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A method of analyzing the rms emittance for an axisymmetric and nonrotating beam with a
Maxwellian velocity distribution is described. The resulting emittance is expressed in terms of
equations for the beam parameters, which may be easily constructed from the experimental
measurements. It is also shown that for beam parameters of simple form, the emittance can also be
calculated analytically.

1. INTRODUCTION

The root-mean-square (rms) emittance, proposed by Lapostolle l and Sacherer,2
has been widely used as an alternative means of defining beam quality.3,4 If a
beam has no sharp envelope, as is often the case in practical situations, the rms
emittance provides a useful means of describing the rms envelope of the beam,
whereas use of the emittance (the area in two-dimensional trace space) is
ambiguous, since it cannot be clearly defined. In practice, the rms emittance also
accounts for the effective increase due to the filamentation phenomenon in the
presence of nonlinear systems, in contrast to the emittance, which is invariant.

5

The rapid development of new pulsed power technology in the past two
decades has led to the production of high-current electron beams and ion beams
for a variety of applications. 6 Some applications, such as heavy-ion inertial
confinement fusion? and free-electron lasers,8 require the use of high-quality
beams. The evaluation of rms emittance, however, often requires an elaborate
effort of data taking and analysis. It is thus imperative to find a simpler method of
analyzing the rms emittance of such beams, which are mostly of a single-pulse
nature.

In this paper, we describe a method of finding the rms emittance from
experimental data obtained by using a simple emittance meter for an axisym­
metric and nonrotating beam with a Maxwellian transverse velocity distribution.
In the following sections, the definition of rms emittance is given, and a few
practical assumptions are imposed on the distribution function, so as to utilize
results of simple emittance meters. Subsequently, a method of analyzing data
obtained by a simple emittance meter is described in detail. The resultant rms
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emittance is expressed in terms of integrals of empirical equations deduced from
the experimental data. Also demonstrated are simple examples in which the rms
emittance can be calculated analytically.

2. DEFINITION AND ASSUMPTION

The rms emittance is defined as1
,2

(1)

where x' and y' denote the gradients of the particle trajectories, given by
x' = dx/dz and y' = dy/dz. The coordinates (x, y, x', y') in the "trace space,,9 are
used throughout. The brackets «"») denote values averaged over the four­
dimensional trace space, defined as

(ep) = ~ f epP4(X, y, x', y') dx dy dx' dy', (2)

where N is the total number of particles, given by N = f P4 dx dy dx' dy', and P4
is the density distribution in four-dimensional trace space, also known as the
microscopic brightness. Since the quantity of interest, <j>, in Eq. (1) is a second
moment of x - x' coordinates only, Eq. (2) may be reduced to a more convenient
form:

(ep) =~fepP2(x,x')dxdx', (3)

where P2(X, x') = f P4 dy dy', the projected density on two-dimensional trace
space. It is necessary for rms emittance evaluation that either P4 or P2 be
determined by experimental measurement. As will be described in the next
section, both can be directly measured by certain types of emittance meters.
However, such emittance meters may not be practical; in particular, for beams of
the single-pulse type. In order to utilize a simple emittance meter which can
complete the measurement in a single pulse, it appears inevitable to make some
assumptions regarding the form of the distribution P4' such that P4 can be
uniquely determined from the experimental measurements.

We assume a Maxwellian distribution of P4 in x' - y' space. This may be a
practical assumption,3 since the Maxwellian distribution is that of a thermal
equilibrium state. Actual beams, however, are not exactly in a thermal
equilibrium state; nevertheless, they have a similar distribution, which inherently
originates from their sources, such as thermionic cathodes and plasma ion
sources. With this assumption, the distribution is then written as

P4(X, y, x', y') = g(x, y) exp [_(X'2 + y'2)/2a2], (4)

where the components of the random angle (velocity) are given by X' = x' - i'
and Y' = y' - y', with i' and y' being mean values of angles (velocities) over
x' - y' space due to diverging or converging of the beam; i.e., i'(x, y) =
n-1 f X'P4 dx' dy' and y'(x, y) = n-1 f y'P4 dx' dy', where n(x, y) = f P4 dx' dy'.
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In Eq. (4) a is the rms value of angle (velocity) over x' - y' space, a(x, y) =
[n- 1 f (X,2 + y,Z)P4 dx' dy']1/2, and can be related to an equivalent thermal
temperature as a2= kT/(mof32c2). We also assume that the beam is axisymmetric
and nonrotational, Le., g(x, y), a(x, y) = (i,2 + y'2)1I2, and a(x, y) are functions
of r = (x2+ y2)112 only, and the mean angle a has only the radial component,
Le., i'/y'=x/y, or i'=ax/r and y'=ay/r. With these assumptions, the
four-dimensional trace-space distribution function can be rewritten as

P4(X, y, x', y') = g(r) exp (- y2/2a2),

where y2 = (x' - ax/r)2 + (y' - ay/r)2.

