?=nwj—g 5 (37)
2v
w?=(1 —n)w%—gzﬁ, (38)
v ?
e=25 (827 —200?). (39)
v 1 2 2. 2:02
1= (ro@+ Z o) — (@ - o), (40)

where v is the beam current normalized to 17 kA. For a square beam roughly
centered in a square cavity, the five geometrical factors are approximately

g1~8~1, (41)

g3~g4zg5z%+ln(1%c>, (42)
as can be verified numerically. A, is the cavity cross-sectional area, defined
similarly to A.

Although the precise values of g; and g, are not critical, the three remaining
coefficients must be determined quite accurately. Expanding Eq. (40) and
dropping small terms proportional to Q2 and v? yields

2000 Y (g g V) + 1Y V3 43
x= wORzy(gS 84V%) R"y(g3 84V%e). (43)
Thus, the coupling term y between longitudinal and transverse beam modes
depends sensitively upon the differences between gs and g4, and between g; and
g4- Numerical evaluations of these factors (see Section 4) indicate that the second
term in Eq. (43) is more often the larger, in which case

2

X = % £, (44)
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where ¢, is € evaluated at Q =0. This finding is noteworthy, because the first
term in Eq. (43) gives rise to the spurious growth rate cutoffs mentioned in
Section 1. Having determined that this term is negligible these cutoffs disappear
[see Egs. (50) and (56) below].

3.1. Conventional Betatron at High Energies

Let us now specialize to a high-current conventional betatron, for which the
general dispersion relation is

(@ — 0))(Q* - &) =1x. (45)

For an equilibrium to exist in the conventional betatron at high current, y must
be sufficiently large that the first term in Eq. (38) dominates the second. Then,
Eq. (45) becomes approximately

Q- w2Q*— x=0, (46)
with solutions
2 2\ 2 172
QZ=%:1:[(%) +x] . 47)

For small x, i.e., weak coupling between longitudinal and transverse beam
modes,

4y 2l \*v
2=(1) tEmavi <t (48)
the two pairs of roots in Eq. (47) reduce to
Q=w? -—ylow (49)

The former represents transverse (in r) oscillations, which are stable, and the
latter represents predominantly longitudinal oscillations, one of which is unstable,
with a growth rate

= IT 1 v N
o Fee R (50)
if x (equivalently, &) is positive. Equation (50) becomes the usual negative-mass-
instability growth rate expression when g;=g,.>?*° However, the instability
vanishes if yx is negative. This stabilization of the negative-mass effect is caused by
inductive coupling of the beam to the accelerator cavity,?"*? which is discussed
further in the next section.

With increasing /, the inequality of Eq. (48) is eventually reversed, giving rise
to strong coupling between the longitudinal and transverse modes. One unstable
hybrid mode with a growth rate given by

11/2 v 1/4
r=% [ Se-avh)] Q)
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occurs if x is positive, and two unstable modes with growth rates smaller by a
factor of 1/V/2 occur otherwise. Numerical calculations performed to date suggest
that the latter possibility is much more common. Note that the growth rate at
large I, Eq. (51), scales as ['2, in contrast to the growth rate at small /, Eq. (50),
which scales as /.

Instabilities in a modified betatron can be evaluated in a manner similar to that
used for the conventional betatron, provided the poloidal cyclotron frequency
By /v significantly exceeds the toroidal cyclotron frequency w,. We distinguish
between beam energies comparable to and much greater than the transition
energy Y., defined as the energy at which w, vanishes. Since the former regime
has no counterpart in the conventional betatron, we consider it later.

3.2. Modified Betatron at High Energies

For the modified betatron at high energies, Eq. (13) reduces to

w2y
Q* — Q(wh+ &) ——55=0, 52
@k + )~ 52 (52)
where
w’w?
2 _rz 53
wB BZQ/YZ ( )

is the poloidal drift frequency. (In obtaining these expressions we have assumed
also that £ << w}, which is true in most cases of interest.) Solutions to Eq. (52) are

92~w%+eoi [((oZB+£O)2 w?y ]1’2
2 2 B3ly?

