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General numerical methods for ordinary differential equation (ODE) initial-value problems are
surveyed, with emphasis on second-order ODE’s. Issues include truncation and roundoff error,
stability, and starting/stopping. For nonstiff systems, predictor-corrector Adams methods, with
variable step and order, are best overall.

I. INTRODUCTION

Much literature and software is devoted to initial-value problems for ODE
systems. Most of it addresses first-order systems,

y=£y) (=dy/d).

Here, a crucial consideration is stiffness, which means the presence of one or
more strongly damped (not oscillatory) modes.
Second-order ODE systems, which can be written

y=fty,y) F=d%/de),

can always be reduced to first-order systems and solved as such, and often are,
but they can also be treated directly. Stiffness, defined via the equivalent
first-order system, can occur only if the y-dependence contributes strong
damping. The special problem [y absent, § = (¢, y)] is often treated by special
methods.

II. SUMMARY OF METHODS FOR SECOND-ORDER PROBLEMS

Many types of methods have been developed for second-order ODE initial-value
problems."* What follows is a partial list.

Runge—Kutta methods include the classical Nystrom formulas (for the special
problem). Fehlberg developed imbedded formula pairs for the general problem
with easy local-error estimates.

Linear multistep methods include the explicit Stormer formulas and the implicit
Cowell formulas, which are special and exist at all orders; the fourth-order
Cowell formula is Numerov’s method. The implicit Adams methods (general; all
orders) have been generalized to second-order ODE’s.!** Numerous other
methods of particular orders occur in the literature. A framework for analyzing
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the order and stability of linear multistep formula pairs (one for y and one for y)
is given by Addison and Enright.’

Extrapolation methods integrate over each major step with several smaller step
sizes and extrapolate to the limit of zero step size. Recent work by Deuflhard is
noteworthy.®

Hybrid methods, combining the features of Runge-Kutta and multistep
formulas, have been studied. Examples include a method of De Vogelaere and a
sequence of methods by Dyer’ (special).

Taylor-series methods may be useful if the function f is amenable to symbolic
differentiation to arbitrary degrees.

Exponential fitting methods invole setting coefficients of a multistep formula so
as to make it exact when the solution is a given exponential (real or complex) or
trigonometric polynomial. Bettis and others have studied fitting methods for orbit
problems.

Multirevolution methods (Petzold et al.) can be highly effective when a single
high-frequency oscillation is present.

Multirate methods attempt to use different step sizes for different groups (fast vs
slow) of ODE components.

As a simple example, consider the explicit leapfrog formula,

yn+1 - 2yn + yn—l = hzfn [fn Ef(tm yn)])

with constant step size h = t;.1 — t,. If f is general or if y values are needed, one
must also advance y, for example by

Vu+1 =Y. + Af, (explicit Euler).
Contrast this with the (implicit) Numerov formula,
Yn+1 = 2Yn + Yuo1 = (R?/12)(£,11 + 10F, + £, ).
Along with this, if necessary, one advances y with, for example,
Vni1=Yn + (h/2)(£,+, +£,)(Trapezoid Rule).

An algebraic system for y, ., (and possibly y,.;) must somehow be solved, either
(a) analytically, (b) by a Newton iteration (appropriate only in the stiff case), or
(c) by simple iteration (predictor-corrector). For special f, the latter would be
given by

ys:f:--;l) = zyn - yn—-l + (hz/lz)[f(tn+1r ys:rr-:—)l) + 10fn + fn—l]~

III. NUMERICAL ISSUES

Truncation Error

Although definitions vary, the idea of local truncation error (L.T.E.) is simple. It
is the difference between the computed y,,.; and the exact y(z,.,) when the step is
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taken with all earlier data (up through y,) exact. A given method generally
satisfies

LT.E.=0k?) as h—0,

with p determined by relations among the method coefficients. The global error
(G.E.) is the actual error in y,, after n steps, assuming only that the starting values
are sufficiently accurate. A typical convergence theorem for a method for jy=f
says that if L.T.E. =0(h?*?), then G.E.=0(h?) as h— 0 with t, =t,+ nh fixed
(n— ). Two powers of h are lost as L.T.E. accumulates to G.E. because the
method resembles a double-summation process.

In practice, modern ODE solvers always estimate the L.T.E. and then vary h
in order to meet a prescribed bound on L.T.E. If methods of different orders are
available, the L.T.E.’s at nearby orders are also estimated, and ¢q is varied
accordingly.

Other error issues studied are (a) numerical growth/damping, and (b) phase
error (dispersion) for oscillatory solutions.

