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The guiding-center equations for the reference electron located at the centroid of an intense electron
ring confined in a torsatron-assisted modified betatron field are derived by time averaging its fast
motion. These “slow” equations are integrated analytically to obtain the nonlinear orbits for the
guiding center. In addition, from the guiding-center equations, we have obtained a nonlinear
expression that predicts very accurately the ring equilibrium position, even for large displacements
from the minor axis of the torus. These results have provided an invaluable insight into the
development of a trapping scheme. The proposed scheme is compatible with the slow acceleration of
the modified betatron and is based on a low-amplitude, rapidly varying magnetic field that shifts the
ring equilibrium position from near the wall to the minor axis of the torus in a time shorter than a
beam bounce period.

1. INTRODUCTION
Extensive theoretical studies'™® over the last few years have shown that the
modified betatron accelerator has the potential to generate electron beams of
very high current. Recently, a “table top” device® at the University of
California, Irvine, has produced electron rings with about 200 A of circulating
current. A larger device, currently under test at the Naval Research
Laboratory,? has been designed to produce multi-kiloampere electron rings and
to address the critical physics issues of the modified betatron concept.

A dlsadvantage of the modified betatron accelerator is its sensitivity to energy
mismatch.? Whenever the energy of the electron beam is not precisely matched to
the betatron magnetic field, the center of beam gyration in the plane transverse to
the minor axis is shifted radially, and thus the probability for the beam to strike
the wall increases. To alleviate the energy mismatch problems, a modified

T This work was supported by the Strategic Defense Initiative Organization and by the Office of
Naval Research.
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betatron accelerator should be carefully designed to provide an accurate and
precise betatron field, and the injector accelerator should generate electron pulses
having an energy that precisely matches this field.?

To reduce the orbit sensitivity of the modified betatron to the energy mismatch,
Roberson et al. have suggested® the use of a strong focusing field generated by
[=2 stellarator windings. In more recent studies,” we have demonstrated
numerically that the energy bandwidth of a modified betatron configuration
assisted by a strong focusing field generated by torsatron windings can be very
wide. In addition, we have shown that the torsatron windings also substantially
improve the current-carrying capabilities of the device?* and could alleviate the
beam displacement problem associated with the diffusion of the self-magnetic-
field.

However, the usefulness of the twisted windings in improving the performance
of the modified betatron remained questionable, because a scheme to trap the
beam in such a configuration was not available. By reducing the orbit sensitivity
to the energy mismatch, the strong focusing field makes trapping of the beam in
such devices more difficult.

Recently Sprangle and Kapetanakos® have developed a scheme for trapping a
beam in a rebatron accelerator. This device has a magnetic field configuration
that is similar to that of a modified betatron supplemented with torsatron
windings. The suggested scheme is based on the dissipative force generated by the
resistive wall surrounding the electron ring. Although such a trapping scheme is
appropriate for a rebatron, it is of doubtful usefulness for the modified betatron.
The reason is that in the rebatron the particle acceleration occurs very rapidly,
i.e., over a few microseconds, and therefore the cyclotron frequency correspond-
ing to the betatron magnetic field (Q,o/y) varies rapidly with time. Therefore, the
resistive wall mode may not impose serious limitations on the stability of the ring.
However, this is not the case in the modified betatron, because the acceleration
occurs slowly, i.e., over a few milliseconds.

In this paper we propose a trapping scheme that is compatible with the slow
acceleration of the modified betatron. The proposed trapping approach is based
on a low-amplitude, rapidly varying magnetic field that shifts the beam equi-
librium position near the minor axis of the torus in a time shorter than the beam
bounce period. Since the new trapping scheme is similar to that presently used in
the NRL modified betatron,’>'* its implementation would require only minor
modifications in the existing device.

Before addressing the beam trapping, we derive two equations that describe
the nonlinear motion of the guiding center of the reference electron that is
located at the beam centroid. Using these equations, we obtain a nonlinear
expression that accurately predicts the beam equilibrium position, even for large
displacement from the minor axis of the torus. In addition, by integrating
analytically the guiding-center equations, we obtain an approximate constant of
the motion that predicts the topology of the guiding-center orbits. These
analytical results have provided an invaluable insight into the development and
understanding of the trapping scheme.
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2. GUIDING-CENTER MOTION

In this section, we derive the equations describing the guiding-center motion for
the reference electron that is located at the centroid of an electron beam with a
circular cross section. In the system of coordinates shown in Fig. 1, the
instantaneous position of the reference electron is

r=ry+ X+ or, €))
z=27Z+ 6z, 2

where r, is the major radius of the torus, X and Z define the position of the
guiding center relative to the minor axis, and ér and 6z give the position of the
gyrating electron relative to the guiding center.

Introducing the complex variables

u=r+iz, 3)
U=X+iZ, “)
ou = 6r +idz, %)
and combining Eqgs. (1) through (5), we obtain
u=ry+ U+ dbu. )

Substituting Eq. (3) and its time derivative into the equations of motion
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FIGURE 1 The various systems of coordinates used in the analysis.
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and
d, . e 1 . .
Sy = —=|E+2 (B, - rbB)),
we obtain

.. y .Q 2 j

U+(’—'+’i—9)u—ﬂ’= —i[(E,HE,)—’—”—"(B,HBz)], )
Yy v r my c

where Q, is the cyclotron frequency corresponding to the toroidal magnetic field

By, v, is the toroidal velocity, E, and E, are the image electric fields, and B, and

B, are the components of applied (torsatron and betatron) and image magnetic

fields.