3. EMITTANCE METERS

(5)

(6)

Although a number of different principles are employed in various emittance
meters, the devices commonly used generally consist of two aperture plates and a
detector (see Fig. 1). The upstream and downstream plates may have one or
more holes or slits. The detector, placed downstream of both plates, measures the
fraction of beam passed through both apertures. The emittance meters may be
classified into four categories, named after the combination of the aperture types,
as two-slit, two-hole, hole-slit, and slit-hole meters. Suppose a hole is placed on
the upstream or downstream plates. Then each hole defines a pair of coordinates
(x, y) or (;,11) on the upstream or downstream plate, respectively. The upstream
aperture defines the spatial coordinates of a beamlet formed through it and allows
an angular dispersion due to the transverse. velocity distribution of the beam as it
moves towards the downstream plane. The downstream aperture then analyzes
the angular (velocity) distribution by further sampling the beam. One can relate
these coordinates to that of the four-dimensional trace space by

x' = (; -x)/L,

y' = (11 - y)/L,

SYMMETRY
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FIGURE 1 Trace-space coordinates in relation to a typical emittance meter.



136 M. J. RHEE AND R. F. SCHNEIDER

where L is the distance between the upstream and downstream plates. With these
relations it can be readily shown4

,lo that the intensity distribution measured by
three methods (two-hole, two-slit, and hole-slit) can be expressed in terms of
P4(X, y, x', y') or its integral. The two-hole method directly measures
P4(X,y,X',y'), the two-slit method measures p2(x,x')=fp4dydy' [or
P2(y, y')], and the hole-slit method can measure P3(X, y, x') = f P4 dy'. Here, we
have made use of the fact that a slit provides an effective integral of intensity
distribution in the direction of the slit (f dy or f dy'). In this analysis, we assume
an ideal hole or slit whose size is infinitesimally small. In practice, however, one
can choose any finite size, so long as the intensity distribution measured is
proportional to the slit width or hole area, Le., /4 == P4 ilx ily ~x' ily', where /4 is
the measured intensity distribution, and ilx, Lly, Llx', and Lly' refer to the size of
aperture. Since the emittance depends only on the form of distribution but not on
the magnitude of the distribution, one can use any relative intensity distribution /
for the P in this analysis without knowing the magnitude.

It is emphasized here that the slit-hole method can be utilized conveniently for
the si~gle-pulsebeam,11 although the measured intensity distribution appears not
to be related in a straightforward way to the distribution P4' Suppose the detector
measures particles passing through a slit (parallel to y, say) and a pinhole at
;, 1] = O. The measured intensity distribution is f P4(X, y, x', y') dYe Noting that y
and y' are related to each other by Eq. (6) as y = - Ly', since 1] = 0, and thus
dy = - L dy' , the measured distribution may be rewritten as
L f P4(X, Ly', x', y') dy'. If P4 is a slow function of y and is nearly constant
within a range y = ±La, where the a is the rms value of y', then the measured
distribution L f P4 dy' is considered to be approximately the same as that
obtained by the hole-slit method, excepting the factor L. This condition can easily
be met when the beam has a small diverging angle (a« 1) or by choosing the
distance between the aperture plates very small, such that (ap4/ ay)La « 1.

4. EMITTANCE ANALYSIS

Now we describe a method of analyzing experimental data obtained by the
slit-hole type emittance meter. This slit-hole method provides relatively accurate
information on emittance. A typical configuration of the system consists of an
array of slits and a detector plane as depicted in Fig. 2. The slits at Xi sample the
beam and produce sheet beamlets. These beamlets on the detector plane reveal
angular distribution. This distribution is scanned along the line of 1] = 0 by a small
pinhole and a detector (e.g., a Faraday cup, or film sllbsequently scanned by a
microdensitometer) , allowing construction of the density distributions f3(x;)
corresponding to the slit positions Xi' where x; = (~i -xi)/L.