As before, we consider the limits of small and large y. For small y, Eq. (54)
reduces to

(54)

Q=wi+e, - wx (0% + &) 55
B 0> B(29/')/2 B €p). ( )

When o} >> g, Eq. (55) in turn becomes
Q= w3, —yx/wi (56)

Note that the second root in Eq. (56) is identical to that in Eq. (49).
Consequently, the toroidal magnetic field has no effect on the negative-mass
instability whenever

12 ‘}’5602602
By -« —2=. 57
[} R2 g3 _g4V% ( )

Very large currents and applied fields are needed to violate this inequality, except
at small y.

In the opposite limit, w% < &y, Eq. (55) simplifies to

—wix/so

Q?=¢g,,
0 B3/y?

(58)
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TABLE 1

Approximate Solutions to the Dispersion Relation, Eq. (13), for

Conventional Betatrons and for Modified Betatrons Well Above the

Transition Energy. Solutions are Categorized by the Toroidal Field
Strength B, and the Coupling Coefficient .

By X Q? Case
r 2\2
[ 2 X
o -2 1A
’X' < ( 2 ) @, 0)3
03> 0l 3 W?\2
x| > (—2—') £y 2A
x| <<<w’w")2 w3, - % 1B
2 T w?
03> 05> e 9 oo\2 W2\ 12
|l >>< . ”) i(x——?) 2B
L 2 ;
( 2 2
£ w, X 05
e - 1
e (Gor) e -t c
ED Wy 2 2\ 12
£ w, 0%
Dl-— T x—> 2

The second of these roots can be simplified by means of Eq. (44) to the usual
negative-mass-instability growth rate expression for very large toroidal fields,?

I'~(1-n)""ywg, (59)

which is independent of both ! and v. The first root in Eq. (58) is purely
longitudinal. Instability results for &,<0, i.e., for inductive electric fields
dominating electrostatic.'?

Returning to Eq. (54), we find that the large yx limit corresponds to a strong
coupling between longitudinal and transverse modes, just as in the conventional
betatron. The growth rate here is simply that described by Eq. (51), reduced by a
factor of order (B,/B,)"*:

w 12 11/2 v 1/4
r-(g2p) e -] .
Bo/v R Y(g3 84V%) (60)

The various cases we have considered thus far for both the conventional and
the modified betatron are categorized in Table I according to the magnitudes of
wp and y.

3.3. Modified Betatron at Low Energies

It is more difficult to obtain useful instability growth rate estimates for the
modified betatron at low beam energies, because the ordering of most terms in
the dispersion relation is not uniform. Replacing & by &, often is particularly
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dubious. Nonetheless, some progress can be made for w? near zero, provided w?

is also small there. In this case, the dispersion relation reduces approximately to
x/e ) X03

Bly?

=0, (61)

Q- Q2 (1 - - =
¢ B3/y?

which has as a formal solution
€ X/E € 2 X/€ 2 X(Ug 12
2\ By2) £ 12) U B22) FBasp ©2)

As w? goes to zero, so does one root of Eq. (62), and replacing € by ¢,
becomes permissible:

o2 _ Y003 ( _ Y’0i )
B3/y? B3/y?)”
Equation (63) is similar to the strong magnetic field expression, Eq. (58), but with
a correction term in the denominator. When the denominator is positive, Eq. (63)
predicts instability above the transition energy (w?>0) and stability below. Note,

however, that further below the transition energy the second term in the square
root in Eq. (62) may dominate the first, i.e.,

2 2 2

v (5) (-3)

bl >\ = 1 - » 64
B3ly*™ \2 B3/y? 64

causing the two unstable modes often found numerically at low energies.

large enough magnetic field eliminates the instability there. The approximate
criterion is

(63)

9,10,15 A

By >> . (65)

Incidentally, when the toroidal magnetic field is so small that the denominator
of Eq. (63) becomes negative, the root described by Eq. (63) is stable above the
transition energy but unstable below. The other root in Eq. (62) is unstable
throughout.