2.1. Applied Magnetic Fields

The toroidal magnetic field consists of the applied toroidal field and that
generated by the torsatron windings. To lowest order the toroidal field is given

by**
By = — (B, + BX) + B¢, L,(2ap)(e¥®~*) 4 ¢~ 2(#= ), 8)

A

where B, and B{* are defined in the local coordinate system é,, é,, &
By =8nal/cL (here I is the current and L is the period of the torsatron windings);
B¢, =2aB,poK;(2ap,), in which p, is the minor radius of the torsatron
windings; K, and L are the modified Bessel functions; and o =2x/L.

Since, for relativistic energies, v, is approximately constant,

w,, =2ave = —2as/t, 9)
and Eq. (8) becomes
By = — (Bo + B™) + B¢, L(2ap)(e* e + e %P, (10)

Similarly, to the lowest order, the components of the torsatron field transverse
to the minor axis are**

B}, =2B e, L(2ap) sin [2(¢ — as)], (11)
2Bex .
B, = a‘ps L(2ap) cos [2(¢ — as)]. (12)

These expressions are for a cylindrical system, and thus the toroidal corrections
have been omitted. Therefore, the analytical work assumes implicitly that the net
vertical field of the unidirectional torsatron windings is cancelled by outboard

coils.
Substituting Eqgs. (11) and (12) into the expressions for B; and B,

B} = B}, cos ¢ — Bysin ¢, (13)
B; = B}, sin ¢ + B, cos ¢, (14)
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and using Eq. (9), we obtain
(B! + iB.) = B¢,i[l,(2ap)e " Pe i
~ L2ap)e e ] as)

In addition to the torsatron field, the betatron field contributes to the last term
of Eq. (7). Assuming that the betatron field components vary as

B‘r’ -~ zOn_z)
i
Blz’ =~ Bzo[l - n(r — rO)],
o
we obtain
(BY+iB?) = iBzo[l tn-"- iz)], (16)
()

where B, is the betatron field on the minor axis and » is the external field index.

2.2. Image Fields at the Ring Centroid

An accurate self-consistent determination of self-fields of a high-current electron
ring in a modified betatron configuration that is supplemented by strong focusing
is very difficult, because the minor cross section of the ring varies along the
toroidal direction.

However, here we are interested in the macroscopic motion of the ring and
therefore in the image fields that act on the ring centroid. These fields are not
sensitive to the detailed shape of the ring cross section and thus can be computed
approximately by assuming that the ring has a circular cross section that is
uniformly filled. Neglecting toroidal corrections, the fields at the reference
particle are

_ 2enyvgnrip
b a2c(1 . p2/a2)) (173)
E = 2enyrip (17b)

(4 _a2(1_p2/a2)’

where r, is the minor radius of the ring, a is the minor radius of the perfectly
conducting torus, and n, is the uniform electron density. The fields given by Egs.
(17a) and (17b) are for a straight, cylindrical beam. The toroidal corrections are
addressed in the next section.

Since

B,=—-B,sin ¢, E,=E, cos ¢, (18a)
and
B, =B, cos ¢,E, = E, sin ¢, (18b)
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Egs. (17) and (18) give

e @2 (r,\2 X +6r+i(Z + 8z2)
——[(E, +iE,) — ifo(B, + iB, =—P(—”) ,
m[( iE;) — iBo( iB.)] 2 \a (1-pYldd)y?
where w, is the ring plasma frequency, i.e., w?=4me’ny/m, and By =vy/
c=f=v/c

(19)

2.3. Taylor Series Expansion of the Fields
To separate the slow from the fast motion of the reference electron, it is

necessary to expand the fields as a Taylor series about the guiding center.?
Neglecting terms higher than quadratic, we have

B 1
B(r,z)=B(R, ®) + 8p-VB|z o = B(R, ®) + 3(6u + du*) 9B, —(u — 5u*)§—123 .

oX 2
(20)
Since
X=Rcos® and Z=Rsind,
9 _9X3 9239 _ ol isnol
R oRaX oRoz BT axTMM T3z
and
d 38X o 09Z 2 3 a
R T ; _— q)_’
20 20ax T awaz RSPy tReos®s
Equation (20) becomes
) i 0 [ 0 i o
B : =B R,(D +1 —¢d><______) 19, % @(_ __> .
(r, 2) ( ) + 36ue R Raq)B+26ue 8R+R8<I>B (21)

Furthermore, we shall assume that the reference electron rotates around the
guiding center with frequency tw,, i.e.,

Ou = du, e + Su_e ", (22)

This assumption is supported by the following two observations. We have

shown?* that, when w,, << Q¢/y, o, is an eigenfrequency of the linear system and
that

0, > o, = (Qe,/7)*/[4(1 — Qo /70,,)(Q6/ 7)),
where w; is the slowest eigenmode of the linear system,

Q% = eB™/mc = Q%ro/ (1o + X)),
Q,=eBy/mc, and Q,= — (R + Q).
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In addition, extensive numerical results show that, when o, <<Qg/y, the
electrons gyrate around the guiding center at a frequency w,,.
The time derivative of Eq. (22) is

ou = iw, (Su, e — du_e ") + R - V(Su e + du_e ™). (23)

