
Particle Accelerators, 1986, Vol. 19, pp. 237-245
0031-2460/86/1904-0237/$15.00/0
© 1986 Gordon and Breach, Science Publishers, S.A.
Printed in the United States of America

SYMBOLIC MATHEMATICAL COMPUTING: ORBITAL
DYNAMICS AND APPLICATIONS TO ACCELERATORSt

RICHARD J. FATEMAN

Electrical Engineering and Computer Sciences Department
University of California

Berkeley, CA 94720

(Received March 7, 1985)

Computer-assisted symbolic mathematical computation has become increasingly useful in applied
mathematics. In this talk we present a brief introduction to such capabilities and some examples
related to orbital dynamics and accelerator physics.

I. INTRODUCTION TO THE CONCEPT OF COMPUTER-ASSISTED
SYMBOLIC MATHEMATICS

Most users of computers in advanced scientific applications have at least an
inkling of the prospects of the use of computers in non-numeric data-processing
tasks. Recent students of computer science have usually been exposed to these
concepts if they have taken at least one class in "data structures." In such courses
students learn that abstractions such as "arithmetic expression" can be imple
mented in a linked-list form and manipulated by simple algorithms. In a number
of schools, including DC Berkeley, lower-division undergraduate students are
assigned the task of writing programs which implement arithmetical operations
and compute symbolic derivatives of such symbolic expressions.

Clearly the tools have changed since the time thirty years ago when two people
were awarded Masters' degrees from distinguished unIversities for "symbolic
differentiation programs." Our new tools give us some hope for optimism: that
"general-purpose" computer systems of the future, building upon the capabilities
of current programs such as MACSYMA, REDUCE, SMP, or MAPLE, will increase the
productivity of scientists.

II. SOME SIMPLE EXAMPLES

The large variety of tasks that can be performed by programs can only be touched
upon here. Excellent bibliographical references can be found in the recent
monograph. "Computer Algebra," edited by Buchberger et al. l

t This work was supported in part by the Army Research Office, Grant # 1-483964-25546, through
the Center for Pure and Applied Mathematics, University of California, Berkeley.

237

238 RICHARD J. FATEMAN

2.1. Simple Polynomials Arithmetic

The transcript of a dialog with MACSYMA, probably the largest of the symbolic
mathematics systems, is given below. The typeset responses were produced by the
program in the conventional mathematical notations. The commands are fairly
self-explanatory except the line "ratsimp(%)," which RATionally SIMPlifies the
result of the previous computation (named "%"). This is done by multiplying
through products and reducing the resulting quotient to lowest terms,

(c1) Legendre Polynomials, by Rodigues' formula*/
p[n](x): = 1/(2/\n * n!) * diff((x/\2 - l)/\n, x, n);

1 d n

Pn [x]:= 2n , d---;; (x2 -l)n
n. x

(c2) p[5](y);

7200y(y2 - 1)2 + 3840y5 + 19200y3(y2 -1)

3840

(c3) ratsimp(%);

63y5- 70y3 + 15y

8

2.2. Other Examples

In the workshop talk, other examples were given.

III. WHAT CAN WE SAY ABOUT THE USEFULNESS OF THESE
PROGRAMS?

(d1)

(d2)

(d3)

Most presentations of capabilities of computer-assisted symbolic mathematics
programs strike people in one of the following ways:

(a) Where can I get this stuff?
(b) That's cute, but not what I do.
(c) I tried one of those programs but it didn't work for me.
(d) If it doesn't run on a Cray it can't be good.

Since this is a conference on orbital dynamics, it seemed incumbent upon me to
find a few applications which would encourage additional scientists in this field to
look at the existing programs, to see if scientists in category (b) can be
encouraged to try symbolic computation systems. Since the programs have gotten
better, partly by running on better hardware, perhaps category (c) persons can be
convinced to try programs again. Persons in category (a) can examine the
references for access to current programs.