4. NUMERICAL EVALUATION OF GEOMETRICAL FACTORS

The approximate growth rate expressions obtained in the previous section all
involve the geometrical factors g, through gs introduced in Egs. (37)-(40).
Solutions to the exact dispersion relation, which we will examine in the next
section, exhibit some features which can be attributed to subtle changes in the
relative magnitudes of these factors as certain parameters are varied. In this
section, we examine these features in some detail.

Accurate calculation of the g’s involves numerical evaluation of the sums in
Egs. (14)—(17). Typically, the first 20 to 40 radial and axial eigenmodes are kept
in the calculations. For the sums used to evaluate w?, ®? good accuracy is
achieved only when the numbers of axial and radial eigenvalues used are
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approximate integer multiples of twice the cavity-to-beam ratios of the axial and
radial cross-sectional dimensions, respectively.

For our present purpose, we simplify the sums in Egs. (14)-(17) by eliminating
w, replacing it by //R in the denominators and by /w, in the numerators of the
terms in the sums. (These approximations are not made when we obtain solutions
to the exact dispersion relation in Section 5.) The resulting expressions for g3, g4,
and gs are approximately independent of beam energy, and the energy depend-
ence of g, and g, can be made explicit as

g1 =7v4(gi—give), (66)
g2=v(85— g3V%). (67)

Note that in deriving Eq. (67) we have dropped an extremely small term
proportional to E2, because it is inconsistent with the scaling shown.

Table III lists geometrical factors for a range of [/ values, based on the
configuration in Table II. Their magnitudes are approximately as expected,
namely, unity in the first four columns and 1/2 +1n (A./A) =3.72 [see Eq. (42)]
in the last three columns. More importantly, relative differences among related
factors are small. The few percent difference between g and g2, for instance,
indicates that g, is essentially independent of y for y <10. At much higher
energies, g, increases as y, but at such energies, self-fields have no effect on w2
Likewise, the small differences between gs and g, justifies our earlier approxima-
tion that the term in Eq. (43) linear in Q usually can be ignored. We note here
again that this has the important consequence of eliminating spurious growth rate
cutoffs predicted by previous theories [see Eq. (50)].

Differences between gs and g4, on the other hand, have a strong impact on the
beam stability, because they can affect the magnitude and even the sign of £ and
x- At small /, g5 slightly exceeds g, and as a consequence, negative-mass growth
rates fall off at high energies as y~'? rather than the usually cited y~>2. The
difference between the two geometry factors decreases with increasing toroidal
mode number, so that at /=11 they are equal. At higher /, g, exceeds g3,
stabilizing the beam at sufficiently large energies. As we shall soon see, this

TABLE II

Typical Betatron Parameters Used in Numerical Solu-
tions of the Dispersion Relation, Eq. (13).

Beam current 1,10kA
Beam energy 1-30 MeV
Toroidal magnetic field 0,1,10,100kG
Index, n 0.5
Beam inner radius, w; 98.24 cm
Beam outer radius, w, 101.76 cm
Beam axial half-width, b 1.76 cm
Torus inner radius, r, 91.2 cm
Torus outer radius, r, 108.8 cm

Torus axial half-width, a 8.8 cm
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TABLE III

Approximate Geometrical Factors Computed for the Parameters in
Table II at Various Toroidal Mode Numbers

a b a b

82 82 82 83 84 8s

1 1.094 1.090 1.094 1.093 3.593 3.589 3.571
5 1.094 109 1.095 1.093 3.593 3.590 3.570
10 1.095 1.090 1.097 1.091 3.593 3.592 3.568
15 1.095 1.089 1.100 1.089 3.592 3.596 3.567
20 1.096 1.088 1.103 1.084 3.591 3.602 3.572
25 1.097 1.08 1.104 1.075 3.591 3.610 3.589
30 1.098 1.084 1.104 1.062 3.591 3.622 3.627
35 1.098 1.080 1.098 1.041 3.593 3.637 3.700
4 1.097 1.075 1.086 1.009 3.596 3.658 3.828

reprieve from the negative-mass instability is short-lived. For still larger /, the
beam encounters the large y regime indicated by the second, fourth, and sixth
cases in Table I, and the hybrid instability discussed in the preceding section
occurs.