We will show later that ou, ~ L(2ap) and du_ ~I,(2ap), and therefore that
Véu, ~2adu.. The second term in Eq. (23) can be neglected, provided

R Véu, <w,0uy, or

. 24
U K vg. @4

2.4. Time-Averaged Equations

By substituting the Taylor-expanded fields of Egs. (10), (15), (16), and (19) into
Eq. (7), using Eq. (21), omitting terms quadratic in du, multiplying the resulting
equation by e”“+, taking the time average from 0 to 27/w,, and omitting the
small term (Ue™“*), we obtain the following expression for m = 0:

Ly @+ 200) 4 ;2000 (U f i ou_ + 22 a@sve, (23 + i3 bu,
Y Y r0+X Y Vg Y Ve

lvga’ l'Uga/

U U
Qe ( Fr- zﬁ)) ou* + V¥ ngg,<v— fit lﬁ)aui
6 2]

R NC E

2
=9
2

where
f(R, ®)=I,2aR)e™.

In addition, for m =1 the time-averaged equation is

y. 1
—a)w[ww +Xie= <QO+
Y v

:6(’0) _ iU 5070
rn+ X/ 2yw,(rn+X)?

Vs + 1l o (r,,) 1 ]6
- = = u_
2(r+ X)’w,, 2y’w, \a/ (1-—R?*a*?

)

2.z

[Ueng _+_1w,2,<r,,)2 a a iU QS v} ]6 .

—|Yelg 2% (1 _ u
yr 2 3\a) A=R¥a®»? 2y(n+X)? 2n+Xx)21" *

" uof 4 iUfD). (26)
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Similarly, for m = —1 the time-averaged equation gives

X Z\?
Eg
a a vy

(1—R¥Ya*? 2(ro+ X)?

_(Mgzﬁl&f(ﬁ)z
YT 2y; \a

_17_25.3'0_) ut a0 _¥,
2y(re+X)*/ 7 TU\UY oy
_ lU ?6‘7‘0 _ U% " wg (E)Z
2yw,, (n+X)* 2+ X)’w, 20,y \a
1 1 f(’,‘r0>>
x—— Qg+ P
(1- R?/d2)? y( o+ x/)M
iU
= % Qe f, — ’7 Qe f,. @7)

For the parameters of interest, the underlined terms in Egs. (26) and (27) are
small in comparison with the non-underlined terms and can therefore be omitted.
In addition, assuming that y/y < w,,, Eqgs. (26) and (27) give

n N
('Ue/Y)2 - Q,0Q5 e f3 + fi(ve/y)Q e, (R, + Q26/7)
_ 0

ou-= UL = )
= fT(UO/Y)Q;:xet (28)
ww(gw - QB/Y)’
and
Su* = _(UO/Y)stst(f;‘ww(Qw — QB/Y) +f>1k(UB/Y)QZOn/rO)
+ = 2
2002 _ (32 /v2) — MQ_)
ww(Qw QB/Y ) < Yo Y
_ (eln)ef )
ww(Qw + QB/Y),
where
1 w? [r,)\2 1
oo (O
Q= o, 2y*w, \a/ (1-R?*/a*? Dw
and
A Q§3r0>
Qe_ B (QO+70+X )

Substituting du. from Eqgs. (28) and (29) into the equation for the slow motion
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[Eq. (25)], we obtain
ve(Qe,/7)*[L(2aR) + I,(2aR)|,(2aR) X
2(Q6/7)(Qoly — Q)R
_ v(Q¢,/7)[L(Q2aR) + L,(2aR)|L(2aR) X

Z+

2(Qe/7)(Qe/y + Q)R
vy Vp(R.0/Y) n
= —— - 1-2x
(Qo/7)(ro+X)  (Q20/7) ( To )
ENIAY X
T 2Qe/y) <a) (1-R?*/a®y* (30)
and
o vo(@5e /Y PILQ0R) + hQaR)H(2aR)Z

2(Qe/7)(R/Y — Q)R
v (Q¢e,/7)[L(2aR) + L(2aR)](2aR)Z
2(Q6/7)(R6/7 + Q)R
_ (/) Z wp (ﬁ)Z Z
T Q) 1 2AQely) \a) A-RYad)Y
These are the nonlinear equations that describe the guiding-center (slow)
motion of the beam centroid. They have been derived under the assumption that

y changes very little in the time scale of w,, i.e., /Yy < @,,. Since the variation of
y is mainly due to space charge, this condition can be written

@31

vRop =«

- <<, 32

yaa 2 (32)
where v is the Budker parameter and 8p is the amplitude of the motion
associated with w,,. The inequality of Eq. (32) is easily satisfied because v/y < 1,
6p/a <1, and R/a < 1. In contrast, the variation of y on a slow time scale cannot
be neglected in the presence of space charge. This is discussed in the next section.

2.5. Toroidal Corrections

So far, we have made the assumption that the aspect ratio a/r, is very small; thus,
all the toroidal corrections associated with the fields have been neglected.

For devices with parameters similar to those listed in Table I, the toroidal
corrections associated with the torsatron fields change the ring orbits only slightly,
provided that the net vertical field of the unidirectional torsatron windings is
canceled with outboard coils. Even with the torsatron field toroidal corrections,
we were able to derive the two slow equations of motion, but we were unable to
analytically integrate them and thus to derive a constant of the motion.