Roundoff Error

Machine roundoff subjects each computed y, to an error of at least tuy,, where
u = the machine unit roundoff. Adding bounds on these errors to the convergence
theorem gives a result of the form

|G.E.||=Bh?+ Aun” (A, B = problem-dependent constants).

In a rigorous bound r is 2, but cancellation of roundoff errors tends to give a
smaller value. Since n «1/h, this bound has a positive minimum as & varies.
Reducing r reduces this minimum, but there is always a finite limit to the accuracy
of the computed solution. It is clear that an orbiting particle can be reliably
tracked only over thousands or perhaps millions of orbits at most.

Stability

A fundamental stability concept in ODE methods is that of absolute stability,
which is (roughly) the requirement that if the ODE system has a bounded
solution then so does the numerical solution.

Classical treatments of absolute stability use a model problem j = —w?y and
write y, as a function of wh and n. The point wh is stable if y, is bounded as
n— . Goals often pursued for a method with free parameters are to (a)
maximize the size of the interval of stable points wh, (b) get (unconditional)
stability for all real wh, or (c) demand periodicity (conditional on wh) in that y, is
a linear combination of powers of unidomular complex numbers.

A more general treatment is possible,’ using a model problem

y =2ay — (a*+ b?y [solution y = exp (at % ibt)].
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Here one demands that y, be bounded for as much as possible of the left half of
the (ah, bh) plane. However, unlike the first-order situation, the behavior of a
method on linear second-order systems is not generally given by its stability on
scalar model problems.

Starting and Stopping

Several issues related to starting, stopping, and restarting an ODE method may
be important in the choice of the method itself.

A good initial step size may be known from prior run data. If not, modern
codes estimate the constant C in ||L.T.E.|| = Ch” and compute & by equating Ch”
to a given tolerance parameter.

Stopping at a given ¢ (e.g., for output) is easily and cheaply done with a linear
multistep method, using its underlying interpolatory polynomial, but for almost
any other method the step size must be adjusted to hit ¢ exactly.

Stopping at a root of a function g[y(#)] (e.g., to locate a boundary crossing) is
also easier with linear multistep methods.

Restarting at a discontinuity usually requires posing a new initial-value
problem, hence discarding all past data. Thus high accuracy and frequent
discontinuities may make multistep methods less efficient than suitable high-order
one-step (e.g., RK) methods.

IV. SOFTWARE

Many high-quality solvers are available for systems of first-order ODE’s. Adams
predictor-corrector codes generally perform best for nonstiff systems, especially at
high accuracy. Some Adams codes detect when accuracy is limited by roundoff,
some have root stopping, and some detect stiffness and switch methods
automatically.

For second-order ODE’s, much less is available. A trio of codes by F. T. Krogh
(Jet Propulsion Lab.), VODQ/SVDQ/DVDAQ, is well known and is superseded
by his new codes, SIVA and DIVA. These use variable-order variable-step
Adams methods for general f, do root stopping, and detect limiting tolerance
from roundoff. Two codes by P. Deuflhard (Univ. of Heidelberg), KEPLEX and
DIFEX2, use extrapolation methods for special f. A few other codes, using
various fixed-order methods, are mentioned in the literature.

Two sources of test results are of particular interest. In one,® two orbit
problems were solved by Adams predictor-corrector methods at three tolerances.
In all cases, direct treatment of the ODE’s required fewer f evaluations than
reducing to a first-order system, by a factor of about 2. In another comparison,’
six orbit problems were run with five solvers—DVDQ (Adams method),
RADAU (implicit RK), RKF67 (explicit RK), DIFSY2 (extrapolation), and
EPISODE (Adams on reduced system). At low to moderate accuracies, the
differences were small; at high accuracy the two Adams codes were preferred; at
very high accuracy, DVDQ performed best.
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RECOMMENDATIONS

As to general numerical methods for ¥ =f, the main recommendation here is to
use generalized Adams methods in a variable-order predictor-corrector form with
local error control. For high accuracy, use a high maximum order (12 is typical).
As an expendient, a good alternative is to solve the reduced first-order system
with a good Adams solver. Depending on the accuracy and nature of f,
Runge-Kutta, Taylor-series, or extrapolation methods may be competitive.
Analytic solutions should be used where they are trusted, and interfaced with
numerical solutions where they are not. Multirevolution methods should be used
wherever appropriate.

One final recommendation: Do not reinvent wheels. It pays to consult the
experts and the literature and avoid duplicating the efforts of people who have
studied the subject.
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