The coefficients g; and g, represent the electrostatic and inductive electric
self-field contributions to the beam longitudinal dielectric function. Electrostatic
forces always exceed inductive in a straight drift tube, if no slow-wave structure is
present. Evidently, the larger inductive field in a betatron is due to curvature of
the beam and cavity. Ordinarily, one would expect a dominant inductive field to
cause unstable longitudinal bunching, as in a Cherenkov maser.>* The reverse,
however, is true of a beam particle with effectively negative mass, for which
excess electrostatic fields cause instability. To corroborate this picture, we have
compared the stability of beams in betatrons to that of rotating electron layers, a
simpler problem.’? Both were immersed in very strong azimuthal guide fields to
suppress negative-mass effects. Inductive fields were found to dominate electros-
tatic in both cases at high / values.

Table IV illustrates the changes in the geometrical coefficients for / =1 as the
position of the beam centroid is varied. When the beam is near either the inner or
the outer wall of the cavity, g, is much reduced due to shorting of the axial self-
field restoring forces, and g, is correspondingly increased. Hence, beam stability at

TABLE 1V

Approximate [ =1 Geometrical Factors Computed for the Parameters in
Table II but with the Beam Offset Radially by Various Amounts

R(cm) g} 8 g & g 8s 8s
107 0.136 0.134 12.768 13.282 1.590 1.579 1.326
103 0.851 0.847 1796 1.875 3372 3.366 3.357
100 1.094 1.090 1.094 1.093 3.593 3.589 3.571
97 0.905 0.903 1901 1.810 3.373 3371 3.314

95.67 0.684 0.684 3.133 2962 3.081 3.081 2.986
93 0.158 0.159 14.601 13.936 1.600 1.610 1.260
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low energies can be affected strongly by the centering of the beam. In addition,
g4 grows relative to g3 as R is decreased. The two become equal at R = 95.67 cm,
and for smaller radii, the inductive field dominates. This suggests that improved
stability at low ! can be achieved for a high-energy beam by placing it near the
inner wall of the torus.

5. NUMERICAL SOLUTION OF DISPERSION RELATION

A computer program was written to calculate the roots of the exact dispersion
relation, Eq. (13), using Muller’s method.* Typically, five seconds of CDC-7600
computer time is necessary to initialize a given set of parameters, after which
roots can be obtained at a rate of about one per second.

Calculations were, for the most part, performed using the equilibrium
parameters listed in Table II and for toroidal mode numbers in the range 1-30.
The parameters were chosen to bracket those of the modified betatron under
development at the Naval Research Laboratory.?

Figures 2-5 depict /=1, 10, 20, and 30 negative-mass-instability growth rates
for 10-kA and 1-kA beams in 1-kG guide fields, determined directly from Eq.
(13). (To convert to units of sec™", multiply growth rates by 3 x 10'°.) Results for
I =1 and 10 with y > 10 agree well with Eq. (50). The growth rate scales linearly
with { and Vv. As predicted in Section 4, the growth rates at high energies vary
roughly as y~ for I =1 and as y™>? for [ =10. Scaling of growth rates at low
energies is not so clean, but appears to go as (/V/v)"2. Although the two unstable
modes below y,, appear to join directly onto the one unstable mode above y,,, a
closer examination indicates that a tiny gap exists, consistent with the discussion
accompanying Eq. (63).

When / > 11 the standard negative-mass instability is cut off by inductive effects
for x negative, i.e., [see Eq. (43)] for y greater than

Yeo = (1 - 83/84)_1/2- (68)

1.00 —T T
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---1 kA
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r(io73 em™1)
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0.00
0.0 20.0 40.0 60.0

FIGURE 2 Growth rates of the / = 1 negative-mass instability versus energy for 10-kA and 1-kA
beams in 1-kG guide field.
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FIGURE 3 Growth rates of the / = 10 negative-mass instability versus energy for 10-kA and 1-kA
beams in 1-kG guide field.
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FIGURE 4 Growth rates of the / =20 negative-mass instability versus energy for 10-kA and 1-kA
beams in 1-kG guide field.
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FIGURE 5 Growth rates of the / =30 negative-mass instability versus energy for 10-kA and 1-kA
beams in 1-kG guide field.
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FIGURE 6 Doppler-shifted frequencies Q of the modes associated with the / =20 negative-mass
instability of a 10-kA beam in a 1-kG guide field (see Fig. 4).