SYMBOLIC MATHEMATICAL COMPUTING

IV. MORE APPROPRIATE EXAMPLES

4.1. The Kepler Equation

239

In 1972, Barton and Fitch published a survey article on applications of symbolic
manipulation programs to physics.2 They asserted that solution of Kepler's
equation was of some interest, or at least a good example of the kinds of
calculations that appear in the field of celestial mechanics. Although I have yet to
encounter a real physicist stuck on exactly this problem, the techniques illustrated
are more than the parlor tricks used to show off MACSYMA and similar programs.
There is also a moral to be learned from various computational approaches.

The Kepler equation is

Y=u +e sin Y,

where e is to be regarded as a small quantity, typically the eccentricity of an
elliptic orbit. A formal solution is possible in terms of Bessel functions, namely

y = u + 2 i In(ne) sin (nu)
n=l n

We propose to obtain an explicit approximation for the function Y as a
Fourier-type series with coefficients in e up to order n. From the formal solution
this would be fairly painful, requiring the careful generation and series expansion
of Bessel functions and sines. A direct approach by iterated approximation is
possible, and it is this which we illustrate. Since Y = u is the solution to order 0,
let us assume the solution is of the form

Y=u+A k

correct to order k in e. Then by substitution we get the simple formula

A k = e sin (u + A k - 1), k > 0,

and

Ao=O.

In order to express A k to the desired kth order in e and in the conventional
form of a linear expression in the trigonometric functions sin (nu) with
coefficients which are power series in e, it is necessary to expand the sin (u +
A k - 1) as sin u cosAk - 1 + cos u sinAk - 1 , and then approximate sin (A k - 1) and
cos (A k - 1) as truncated series. Thus the iteration for A k is more accurately
expressed by

A [. (1 A~-l) (A~-l)Jk = e sm u -"2! + · .. + e cos u A k - 1 - 3!+ · .. k'

where the outer brackets indicate that terms of degree greater than k can be
ignored. The sin/cos series must also be extended to an order sufficient to assure
that all terms up to ek are accounted for.

240 RICHARD J. FATEMAN

All these details in the calculation must be specified in some formal
programming notation and their semantics adequately (efficiently) provided. In
the Barton-Fitch survey it is pointed out that some systems (e.g., REDUCE)
provide the means whereby the necessary rules for multiplying "Poisson Series"
can be introduced, and the truncation on powers of e can be stated; other systems
(notably CAMAL, a system written by Barton and Fitch) have these facilities built
in by design. We present an abbreviated dialog with REDUCE and then MACSYMA
(which includes CAMAL-like facilities) below.

Interaction with REDUCE

REDUCE 3.0, 15-Apr-83 ...

for all u,v let cos(u) *cos(v) = (cos(u + v) + cos(u - v»/2;
for all u, v let cos (u) *sin(v) = (sin(u + v) + sin(v - u»/2;
for all u,v let sin(u) *sin(v) = (cos(u - v) - cos(u + v»/2;
for all u let sin(u) * * 2 = (1 - cos(2 *u»/2;
for all u let cos(u) * *2 = (1 + cos(2 + u»/2;
a:=O;
for k:= 0: 4 do begin
let e * * (k + 2) = 0;
write a: = e * sin(u) * (1 - a * *2/2 + a * *4/24) + e *cos(u) * (a - a ** 3/6 + a * * 5/120);
clear e * * (k + 2)
end;

A:= SIN(U) *E

A:= (E(SIN(2 + U) *E + 2*SIN(U»)/2

A:= (E * (3 *SIN(3 * U) + E2 + 4* SIN(2 * U) * E - SIN(U) * E2 + 8 * SIN(U»)/8

A:= (E * (8 *SIN(4* U) *E3 + 9 *SIN(3 *U) *E2
- 4 *SIN(2 * U) *E3 + 12 * SIN(2 *U) *E

-3 *SIN(U) * E2 + 24 *SIN(U»)/24

A:= (E * (125 * SIN(5 *U) *E4 + 128 *SIN(4 *U) * E3
- 81 *SIN(3 *U) * E

4 + 144* SIN

(3 * U) * E2
- 64 *SIN(2 * U) *E3 + 192 * SIN(2 * U) *E + 2 *SIN(U) * E4

- 48 *

SIN(U) * E2 + 384 * SIN(U»)/384

Interaction with MACSYMA

(c4) 1* solution to Kepler equation Y = u + e sin (Y) by approximation*1

1* illustrating the use of special representations *1

(ratweight(e, 1) 1* e is a small variable *1,
poisvars: [u], 1* the only variable is poisson series is u *1
load("rat/pois2") ,
ratvars(e) 1* the only variable is coefficients is e *1,