The toroidal corrections of the self-fields become very important when the ring
current reaches a few kiloamperes. In addition to changing the speed of rotation
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around the equilibrium position, the self-field toroidal corrections modify the
value of the vertical field required to confine the beam at its equilibrium position.

To lowest order, the self-field toroidal corrections can be included in the slow
equations of motion by replacing the fields of Egs. (17) and (18) by®

a W4 r:

~ ClelN/ “){ TS ok +8(r0+X)a] (332)
=—(2le| Ni/a)(Z/a), (33b)

Eo=—(2e| NiBs/c) [XX; ZZ_Z(rO)-(l- % lnrgb

2y XX +2Z7Z\/(1 a
(1 ﬁz)(—-zf—)(iﬂn ;)]' (33¢)
= —(2 le|NiBes/a)(Z]a), (33d)
and
X a rs

B.= @lel Npo/)| - (s e +1)+ 8—(—+X_)] (33¢)

where N, is the number of electrons per unit length. These fields modify only the
last term of Egs. (30) and (31). The nonlinear equations that describe the slow
motion of the beam centroid now become

. Ve(Qe/y)?
Z+ Z(Qe/'}’)
{[IZ(ZaR) + L(2aR)|L(2aR) [L(2aR) + 14(2aR)]I3(2aR)} ()_()
(Qo/y— Q) (Qoly+ Q) R
— U29 UG(QZO/Y) _ E
B (Qe/)’)(ro +X) * (Qe/Y) <1 o X>
©p _ (m\'[X a’ 2 2y 1n 2
2Qely) (a) {y3 * 2y(ro + X) [ﬁe +(1+Fo)In r,,]} (34
v UB(Q_?XE,/Y)Z
X 2(Q/y)
{[IZ(ZaR) + L(2aR)|L(2aR)  [L(2aR) + 14(2aR)]I3(2a/R)} (E)
(Qo/y—Q.) (Qo/y + Q) R
nve(RQ,0/7) Z w} n\> Z
T T T @) o +2(99/;/)( > > (35)
and

[ G )]G [ o O]

[XZ“LZZ o ﬁln@;—x)]}. (36)

2 4
—(/y) 25 27,

dt
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TABLE I

Parameters of The Runs Shown in Fig. 2

Torus major radius, r, (cm) 100
Winding minor radius, p, (cm) 18
Toroidal chamber minor radius, a (cm) 20
a=2x/L (cm™") 0.1
Field strength factor, &, —0.04275
Winding current, I (kA) 25

l 2
Torsatron toroidal field, B; (kG) 1.0
Additional toroidal field, B{* (kG) 3.0
Betatron field, B,, (G) 35
External field index, n 0.5
Beam electron density, n, (cm™>) 0
Initial y 2.96
Beam minor radius, r, (cm) 1.0
B,, (G) to hold beam at r, 47.27

Equation (36) describes the variation of y as the ring moves along its slow orbit.
In addition to the effect of E, and E,, Eq. (36) includes the effect of the toroidal
electric field that is generated by the time-varying self-magnetic vector potential
as the beam centroid moves in the transverse plane.
The guiding center of the electron ring gyrates around the equilibrium position
cq, which can be determined from Eqs. (34) and (35) by taking X = Z =0 and is
given by the expression

(@ ly)?
2(QZO/Y)
[10(2aXeq) + IZ(ZaXeq)]Il(zaXeg) _ [12(2aXeq) + 14(2aXeq)]I3(2aXel)
Q, 3o ] [ s0%o ]
=002 4 Q, Qly+—22——Q,
[ Y y(o+ Xe) T Y+ Xey)

Vg _ ﬁ
(rO + Xeq)(Qz()/Y) * <1 ry Xeq)

When the electron ring is located at its equilibrium position, y does not vary with
time. However, when the injection position is different from the equilibrium
position, the energy of the reference particle is different in these two locations
and can be found by integrating Eq. (36), which gives

1 a X*+272* i X
y+2v|s4+m-——=—-2 B < ]
2 1 a 8a® (r,+ X)
v[1 a X*+2° a.  (rn+X)
~Lli+mé- At
[2 7 a® +lnrbln To ] Yo (38)
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where 7. is a constant that is determined from the injection conditions. Equation
(38) has been derived under the assumption that yy=y, and a small term
proportional to v/y> has been omitted.

2.6. Integration of Nonlinear Equations

The nonlinear Eqs. (34) and (35) can be integrated, provided that the spatial
variation of 24 can be neglected, i.e., when €24 = 4, = constant.

Multiplying Eq. (34) by X and Eq. (35) by Z and taking their difference, we
obtain

_ ve("e/v)’[I(20R) + L2aR)L(22R) 1 d

= = — 2
0 2(8260/7)(S260/ Y — Q)R 2 dt( )
v(Q%,/ ) [L(2aR) + L(2aR)]L(2aR) lﬁ( 2 _ w? (E)z
2(Qeo/1)(R0o/ Y + Q)R 2 dt 2(Qooly) \a
1d
-—(X*+2% be
2dt a X 2 2 E
X 3 +2Y(’o+X) [ﬁ9+(1+ﬁ9)lnrb]
vy d Vo(Ro/M)d (, N
(Qoo/y) dt In (1+X/ro) + (Qeo/y) dt (X 21, X )
(ve/y)R0n d (22). (39)