The cutoff shown for the 1-kA beam at / =20 in Fig. 4 satisfies Eq. (68) well.
Note also the first appearance of the hybrid negative-mass instability in a narrow
band around y =24. The hybrid mode is much stronger in the 10-kA beam and
merges directly into the usual branch of the instability at y.,. The growth rates
are described accurately by Eq. (54), but not yet by Eq. (60), because y is not
sufficiently large. In Fig. 5 for /=30, y.,=12; the hybrid negative-mass
instability is well-developed for both 10 kA and 1KkA.

Figure 6 illustrates the mode couplings that give rise to the different instabilities.
It presents the Doppler-shifted real frequencies Q corresponding to the growth
rates of the 10-kA beam in Fig. 4. Below y,, and above y,,, the longitudinal and
transverse modes are strongly coupled, and two unstable branches with com-
parable growth rates typically exist. The standard negative-mass instability occurs
within the intervening energy range, resulting from a nonresonant distortion of
the longitudinal modes by curvature effects.

Instability growth rate scaling with By is depicted in Figs. 7 and 8 for the 10-kA
beam at /=1 and 20. Results for 1-kG, 10-kG, and 100-kG guide fields are
shown. Corresponding data for the conventional betatron are not given for / =1,
or for [ =20 below y,.,, because they are indistinguishable from the 1-kG results

1.00 . .

cm
o
@
)

T

FIGURE 7 Growth rates of the /=1 negative-mass instability versus energy for 10-kA beams in
1-kG, 10-kG, and 100-kG guide fields.
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FIGURE 8 Growth rates of the I =20 negative-mass instability versus energy for 10-kA beams in
1-kG, 10kG, and 100 kG guide fields.

at energies for which an equilibrium exists (above about 9MeV). The
conventional betatron is stable above vy, for [ =20, because the inequality of Eq.
(48) is not yet strongly reversed. In general, we expect the guide field to have
negligible influence on beam stability for low [ (e.g., Fig. 7) so long as Eq. (57) is
satisfied. For the present parameters, this is true for By less than a few kG at
y =10, and for By less than a few thousand kilogauss at y = 50. Hence, we see a
steady drop in the peak of the growth rate curve as By is increased above 1kG
until it obeys Eq. (59) at 100 kG. Note that growth below y,, also is eliminated. In
contrast, growth rates at the highest energies shown in the plot are little reduced.

Below v, instability behavior at / =20, displayed in Fig. 8, is qualitatively
similar to that at / =1. Growth rates above the inductive transition energy are
expected, based on Table I, to fall off with magnetic fields as Bg'? once By
somewhat exceeds w,. This happens above a few kilogauss for energies of interest
in Fig. 8. At very high guide fields, of several thousand kilogauss, the
negative-mass instability is eliminated, leaving the inductive instability mentioned
in Section 4. Figure 9 gives the growth rate at infinite field strength, for which Eq.
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FIGURE 9 Growth rates of the / =20 negative-mass instability versus energy for a 10-kA beam in
an infinite guide field.
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(13) collapses to
Q=g (69)

The instability sets in abruptly at y.,. Growth scales as //R and, for high energies,
(v/y*)"2. As a test of our work, we also solved the magnetized e-layer dispersion
relation in Ref. 12 with k = /b and obtained remarkably similar curves.

Parameters differing from those in Table II were run in a few instances. A
10-kA beam in a 1-kG guide field at / =1 and 20 was considered. Changing the
vertical field index n from 0.5 to 0.25 or 0.75 modified the overall magnitudes of
growth rates by no more than 20%, although details were somewhat different at
low energies. Likewise, increasing or decreasing the beam dimensions by a factor
of two caused no differences not accountable for in terms of a rescaling of g3, g4,
and gs. Small changes in R also had negligible effects. Moving the beam all the
way to the inner wall, on the other hand, eliminated all / =1 instabilities above
y = 34 but increased growth rates by a factor of 2.5 at low energies. Growth rates
at [ = 20 were approximately doubled.