SYMBOLIC MATHEMATICAL COMPUTING

load("rat/ratpoi") 1* see rational coefficients */);

(c5) I* solution is of the form Y =u+ a[k] as k~ inf*I

a[O]: 0;

(c6) a[k]: = block([ratwtlvl :k],
a[k-2] :0, 1* delete unused old values *1
I* substitute u+a[k-1] for u in e *sin(u), and expand
the resulting series to k terms *I
poissubst(u,u,e *sin(u),a[k-1],k));

(c7) a[l];

esin(u)

(c8) a[2];

e
2
sin(2u) . ()

2 +eSlnu

(c9) a[3];

241

(d7)

(d8)

3e3sin(3u) e2sin(2u) (e 3
- 8e)sin(u)

8 + 2 - 8 (d9)

(10) a6: a[6];

e6sin(6u) e5sin(5u) (e6
- 20e4)sin(4u) (5e 5

- 48e3)sin(3u)
-~~+ - -------

3840 384 960 384

(e 6 -'32e4 + 384e2)sin(2u) (5e 5 -72e3 + 192e)sin(u)
+ 768 + 192 (dl0)

(cl1) fortranize(%);
Totaltime = 7650 msec. GCtime = 3550 msec.

retvar =
cO.0002604166666666667*e**6*sin(6*u) +0.002604166666666667*e**5*sin(
1 5*u)-0.001041666666666667*(e**6-20*e**4)*sin(4*u)-0.00260416666
2 6666667*(5*e**5-48*e**3)*sin(3*u) +0.001302083333333333*(e**6-32
3 *e**4*384*e**2)*sin(2*u)+0.005208333333333333*(5*e**5-72*e**3 + 1
4 92*e)*sin(u)

4.2. Comments on the Kepler Equation Problem

Although it is not evident from the abbreviated print-outs above, the time to
complete this computation is highly dependent upon the approach. With the
special Poisson series calculation data format (used in MACSYMA), the computation
is much simpler than in the "general" representation used by REDUCE. The
resulting speed difference grows dramatically as additional terms are computed.
For example, the term A 3 is computed in 1.19 seconds in the general
representation, but in 0.5 seconds with the Poisson series form. The term A g

shows a more dramatic difference: 43.5 seconds vs 9.4 seconds. Of course, a

242 RICHARD J. FATEMAN

skilled programmer using LISP, the implementation language of REDUCE, could
implement the appropriate special data types in that system too, so the difference
is not in the system, but in the effort taken by the system programmer to solve
problems of this nature and in the awarenesS of the user that these facilities are
appropriate. (It is also quite possible to use MACSYMA'S general representation and
be far less efficient compared to REDUCE on this problem; it is also possible to
recode these manipulations in assembler language for a particular computer: this
approach is costly in programmer time.)

In our experience, with symbolic computation systems it is even more difficult
to obtain measures of performance than is the case with FORTRAN benchmarks.
Just becoming acquainted with the available tools may be a barrier; once the tools
are understood, substantial progress can be made.

It may also be worthwhile to note that the MACSYMA program, by using typeset
quality output and using the more conventional display of terms, makes a
qualitative difference in the understandability of the results. Line (cll) illustrates
the possibility of converting computed expressions into FORTRAN code. This
feature is also present in REDUCE and almost all other symbolic mathematics
systems.