2(990/')’) rodt

Before acceleration and for the parameters of interest Q,, = w,, < Qq0/y and
therefore Q,, can be omitted. With this approximation, the first two terms of Eq.
(39) become independent of y, and they can be written as a total time derivative.
Let

[o(2aR) + L2aR)J(2aR) =22

dR’
where v, is a function to be determined.
Since
dy, dy,dR _ dR
the function v, is obtained from
IZ
v, = f L(2aR)L(2aR) dR + f L(2aR)l,(2aR) dR =5+ (41)

Similarly, the second term gives

Wy = f L2aR)L(2aR) dR + j L(2aR)L(2aR) dR = L/2a. 42)



TRAPPING IN A MODIFIED BETATRON 13

Since the two torsatron terms do not include toroidal corrections, the factor
X/r, is omitted when it appears in these terms. With this approximation, Eq. (36)
together with Egs. (39) through (42) give

QexIZ
{00+ 0By + g niear) - BeaR)
onro X2 nZ?
(r +X)[1+(1 n) 2 2r%)]
2 2 2
+2v/ﬁe(r0+X)<1/2+ln3—X‘+Z—g7”)—()}=0, (43)

Equation (43) can be expressed in a different form that is very revealing. Defining
a stream function

Y= (r+ X)[AS™ + A + AFY],

where
AY™ = —B%™¢? 2 [l32aR) — I5(2aR)],
4“990( +X)
X2 nZ2
A —Bor0[1+(1 n)5a 2r(2)]’
and
X+7Z> nX
Ag"= —2N, (1 2+1In ———-——b_>,
6 elel Bo( 1/ pe Y
Eq. (43) becomes
le (Ps)
+ ——SYy=—= 44
(ro + X)Boy 3 ¥ =", = constant (44)
or
a X°+7Z* rnXx
(r0+X){/39[y+2v<1/2+1nr—b—7—87:’2r_0)]
onro[ X2 Zz] (Q5e,)? 2 2 }
+—m— ]I 2aR
c 1+ n) 2r0 4acQq0 (r0+X)[ 1(2aR) = I5(2aR)]
_(Po) _
= e =K. (45)

According to Eq. (44), the averaged (over the fast motion) canonical
momentum of the reference electron is approximately conserved.

The equation that describes the nonlinear slow orbits of the beam centroid in
the plane transverse to the minor axis can be found by combining Eqgs. (38) and
(45). When ¢, =0, i.e., for the modified betatron, P, is an exact constant of the
motion, and Eq. (45) accurately predicts the macroscopic beam orbits. In the
presence of strong focusing, i.e., when g # 0, A¥™ is known only approximately,
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and thus the predictions of Eq. (45) are less accurate. In the latter case, the error
in (P, )/mc is proportional to (Q%*¢,)’R.

According to Eq. (45), the orbits pass through the minor axis when the
reference electron is injected into the device with a (Py) = (P, ), that satisfies the
relation

10€2.0 [ 2V< a)] (Ps)o
——=|1+—(1/2+In— = —— 46
c Yo / n rb BeoYo mer, (46)
In addition, Eqgs. (37) and (46) predict that the equilibrium position of the
reference electron will be located on the minor axis when its averaged canonical
momentum satisfies the relation

P, a
(Fy >00= _(V/Y%ﬁeo) In—.
mcr, 1

Near the minor axis, i.e., when 2aR <1 and X/r,<<1, Eq. (45) can be
linearized, and the resulting expression, when the small term that contains Z; is

omitted, is
[onro (1—n) - (Q:"ei)2arr%, _ 2V;% n (Po) ] <{)2
2C 46990 Yoa ﬁﬂo mcry o
N [onro _(QFe)’arg  vr ](Z)z
2c " 4c Qeo Y6a°Bood \ 1o
(Py) v < a r} )](X) 6P,
- + 2In—+—)[l—)= - s 47
[mcro 2Y3Boo n r, 2a*/i\r, mcr, (“47)

where

0P, =(Pe>_(Pe>00=<Pe>+ Y
mcry mcry, mcry  mcry  Y3Beo T
When €,=0, Eq. (47) is very similar to Eq. (20) of Ref. 6. The small
differences in the two orbit equations are probably associated with the
different approximations used to compute y. In general,

dy e (dqb 18¢)’

dt mc*\dt y* ot (48)

where ¢ is the electrostatic potential at the ring centroid. In addition to keeping
the first term in Eq. (48), as in Ref. 6, Eq. (36) includes the most important
contributions from the second term of Eq. (48).

Equation (45) is plotted in Fig. 2a for various values of constant (P, )/mc, for
zero electron beam density. The parameters for the results of Fig. 2 are listed in
Table 1.

All the orbits close inside the vacuum chamber. However, those that lie less
than a minor ring radius from the wall are not useful, because when the beam is
moving along one of these orbits, it will scrape the wall. In addition, it should be
noticed that the existence of drift surfaces for R near p, is certainly due to the
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FIGURE 2 (a) Guiding-center orbits from Eq. (45) for several values of constant K for the
parameters listed in Table I. (b) An electron beam orbit obtained from the numerical integration of
orbit equations, superimposed on the K =72 (cm) guiding-center orbit of (a). It is apparent that the
constant of the motion accurately predicts the guiding-center motion. (c) Same as (b) but with the
toroidal corrections of the torsatron field included in the numerical integration of the orbit equations.
(d) Same as (a), but at a finer scale; (¢) Values of (Py/mc) along the symmetry plane (Z =0). The
equilibrium position coincides with the maximum of (Py/mc).
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FIGURE 2 (Continued)

analytic approximation of the torsatron field. It is expected that the drift surfaces
in an actual device near p, will be substantially different from those predicted by
the analytic approximation.