We conclude this section with a brief comparison of dispersion relation curves
with growth rates determined by the three-dimensional particle-in-cell computer
simulation code IVORY.?”” (IVORY decomposes the electromagnetic fields
azimuthally into sines and cosines, any set of which can be followed. In this way,
the development of selected toroidal modes can be treated individually, if
desired.)'® Some simulations were reported previously in Refs. 10 and 11. Figure
10 gives /=1 results for a 10-kA beam in a 1-kG guide field. Agreement is
excellent except for the y =4 data point. The discrepancy is probably due to
differences in the beam radius between the theory and simulations, which shifts
the location of y,,.

Figure 11 displays the simulation results for / =20. Data points follow the

1.0 : :
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g 0.6 i
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'
=4
-
o 04 -
N
0.2 -
0
0 10 20 30

FIGURE 10 Negative-mass [/ =1 growth rates for a 10-kA beam in a 1-kG guide field, determined
from IVORY simulations, compared with dispersion relation results.
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FIGURE 11 Negative-mass and hybrid instability / =20 for a 10-kA beam in a 1-kG guide field,
determined from IVORY simulations, compared with dispersion relation results.

theoretical curve quite well, even through the transition between the two
instabilities. Note, however, that simulation results can be very sensitive to a
spread in particle circulation frequencies at high [ values.’* At y=12, for
example, a simulation using a beam equilibrium with negligible frequency spread
agrees well with the rigid-disk model. By increasing the beam minor radius from
1.6cm to 2.2cm, thereby significantly increasing the frequency spread,'® the
instability growth rate was reduced by some 40%. Both data points are shown in
the plot, as is a y =10 point for which significant damping effects also were
evident. It is interesting that the three hybrid instability simulations (the three
high-energy data points in Fig. 11) saturated benignly. Figure 12 shows the final
state of the y =50 simulation, in which the beam has expanded about 75% in

110.

105.

100.

R (cm)

95.

Z (cm)

FIGURE 12 Cross section of a 10-kA, 25-MeV beam in a 1-kG guide field after saturation of the
{=20hybrid instability.
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FIGURE 13 Negative-mass growth rates at various / values for a 10-kA beam in a 1-kG guide field,
determined from IVORY simulations, compared with dispersion relation results. Some simulations
employed rigid disks instead of discrete particles.

radius but is otherwise not significantly distorted. In contrast, all negative-mass-
instability simulations to date have ended in substantial current loss to the
accelerator cavity wall. See, for example, Fig. 3 of Ref. 10. This difference is
probably due to the lower growth rates of the hybrid modes, although differences
in the linear mode structure may also be involved. Regarding the latter, it
appears from the simulations that, at the lower energies where negative-mass
instability occurs, the magnetic field inhibits the radial spreading of the beam
required to saturate the instability.

Figure 13 treats the same beam parameters as Figs. 10-12 but with y held fixed
at 12 and / varied from 1 to 20. Again, agreement between theory and simulation
is excellent. The few simulations performed with rigid disks instead of discrete
particles further vindicate the rigid-disk approximation made in our model.

6. SUMMARY AND DISCUSSION

We have developed an improved rigid-disk model for high-current, low-
temperature beams in conventional and modified betatrons. The resulting
dispersion relation, although quite complicated, has been solved analytically in
several useful limiting cases and numerically over a wide range of parameters.
The spurious growth rate cutoffs predicted by previous dispersion relations are
absent. A novel result of this work is the dominance of inductive over
electrostatic fields at high toroidal mode numbers, which stabilizes the negative-
mass instability at high energies for some toroidal modes and gives a hybrid
instability for others. The limited utility of a toroidal magnetic field for slowing
instability growth at beam energies well above the transition energy is also
noteworthy. Model predictions agree well with most available simulation data,
but additional comparisons are desirable.