Two aspects of this example are really of general relevance:
(a) This problem, as is the case for most others, cannot be solved without some

preliminary mathematical analysis. Unless the day-to-day work of an applied
mathematician is quite routine and over well-trod paths, the computer system will
only be an aid, not a replacement for mathematical work.

(b) While general tools may do the job, as illustrated by REDUCE, such a first
approach may have to be abandoned and the computation reformulated for a
more ambitious study. Naive approaches to symbolic mathematics are more likely
to have ballooning costs as the problem size rises than numerical calculations.
Polynomial growth in cost functions (e.g., n3

) is typical in numerical scaleups.
Exponential growth (e.g., 2n

) is more typical in algebraic scaleups.
It is our hope that once a mathematical formulation, an appropriate algorithm,

and the data structures are carefully designed to meet the needs of the
computation, they can be reused. That is, success on a given problem, can also
lead to the solution of a whole class of similar problems. Libraries of symbolic
solution methods should be collected and used to strengthen the scientific
computation facilities of the future, much as numerical subroutine libraries are
used today.

4.3. Hamiltonian Mechanics

An interesting application of symbolic computation is presented in work by Char
and McNamara. 3 They implement a Lie-transform technique for studying the
perturbation theory of Hamiltonian system:

A single scalar-generating function is calculated to give a canonical
transformation of the Hamiltonian, the coordinates, and any function of the

SYMBOLIC MATHEMATICAL COMPUTING 243

coordinates from old to new or new to old coordinates. When the
perturbations are periodic along the unperturbed orbits, the Hamiltonian
can be averaged, an adiabatic invariant may exist, and the averaged
equations of motion may be considerably simplified. The invariants of the
motion have played a key role in many plasma devices and continue to be of
interest for the containment of plasma, the structure of magnetic surfaces in
toroidal devices, and the propagation of large-amplitude waves for plasma
heating.

The algebra of the methods depends upon three operators: Poisson bracket,
average along an orbit, and integral along an orbit. A convenient form of the
algorithm is described by Nayfeh,4 and a convenient notation used by McNamara5

was adopted.
The program as produced in 1978 was able to reproduce some previous results

and find some published errors. It successfully computed results which were
several pages long.

As in some other application areas, there were really two needs which were
initially mixed together, because humans tend to mix them: the need to do
explicit evaluations and the need to simplify expressions.

(a) The need to do explicit computations: What we mean by this is the
evaluation of expressions so that the definitions below, of Poisson (or Lie)
bracket (pb(f, g), also written [f, g]), the integral operator, and the averaging
operator could be applied to any given explicit expressions t, g, P, Q:

n al ag at ag
pb(f, g)(P, Q):= [f, g](P, Q):=~ OQiOP; - OP;OQi

ii(f):=! lY f(P, q) dqu
y 0

where y is the period of! in q 1 :

av(f):= J(f - ii(f» dql.

(b) The need to simplify expressions (implicit computation): By this we mean
the application of those observations that make the computation practical for
humans (and for finite computers). A number of identities are quite important in
carrying out the computations, and they can be applied regardless of the context
of particular values of !, g, etc. If such identities are ignored, the computations
being posed may require more resources than are practical. A few of the useful
identities are listed below:

ii[f, av(g)] + ii[av(J), g] = 0;

[f, g] = -[g, I];

If[g, h]] + [h, [f, g]] + [g, [h, I]] = o.
In the past, a similar separation of such components was recognized in tensor

manipulation: MACSYMA has two separate packages of programs for computing

244 RICHARD J. FATEMAN

with tensors. V.le suspect that recognition of these two components may be an
important step in thinking about the automation of other mathematical
manipulations.

Although the Lie-transform programs were by some measures successful, they
were not heavily used by the authors and were probably not used by anyone else.
Why was this?

(a) The mathematical algorithms were written for more generality than was
needed for the examples immediately at hand and thus were wasteful of
resources. Techniques comparable to the efficient Poisson series code should have
been developed for the evaluation component and for the simplification com
ponent. This would have required the development of effective canonical forms
for the computations, which would have, in turn, focused efforts more clearly.