Figure 2b shows an electron orbit obtained from the numerical integration of
orbit equations, superimposed on a macroscopic orbit of Fig. 2a that corresponds
to the same conditions. In both the numerically obtained orbit and the
macroscopic orbit from the constant of the motion, the toroidal corrections of the
torsatron field have been omitted. It is quite obvious that the constant of the
motion accurately predicts the guiding-center motion. The period of the particle
gyrating around the guiding center is about 1 ns, in agreement with Eq. (22), and
the radius of fast gyration decreases as the electron moves toward the minor axis,
in agreement with Eqs. (28) and (29).

The predictions of the constant of the motion remain rather accurate even
when the toroidal corrections of the torsatron field are included in the orbit
equations. Results are shown in Fig. 2c.

For the values of the parameters listed in Table I, Eq. (37) predicts that the
nonlinear equilibrium position is located at X, =10.2cm. To determine accur-
ately the equilibrium position, we have repeated the computer run of Fig. 2a
using a finer scale. The results are shown in Fig. 2d and indicate an equilibrium
position that is very close to 10.5 cm. This equilibrium position coincides with the
maximum of the curve in Fig. 2e. To check these predictions, we made a
computer run with the electron initially placed at X =10.0cm, Z =0. We have
observed that the electron started to gyrate around the X = 10.25 cm, Z =0 point
with a radius of a few millimetres. This test demonstrates unequivocally that Eq.
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FIGURE 3 Part of an orbit obtained numerically from the exact equations of motion, superimposed
on a guiding-center orbit (slow) that corresponds to the same conditions.

(37) accurately predicts the equilibrium position even when the parameter
2aR > 1. However, this is not the case with the linearized expression. For the
parameters of Table I, the linear theory predicts that the equilibrium position is
located in excess of 30 cm from the minor axis.

Figure 3 shows part of an orbit obtained from the numerical integration of the
equation of motion, superimposed on a macroscopic orbit [from Eq. (45) with y
from Eq. (38)] that corresponds to the same conditions. The various parameters
for this run are listed in Table II. The beam current is initially 4.659 kA and
increases to 6 kA after acceleration, i.e., when f3, =1. The agreement between
the exact equations and the constant of the motion is satisfactory.

3. BEAM TRAPPING

The minimum requirements for trapping an electron beam in a toroidal device
are:

(i) During the first revolution around the major axis, i.e., in a time
T<(27/RQ,0/y), the beam should drift along the guiding-center orbit a distance
greater than r, + r,,;, where r, is the minor radius of the beam and r,; is the
injector radius.



TRAPPING IN A MODIFIED BETATRON 19

TABLE 1I
Parameters of The Run Shown in Fig. 3

Torus major radius, r, (cm) 100
Winding minor radius, p, (cm) 18
Toroidal chamber minor radius, a (cm) 16
«=2nL (cm™) 0.06
Field strength factor, &, —0.1698
Winding current, I (kA) 55
¢ 2
Torsatron toroidal field, B, (kG) 1.32
Additional toroidal field, B{* (kG) 5.0
Betatron field, B,, (G) 57
Equilibrium magnetic field at 7,, B, (G) 61.214
External field index, n 0.5
Electron beam current, I, (kA) 4.659
Initial y (at injection) 1.58
Diode vp, 2.96
Minor beam radius, r, (cm) 1.0
Initial positions (cm) X(@=0) 3.75
Z(t=0) 0
S(=0) 26.18
Initial velocities X(@=0) 0
Z(t=0) 0
Uy 0.774

(ii) In a bounce period 73, i.e., in the time the beam completes a revolution
around the equilibrium position, the guiding-center orbit should be deformed
radially near the injector at least as much as the distance 7, + ;.

(iii) Within a time interval of a few bounce periods, the beam should drift near
the minor axis of the torus.

(iv) The radius of gyration around the guiding center should be substantially
shorter than the radius of the guiding center.

The guiding center equations derived in the previous section provide a valuable
guide in the development of a realistic trapping scheme for the following reasons.
The beam drift velocity along the guiding-center orbit can be optimized using
Eqgs. (34) through (36). From the shape of the guiding-center orbit that can be
determined from Eq. (45) and the bounce frequency, we can select the various
parameters of the trapping field that will radially deform the guiding-center orbit
by the desired amount so the beam will not strike the injector after a bounce
period. In addition, Eq. (37) gives the value of the betatron field required to drift
the beam near the minor axis. Finally, the electron gyroradius around the guiding
center can be minimized using Egs. (28) and (29).

For the parameters of Table I, the value of the betatron field required if the
equilibrium position of the beam is to be on the minor axis of the torus can be
computed from Eq. (37) and is approximately 48 G. Similarly, when the vertical
field is 35 G, the equilibrium position X, is located about 10.5 cm from the minor
axis of the torus (see Fig. 5a). Therefore, by increasing the betatron field as
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shown in Fig. 4, from 35 G to 48 G over a time period that is comparable to the
beam bounce period, the beam equilibrium position will move from X, = 10.5 cm
to X, = 0. Figure 5b shows the orbit of the reference electron for B,, =48 G, for
35 G, and for the combined field plotted in Fig. 4. This field consists of a 48-G
time-independent field and a time-dependent “trapping” field that varies as

B ={Bm,e"(’_"’)/’, for t=t,,
" Byo, for t,<t,

where ¢, is the trapping initiation time. For the results of Fig. 5, the values of the
various parameters of the “trapping” field are listed in Table III.