Each f3(x;) is assumed to be Maxwellian and thus characterized by the peak
height f3i' rms width ai' and mean angle (velocity) Xi' From these discrete set~ of
experimental data, one can construct empirical equations for f3(x), a(x), and
i'(x) as functions of x, which smoothly connect (or curve fit) data points f3i' ai'
and Xi' respectively, as shown in Fig. 3.
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L (=1)

--------......... x

------... ,
FIGURE 2 Schematic representation of the slit-hole method. Shown is an intensity distribution
P(xD after slit Xi' whose mean angle, peak height, and rms width are i;, Pi' and ai' respectively. (For
simplicity the distance L between the two plates has been chosen to be unity.)
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FIGURE 3 Construction of empirical equations of beam parameters: (a) The peak value of an
individual distribution as a function of X or r, (b) the rms width as a function of X or r, and (c) the
mean (diverging) angle as a function of x or r.
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Noting (i) that the peak value of each distribution f3i is the measure of particles
of velocity equal to i' passed through the ith slit located at Xi and arriving at
1] =0, and (ii) that the slit in the Y direction effectively provides the integral
f dy', we may relate the empirical functions to each other by the four­
dimensional distribution function

f3(x) =Jp4(x,y=O,x'=i',y')dy'. (7)

By virtue of the Gaussian form, the integral f dy' in Eq. (7) is replaced by
V2ir a(x), yielding a simple relation,

f3(x) = V2ir a(x)g(x). (8)

Thus, the four-dimensional distribution in terms of measured empirical para­
meters may be written as

P4(X, y, x', y') =vt!;(r) exp {-[(x' - i')Z + (y' - y,)Z]/2aZ}, (9)

where Eq. (8) has been used with the argument r = (x2+ y2)112 in place of x
because ofaxisymmetry. One can easily recognize the spatial density distribution
in this case as

n(x, y) = JP4 dx' dy' = V2ir f3(r)a(r). (10)

Finally, the two-dimensional projected distribution on the x-x' trace space is
found to be

PZ(x, x') = Jf3(r) exp [-(x' - ax/rfl2a2] dy, (11)

(12)

where f3(r), a(r), and £1'(r) are empirical parameters which are functions of
r = (x2+ y2)1I2. The isodensity contours of P2(X, x') in x-x' space, known as the
emittance plot, provide very useful information about the beam.

For evaluation of rms emittance, three average values of second moments,
(x2), (X'2), and (xx'), are needed. Upon substituting the two-dimensional
distribution function given by Eq. (11) in Eq. (3), the averaging integral in x'
space is replaced by V2ir a because of the Gaussian distribution, and the
expression for (x2

) is obtained as

V2nfoo(x2
) =- x2f3(r)a(r) dx dYe

N -00

Similarly (X'2) and (xx') are given by

V2nfoo { (a'X)2}(x'Z) =N -00 [a(rW+ -; f3(r)a(r)dxdy,

( ') =V2irfoo x
2
£1'(r)f3(r)a(r) d d

xx N x y,
-00 r

(13)

(14)
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and the total number of particles N is

N= V2ii: LooJJ(r)a(r) dx dy.

It is of interest to note that Eqs. (11)-(15) are of the Abel type,12 i.e.,

foo foo R(r)
I(x) =2 0 R(r)dy=2 x V(r2 _x2)rdr.

Thus, these equations can be rewritten in a more useful form:

(
') _ 2foo f3(r) exp [-(x' - ax/r)2/2a2] d

P2X,X - ~~ r r,
x yr- - x-

( 2) = 4V2ii:i
oo

2foo f3ar dr dx N x ~~ x,o x y r- - x-

( '2) =4V2ii:foo [foo f3a
3
r dr 2foo a

2
f3a dr ] d

x N ~~+x ~~ x,° xyr-x- xryr-x

( ') _4V2ii:foo 2foo af3a dr d
xx - N x ~~ x,

o x yr- - x-

foofoo f3ar drN=4V2ii: w=xz dx.° x r-x

139

(15)

(16)

(17)

(18)

(19)

(20)

The beam parameters a(r), f3(r), and a(r), since they are determined by
experimental measurements, could be any functions, including empirical curves.
But a simple numerical method may be employed for integration of either Eqs.
(11)-(15) or Eqs. (16)-(20) to evaluate the emittance.