Several possible techniques based on inductive coupling between the beam and
the accelerator cavity suggest themselves for reducing the negative-mass in-
stability at low toroidal mode numbers and moderate to high beam energies. We
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have already seen that positioning the beam near the inner wall of the torus
decreases the [/ =1 negative-mass-instability growth rate of a 10-kA beam above
about 15MeV. (That this result for a far-off-center beam carries over to beams
and cavities with circular cross section remains to be proved, however.) Thin
dielectric linings or weak periodic slow-wave structures in the cavity?"** should
have similar effects but must not significantly decrease the electromagnetic cutoff
frequency. Using periodic structures also creates the possibility of inducing
unstable three-wave mode coupling.’® Although reducing growth for low toroidal
modes tends to increase it for high modes, beam temperature may control the
latter. Implementing any of these ideas may pose serious technical problems,
however. Far-off-center beams may quickly strike the wall, dielectrics outgas and
flash over, and slow-wave structures are easily damaged by high-power beams.
Nonetheless, additional thought given to such speculative approaches may prove
fruitful.

Before concluding, we remark that other possible methods of suppressing the
negative-mass instability exist. For instance, Eq. (56) predicts stability for the
modified betatron when w? and w? are negative. The sign reversal can be
accomplished by introducing trapped low-energy electrons into the accelerator,?
or by other means which we are presently investigating.
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APPENDIX

Green'’s Function Solution to Eq. (11)

In Ref. 17, Morse and Feshbach show how to construct a Green’s function for
Eq. (11) in general curvilinear coordinates from solutions to the scalar Helmholtz
equation. Here, we use a more direct approach, starting from the component
form of the vacuum vector Helmholtz equation in cylindrical coordinates:

V’E, + w’E, =0, (A-1)
20Ey E
2 42 ¥=6 2 —
V°E, 230 r2+wE, 0,
2 0E, E,
VE, + 55—~ ——+ w’Ey =
° 2o r? @°Ep =0.

Solutions are assumed to be of the form E(r, z) exp (i/6 — iwt). The equation for
the vacuum E, field decouples, and the eigenfunctions satisfying the appropriate
boundary conditions are

o(l, k, 'g) = gE(r)f (2), (A-2)

where the normalized radial eigenfunction g}(r) is given by Eq. (33), ‘A satisfies
Eq. (23), and the normalized axial eigenfunction f§(z) is given by

f2=Qa)y? for j=0,

— A-3
f’i:=a‘”2[cos] (]—;)n—z] for 1=<j<w, (A-3)
a

Sturm-Liouville theory guarantees that the E, eigenfunctions form a complete
set, so that the Green’s function for the complete solution for E, is given by

G.() = zfz(z)gE(r)]{f(zlifEE(r ).

The equations for E,, E, are coupled, but can still be solved in terms of Bessel
functions, yielding two normalized independent solutions:

[dgE(’)A ;g rA]

(A-4)

Ve(l, k, 'Ag) ="AE'f5(2)
(A-5)

A

will, b, hs) = 4575020 ~ S gbe+ 2205
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where g} is as in Eq. (33), g} is given by Eq. (34), ‘Ap satisfies Eq. (24), and
f%(z) has the form

fe= a‘l’z[sm”; cos (];jl—z] ,  l=sj<w, (A-6)
Yz and Y3 are orthogonal in the sense that
fr drdz Vi, k, 'Ag) - Ye(l, k', 'Ag)=0 for all k, k', ‘Ag, ‘A, (A-7)

where the star denotes the complex conjugate. Together, the eigenvectors in Eq.
(A-5) form a complete set for the perpendicular electric field and yield the dyadic
Green’s function:

v (r, DYE(r', z') | e, 2)5(r', 2°)
J.(l) Z = kZE IA'zE + BwZ_k2B_ IA%
Applying Green’s theorem to Eq. (11), we find that the solution for the electric
field is given by

(A-8)

E=fc-(—iw 8 +V Sp)r' dr' dz', (A-9)

where G stands for the total Green’s function G, + G,2z'. For example, the
expression obtained for E, is

E fE(z)gE(r)

Ez(r) Z)= - k2 1).2

[(wQ - k*)pkpk 6z + kpp} Or — ilkpp} 661,

(A-10)

where the form factors p¥%, p%, etc., are given by Egs. (21), (22), and (27)-(31).
The magnetic fields are obtained from the electric fields by applying Faraday’s
Law, Eq. (12).