Over the first 20 ns, i.e., over a revolution around the major axis, the beam
drifts 8 cm away from the injector, which is more than sufficient. However, the
electron drifts around the new equilibrium position at X, = Z., =0 very slowly.
The total time required to complete the bounce in Fig. 5 is in excess of 1.3 us.

To determine the sensitivity of the orbit to the initial azimuthal position of the
injector, we made a series of runs with the injector always at the same X and Z
but at different S positions. Figure 6 shows the results when the injector is moved
from S =L/4 to S =0. The remaining parameters for this run are identical to
those of Fig. 5. It should be noticed that the final guiding-center radius, i.e.,
when the electron gyrates around X = Z =0, is appreciably smaller in Fig. 6 than
in Fig. 5. There is an additional difference between the results of these two runs,
which is not apparent in the figures. In Fig. 6, at the injection point, the torsatron
field is directed downwards, and thus the force —evyB; is directed radially
outward. As a result, the initial motion of the electron is outward. In contrast,
the —evy B:, force at the injection point in Fig. 5 is radially inward and so is the
initial motion of the electron.

B, (G)
Betatron Field
60
40}
201 Total Field
100 200 3(1)0
° R R " f(nsec)
—Zor Trapping Field

~(t-t5) /T >
Biro © , for 121,

Bir =
Btro, for t<tg

FIGURE 4 Betatron, trapping, and total vertical fields as functions of time.
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FIGURE 5 (a) Vertical magnetic field required to confine the beam at its equilibrium position,
referred to the minor axis, for I, = 0. (b) Orbit of reference electron at the beam centroid, injected at
114cm from the major axis when B,;=35G =constant and B,;=48 G =constant, and in the
presence of the trapping magnetic field. The various parameters for this run are listed in Table III.

The results shown in Figs. 5 and 6 were obtained for zero electron beam
current. However, the trapping mechanism remains applicable even at high beam
current [,. Results are shown in Fig. 7 for [, = 5.15 kA. As shown in Fig. 7a, by
increasing the magnetic field from 47 G to 57 GF, the equilibrium position moved
from 104 cm to 100 cm. The rest of the parameters for this run are listed in Table
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TABLE III
Parameters of The Runs Shown in Figs. 5 and 6

Fig. 5 Fig. 6

Torus major radius, r, (cm) 100 100
Winding minor radius, p, (cm) 18 18
Toroidal chamber minor radius, a (cm) 20 20
a=2x/L (cm™Y) 0.1 0.1
Field strength factor, ¢, —0.04275 —0.04275
Winding current, I (kA) 25 25
¢ 2 2
Torsatron toroidal field, B, (kG) 1.0 1.0
e-fold time, 7 (ns) 100 100
Trapping initiated at time (ns) 100 100
Trapping field amplitude, B, (G) -13 =13
Additional toroidal field, BS* (kG) 3.0 3.0
Betatron field, B,, (G) 48 48
External field index, n 0.5 0.5
Electron beam current, 1, (kA) 0 0
Initial y =y, (diode) 2.96 2.96
Initial positions (cm) X(@=0) 14 14

Z(t=0) 0 0

S(=0) 15.7 0
Initial velocities X(t=0) 0 0

Z(t=0) 0 0

Uy 0.941c 0.941¢

Z (cm)

o+ X (cm)

FIGURE 6 Same as Fig. 5, but with the injector at a new initial toroidal position (S =0). The
various parameters for this run are listed in Table III.
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FIGURE 7 (a) Vertical magnetic field required to confine the beam at its equilibrium position,
referred to the minor axis, for the parameters listed in Table IV. (b) Orbit of the reference electron
located at the beam centroid, in the presence of the trapping field. The equilibrium position moves
from 104 cm to 100 cm when the vertical field is increased from 47 G to 57 G. Initially, the beam is
injected with its centroid located at 112 cm. Since the orbit of the fast motion of the particle has a
2 cm diameter, the average position of the particle (guiding center) and the injection position are
different by about 1 cm.

TABLE 1V
Parameters of The Run Shown in Fig. 7

Torus major radius, r, (cm) 100
Winding minor radius, p, (cm) 18
Toroidal chamber minor radius, a (cm) 16
a=2x/L (cm™) 0.06
Field strength factor, ¢, —0.169776
Winding current, I (kA) 55
¢ 2
Torsatron toroidal field, B, (kG) 1.32
e-fold time, 7 (ns) 200
Trapping initiated at time (ns) 0
Trapping field amplitude, B, (G) -10
Additional toroidal field, BS* (kG) 5.0
Betatron field, B,, (G) 57
External field index, n 0.5
Electron beam current, [, (kA) 5.151
Initial y (at injection) 1.95
Diode gamma, v, 2.96
Minor beam radius, 7, (cm) 1.0
vly 0.18
Initial positions (cm) X(t=0) 12
Z(t=0) 0
S(=0) 26.18
Initial velocities X(t=0) 0
Z(t=0) 0
Uy 0.858¢
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FIGURE 8 (a) Vertical magnetic field required to confine the beam at its equilibrium position,
referred to the minor axis, for the parameters listed in Table V. (b) Orbit of the reference electron
located at the beam centroid in the presence of the trapping field, when the rational transform
induced by the self-fields overwhelms the transform of the external fields. In this case, the equilibrium
position moves toward the minor axis by decreasing the vertical field.