It is important to note that if a(r) is proportional to r, i.e., for linear focusing,
then Eq. (17) times the second term of Eq. (18) is equal to the square of Eq.
(19), regardless of the forms of functions f3(r) and a(r), thus canceling the
beam-diverging effect in Eq. (1). Thus, the rms emittance is independent of linear
focusing. When the beam is passing through a linear lens system, the spatial
coordinates of beam particles remain unchanged, but the angle (velocity) is
changed in proportion to the radial position of each particle. Thus, the rms
emittance may be regarded as an invariant of motion through a linear lens
system.

It should be mentioned that the analysis in this section is equally applicable to
the experimental data obtained by the hole-slit type of emittance meter.

5. ANALYTICAL EXAMPLES

For a certain type of integrand in Eqs. (16)-(20), the integration can be
performed analytically. We take three simple examples which are of practical
importance. Fjrst, suppose the following beam parameter equations: a(r) = ria,
f3(r) = f3oH(b2- r2), and a(r) = ao, where H is a Heaviside unit step function.
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This set of functions may approximately describe a beam which is emitted by a
uniform hot cathode, measured immediately downstream of an anode with a hole
of radius b. One can easily obtain pz(x, x') from Eq. (16) as

pz(x, x') = 2f3oYbz - xZexp [-(x' - x/a)z/2a~]. (21)

It is also straightforward to find the integrals in Eqs. (17)-(20), obtaining as mean
values N = v2 n 3

/
zf3aobz, (xZ) = bZ14, (x'Z) = aZ+ (bI2a)Z, and (xx') = bZl4a.

The rms emittance is then given by

Cnns = 2bao· (22)

As mentioned earlier, this emittance is independent of £1'(r) = ria. The same
result can be expressed in terms of the thermal temperature of the beam3 as
Crms = 2b(kTlmof3Zc2)1/2, which is evidently true, even if the beam is focused (as
long as the focusing is of linear form).

The second example is for a beam with a Gaussian spatial distribution. The
beam parameters are given by £1'(r) = ria, f3(r) = f30 exp (-r2/2b Z), and a(r) = ao.
This case may approximately represent the same beam as the previous example,
but measured farther downstream. We obtain

pz(x, x') = y'2;; f3oao exp [-xZI2b2- (x' - xla)2/2a~]. (23)

The mean values given by Eqs. (17)-(20) are easily found as N = sy'2;; nf3oaob,
(x2) = bZ, (x'Z) = a~ + (bla)Z, and (xx') = bZla. The rms emittance from Eq. (1)

is crms = 4bao. (24)

Notice that this result is also independent of ria.
Our third example is a beam with a linear focusing, a Gaussian spatial profile,

and.a Gaussian spatial dependence of rms angle (transverse velocity). This beam
is described by the parameter equations £1'(r) = ria, f3(r) = f30 exp (-rZI2b 2), and
a=aoexp(-r2/2c2). If we make the substitutions Ilp2=l/b2+1/cz and II
qZ = I/b z + 3/cz, then Eqs. (17)-(20) may be easily solved to give (x2) =p2,
(X'2) = (aoqlp)2 + (pla)Z, and (xx') = p2la. Hence,

(25)

It can easily be seen that in the limit c~ 00 this is identical to the previous
example.

In all examples, (X'2) increases, since the transverse velocity increases due to
the linear focusing £1'(r) = ria. However, this velocity is not a random one; it is
linearly correlated with x. As defined by Eq. (1), this effect is reduced by the
linear correlation term (xx'), resulting in the rms emittance being independent of
the linear focusing, as mentioned earlier.

6. CONCLUSION

For an axisymmetric and nonrotating beam with a Maxwellian velocity distribu­
tion, we have described a method of determining the rms emittance from
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experimental data which can be easily obtained by using simple emittance meters.
The resultant emittance and two-dimensional projected distribution in x-x' trace
space are expressed in terms of empirical equations of beam parameters. We have
also demonstrated that for simple types of beam parameter equations, the rms
emittance can be calculated analytically.
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