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Uncertainty and instability are closely associated properties of the dynamical systems of celestial
mechanics. The short time predictions of celestial mechanics concerning· the stellar universe when
compared to the long-lived atomic universe seem to be simple problems according to our
old-fashioned ideas. In fact, modern celestial mechanics is known to be nondeterministic due to
uncertainties in modeling, due to unsatisfactory information concerning initial conditions, and because
of the global nonintegrable nature of the equations. Instabilities, inherently embedded even in our
simplest systems, make determinsitic predictions into unrealistic expectations.

I. INTRODUCTION

Computations in celestial mechanics may be compared to those in accelerators
when the pertinent numbers of revolutions are evaluated. The earth makes one
revolution around the sun in one year. Our predictions concerning the orbits of
the planets are considered at present reliable for 106 years, and the age of the
system is estimated to be approximately 109 years. In other words, our
computational competence in celestial mechanics is limited by 106 revolutions. At
the other extreme are the hydrogen atoms in the ground state with 3 x 1023

revolutions per year and the particles in accelerators with 6 x 1010 revolutions per
year. Comparing the motion in accelerators with the solar system where 106

seems to be the computational limit, one arrives at a corresponding limit of
approximately 8 minutes. It is even more interesting to observe that in an
accelerator the solar system's lifetime corresponds to 6 days. The results are that
our present prediction competence in celestial mechanics corresponds to 8
minutes' running time of an accelerator and that 6 days in the accelerator contain
the existence of our solar system. These are certainly rather humbling discoveries
for the students of Newton, Lagrange, and Poincare.

Nevertheless, both analytical and numerical, and both quantitative and
qualitative, techniques of celestial mechanics should provide a useful background
for orbit mechanics in accelerators.

In this paper, two fundamental concepts of celestial mechanics are described:
instabilities and uncertainties. The first subject is one of the most difficult
problem in dynamics, and the following example will emphasize its complexity.
The second subject is well-known in quantum mechanics, and the treatment here
will show how formal analogies between celestial mechanics and accelerator
physics might be conjectured.
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II. INSTABILITY

VICTOR SZEBEHELY

The conventional instability associated with changes of initial conditions using
Lyapunov's isochronous stability criterion is well established for our simplest
dynamical system known as the problem of two bodies. This problem is selected
since it is integrable, and it is the most fundamental motion in celestial
mechanics. Note that we do not have closed-form analytical solution as a function
of the time, even for this simple problem. Furthermore, in general, we do not
have "exponential instability." Nevertheless, many of the problems in stability
analysis will surface, and arbitrary small initial displacements can lead to large
deviations.

Consider a planetary reference orbit around a star, neglecting all perturbations.
If the mass of the planet is negligible compared to the mass of the central body,
the problem is known as the restricted problem of two bodies. The reference
orbit may be elliptic or circular with a semimajor axis or radius a which is
connected with the period T according to Kepler's law:

a = KT2
/
3

,

where K = (MG/4n2
)1I3, with M the central mass and G the constant of gravity.

The classical definition of stability requires that at any given time the distance
between the reference and the disturbed orbit be limited to a prescribed value. 1

,2

If to such a prescribed value the change of initial condition can be established,
then the motion is considered stable. In other words, if for given

Ix(t) - y(t)1 < E

there exists
Ix(to) - y(to)1 ~ D,

then the motion is stable. Here x and y represent the disturbed and the original
position vectors.

In the case of the problem of two bodies, if the disturbed orbit's semimajor axis
is slightly different from the original value, then the periods of the two orbits will
also be slightly different. As a consequence, the positions on the two orbits will
differ, initially, by a small amount, but eventually by 2a. Consequently, arbitrary
small E cannot be required since no Dvalue can be found to satisfy such an E. The
motion is unstable concerning isochronous correspondence. (Note that the
investigation of the geometric or normal correspondence associated with Poincare
leads to stability).

The above example leads to the following remarks:
(1) Even the simplest problem in celestial mechanics leads to large isochronous

deviations when initial conditions are changed by an arbitrary small amount.
(2) Results of stability investigations are strongly dependent on the definition

used.
(3) Changes of the initial conditions might create instability, or might not,

depending on the disturbance. In the above example, the semimajor axis will not
change for any isoenergetic disturbance; consequently, the motion will be stable
for such disturbances.



CELESTIAL MECHANICS 45

(4) Without any change of the initial conditions, instability might occur when
the values of the constants entering the system change. If the mass or the
gravitational constant changes, then for the same value of 3, the period will
change and isochronous instability will occur.

III. UNCERTAINTY

It is essential that we clarify the similarities between celestial mechanics and
particle physics, as well as point out that some of the analogies to be discussed are
purely formal. One way to approach uncertainty and related problems is through
Laplace's demon. Poincare refers to this as Laplace's fantasy, and workers in the
field of celestial mechanics, of course, agree with the founding father. We do not
know exactly the initial conditions, in spite of the fact that the condition of our
world is not influenced by observations (see Brillouin.3

). Our observations
establish the initial conditions with errors. Using these, we attempt to solve the
nonintegrable differential equations of motion, realizing that these equations are
approximations of the actual physical world. Consequently, we cannot accept the
"imaginative poetry" expressed by Laplace's demon, not only for reasons of
uncertainty of the original conditions but also because of our ignorance
concerning the correct models and because of our inability to solve nonlinear
differential equations of interest in celestial mechanics.