(b) The generality of the simplification methods was simultaneously too
delicate and dependent on special tricks, and also sufficiently restricted by the
implementation so that other examples which required more power could not be
done with the facilities available. The simplification was done in an essentially
rule-driven fashion and was difficult to control.

(c) MACSYMA, the system which was used, lacked a clear notation for the
operator calculus needed. This meant that some of the necessary simplifications
could not be compactly coded. No current algebra system is really much better,
although some claims are made for various systems.

(d) Sufficiently large computers, in particular with respect to address space,
could not (in 1978) run MACSYMA. (This has been substantially remedied now).
Far more programmer effort was spent trying to conserve storage than any on
other part of the development.

(e) The programs (MACSYMA and the Lie-transforms applications) are not
easily available to potential users. The distribution of symbolic programs has been
much more difficult than that of FORTRAN subroutine libraries partly for the
technical reasons of lack of standardization. Unfortunately a contributing factor
in the difficulty in obtaining MACSYMA (and some similar programs) has been
ownership disputes between universities and the government.

V. FRONT-END WORKSTATIONS TO SCIENTIFIC COMPUTING
ENVIRONMENTS

While this is not a major theme for this conference, we would like briefly to bring
up an associated topic: workstation environments and their impact. It is probably
the case that the future use of symbolic-mathematics systems will continue to be
largely through interactive computing. Our experience at DC Berkeley has been
that interactive timesharing on midsized to large computers is an adequate way of
using symbolic systems, but that scientific workstations which can provide
immediate graphical output and can accept commands from a "mouse" pointing
device, are going to provide far superior interfaces to humans. They will also
assist in the development and organization of programs and the use of (for

SYMBOLIC MATHEMATICAL COMPUTING 245

example) menu-driven access to libraries. These will make it easier for people to
use the results of other investigations.

Because MACSYMA is written in LISP, a language which supports both a compiler
(for fast execution) and an interpreter (for immediate evaluation of commands),
it has certain advantages over FORTRAN-based systems. Since easy linkage to
FORTRAN subroutine libraries is available in at least one LISP system, we have seen
that access to libraries can be arranged. A package linking to the Numerical
Algorithms Group library has been demonstrated by Prof. Kevin Broughan of the
University of Waikato, New Zealand. We believe that symbolic computing in the
workstation can assist not only in the direct solution of some problems
symbolically but also in the preparation of programs for eventual numerical
computation.

It may be that the organizing principles of algebra which are being used for the
latest developments in symbolic-mathematics systems can be extended to in
corporate physics notations and laws. These extensions may provide additional
guidance for applications packages and solution environments for orbital dynam
ics problems.

VI. SUMMARY AND CONCLUSIONS

Symbolic computation is a powerful technique for problem solving, but not a
panacea. It should be one of the tools available in our environment, and as we
produce algorithms and data structures for tasks in any area of applications, we
should try to share the solution methods. We must be aware of the tradeoffs in
design between generality and efficiency.

One might envision a situation for the future where we would see a form of
publication of algorithms and results for symbolic computation as machine
readable procedures and tables of formulas. This may be harder to achieve than
the already existing approaches to publication of numerical procedures, but the
results may be even more valuable, as we can with such techniques develop an
effective computational model of what now may be buried in journals.

REFERENCES

1. Computer Algebra: Symbolic and Algebraic Computation, edited by B. Buchberger, G. E. Collins,
and R. Loos (Springer-Verlag, N.Y, Second Edition, 1983).

2. D. Banton and J. Fitch, Rep. Prog. Phys., 35, (pp. 235-314) (1972).
3. B. Chan and B. McNamara, computer code LIEPROC; computer code LCPT (MACSYMA Users'

Conference, M.LT., Cambridge, Mass., 1979).
4. A. H. Nayfeh, Preturbation Methods, Wiley, New York, 1973.
5. B. McNamara, J. Math. Phys., 19, 2154 (1978).

	237.tif
	238.tif
	239.tif
	240.tif
	241.tif
	242.tif
	243.tif
	244.tif
	245.tif