IV. In this run, a swell as in the run shown in Fig. 8, the self-fields have been
modeled to include the nonlinear cylindrical term, i.e., @ in Eqgs. (33a) through
(33d) has been replaced by a*(1— R*/a®). In addition, the quadratic vector
potential that describes the betatron field has been replaced by the nonlinear
vector potential

bet _ r \"(nt+X) 5 (1-n) nZ?
A= Z"[<r0+x) (2—n)+(r0+X)(2—n)+2(r0+X)]'

Finally the toroidal corrections to the torsatron field have been omitted.

At even higher beam current, the rotational transform induced by the self-fields
overwhelms the vacuum transform, and the beam centroid rotates in the direction
opposite that of the low-current case. Results are shown in Fig. 8. It should be
noticed that the slope of the curve in Fig. 8a that describes B, vs X, is different
from that in the low-current case. The results of Fig. 8 were obtained from the
numerical integration of the exact equations of motion for a beam current of
6.43 kA. The remaining parameters for the run are listed in Table V.

When the small term P,/mcr, is neglected, the linearized constant of the
motion [Eq. (47)] can be written

2 Z\?* 26P, (X)
=q:(2 ) - = 49
Ko ql(i) +q2<r0> mriQ,o \ro/’ (62)

qg1=1-n—-ngrila*+n,,

where

q.=n—nsryla*+n,
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TABLE V
Parameters of The Run Shown in Fig. 8

Torus major radius, 7, (cm) 100
Winding minor radius, p, (cm) 18
Toroidal chamber minor radius, a (cm) 16
a=2x/L (cm™) 0.06
Field strength factor, &, —0.102894
Winding current,  (kA) 20
¢ 2
Torsatron toroidal field, B, (kG) 0.48
e-fold time, 7 (ns) 200
Trapping initiated at time (ns) 0
Trapping field amplitude, B, (G) 20
Additional toroidal field, B{* (kG) 3.0
Betatron field, B,, (G) 70
External field index, n 0.5
Electron beam current, I, (kA) 6.43
Initial y (at injection) 1.68
Diode gamma, v, 2.96
Minor beam radius, 7, (cm) 1.0
vy 0.28
Initial positions (cm) X(@=0) 12
Z(t=0) 0
S(t=0) 26.18
Initial velocities X (t=0) 0
Z(t=0) 0
Vg 0.646¢
q,49, n=1/2 n#i/2 ny=o
\ !
Vo (Modified Betatron)
Stable \\\ I/I Stable
Wi 2,2 3
° Operating RegionW Nsfp /@ ~1p/%
a4, ‘ =iz nzisz
\\ H
V!
Stable ny>>1 \\ ! Stable
0 \ l, 3

2, 2
7 Nshy /0"~
Operating Region Unstable, s / Ib/)cln

FIGURE 9 Plot of the product g, - g, vs n,r3/a® for n,= 0 (modified betatron) and n, > 0 (modified
betatron with strong focusing). The orbits are closed (stable) when g, - g,>0.



26 C. A. KAPETANAKOS, D. DIALETIS AND S. J. MARSH

In these last expressions,

() ’rx
n=—"——"="-
‘ 2920 IQHO)l

is the torsatron field index, Qoo<0 is the combined toroidal field at r,, and
n,= w3/(2y,Q%) is the self-field index. According to Eq. (49), the macroscopic
beam orbits are stable, provided g, - g, > 0. Figure 9 shows the product g, - g, as
a function of n,r3/a* for n,=0 (modified betatron) and n,#0, i.e., a modified
betatron with torsatron windings. Since n,r3/a’>=1,/v}, the parameter n,r3/a*
decreases rapidly during acceleration. Therefore, in order to avoid crossing the
instability gap when v, increases, it is necessary to select the beam parameters in
such a way that n,3/a” is located in the left stable region during injection.
However, in Fig. 8, n,r3/a* is located in the right stable region; therefore, it is
likely that the beam will be lost during acceleration.

4. CONCLUSIONS

For w, <(Q4/y), we have derived two equations that describe the nonlinear
transverse motion of the guiding center of the reference electron that is located at
the beam centroid. Using these equations, we have obtained nonlinear expres-
sions that predict very accurately the beam equilibrium position, even when
2aR >1. Furthermore, by integrating analytically the guiding-center equations,
we have obtained a constant of the motion that predicts approximately the
guiding-center orbits in the transverse plane.

With the insight provided by these analytical results, we were able to develop a
realistic trapping scheme that does not require the presence of a resistive wall and
therefore is compatible with the relative slow acceleration of the modified
betatron.

The proposed trapping scheme opens the possibility of adding strong focusing
in a modified betatron accelerator. Such focusing may have several beneficial
effects on the device, because (i) it will alleviate the difficulty associated with the
orbit displacement resulting from the energy mismatch, (ii) it could alleviate the
beam displacement associated with the diffusion of the self-magnetic-field, and
(iii) it will improve the current-carrying capabilities of the device without
requiring injection at higher energies.
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