This last point might need amplification, and the application of modern
numerical and classical analytical techniques should be looked upon to obtain
solutions. Looking at the fundamental problem first, we recall Poincare's theorem
according to which the equations of celestial mechanics are not integrable (as
Russian literature prefers to refer to it, they are not integrated). Note that
Poincare does not exclude the possible existence of locally valid integrals, and the
theorem refers to the non-existence of 2n - 1 global integrals of our n-degrees-of
freedom dynamical system. The series solutions are consequently divergent, or at
best, semiconvergent. The results of the numerical integrations would be highly
questionable, especially for long periods of time, even if the initial conditions
were exact. The effect of possible instabilities enter the picture here since
numerical inaccuracies usually emphasize inherent instabilities. The presently
popular mapping techniques might be mentioned at this point, which allow
long-time investigations of an approximate mathematical formulation of the
problem without sufficient evaluation of the reliability of the results.

There are analytical techniques which increase the accuracy or long-time
validity of numerical integrations. These methods are known as regularizing
transformations and were originally designed to meet the conditions required by
theorems to establish the existence of solutions. The transformations eliminate
globally or locally (depending on the model applied) the singularities occurring in
the equations of motion. The proper use of such reformulations of the basic
equations allows extensions of the range of validity of the results. The extension
is once again limited; consequently, the basic problem is not solved.
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In summary, we might state that some of the reasons for uncertainty are
different in celestial mechanics and in particle physics; nevertheless, both fields in
effect are nondeterministic (see Born4

).

The few qualitative results available in celestial mechanics, therefore, are
extremely useful. In several cases, for simple models, ranges of the phase space
can be established, even for uncertain initial conditions, without numerical
integrations or analytical approximations. The method is known as Hill's surfaces
or energy method, and it allows the computation of allowable regions of motion.
Unfortunately, the technique often gives model-sensitive results; or, in other
words, it is unstable. The classical example is the motion of the moon as
influenced by the sun and the earth. Hill's original approach results in strong
stability of the lunar orbit, i.e., it predicts that the moon will remain a satellite of
the earth. This strong stability becomes weaker when Hill's model is replaced by
the circular restricted problem of three bodies, i.e., the lunar orbit becomes more
sensitive to outside perturbations. If the general problem of three bodies is used
as a model, the stability turns into instability, i.e., the moon may leave the earth,
and it may become an independent planet of the sun. This example demonstrates
the instability of the energy method when different physical models are used.

Formal Analogy of the Uncertainty Principle

As a preliminary result, the behavior of the product ~q •~p is described in an
example connected with a well-known and important problem in celestial
mechanics. Consider the triangular libration points in the restricted problem of
three bodies (L4 , L s). These are stable equilibrium points, provided the value of
the mass parameter satisfies the inequality

Here I-l = m2/(ml + m2), and ml and m2 are the masses of the primaries (see
SzebehelyS).

The following nonlinear stability problem is of theoretical and practical
interest. When a particle of small mass m3 is placed at L4 or Ls with zero relative
velocity, it will stay there. It will perform librational motion around L 4 ,s if its
initial conditions are not exact. Consequently, if a space probe, space station,
asteroid, or the like, reaches the vicinity of these points with a velocity error of
~p and a position error of ~q, it will stay in the neighborhood of L 4 ,s provided
the above errors are sufficiently small. For large errors, the motion will not be
librational and m3 will leave the vicinity of L 4,s. It might be captured by m 1 or
m2, it might perform circulation, it might become chaotic or leave the system.
The stability problem mentioned above is to determine the limiting values of ~q
and ~p which will allow librational motion. All other motions will be termed
unstable.

Preliminary results seem to verify the conjecture that large ~q values are



CELESTIAL MECHANICS 47

associated with small ~p and vice versa, or that

~q · ~p =:= C,

where the constant C will show some dependence on the value of f.l.
Because of symmetry, only motion around L 4 will be discussed in the

following. Assuming first that m3 has no velocity error, we determine the
maximum position error which results in librational motion as a function of
the orientation ~q(</». The result6 is a region of the plane around L 4 • Then we
place m3 at L 4 and determine the maximum allowable velocity errors, again as a
function of the direction of the initial velocity ~p (</». The result is a region
around L 4 which point has zero velocity.7

The product ~q(</» • ~p( l/» might, therefore, be a constant if a large maximum
allowable position error in the direction of l/> is associated with a small maximum
allowable velocity error in the same direction. .

Preliminary numerical results indicate that this conjecture is correct in the
range of 10-3

:5 f.l :5 10-2
, and the value of the product becomes C = 0(10-3

). As
f.l approaches the critical value (f.lc), the value of C should decrease.

The above results indicate that the behavior of the phase space when centered
at L4 satisfies our uncertainty formula. Research presently in progress includes
investigation concerning the behavior at points other than L4 as well as the
extension of the range of f.l.
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