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We have carried out an extensive numerical and analytical investigation of the beam dynamics in a
rebatron accelerator. In this device acceleration occurs by a localized high-gradient electric field and
beam confinement is achieved by a strong-focusing torsatron magnetic field and a vertical magnetic
field. In a rebatron, beam acceleration occurs in a few microseconds and limitations imposed by
instabilities, field errors and radiation losses can be relaxed. When the vertical magnetic field is
independent of time, our studies indicate that both the bandwidth and the maximum electron beam
current that can be confined by these devices is remarkably high.

I. INTRODUCTION

Ultra-high current accelerators are rapidly becoming an active area of research.’?
The development of these devices is mainly motivated by a variety of potential
applications'* that are extended over several areas, including environment, food
processing, radiation sources, x-ray radiography and national defense.

Among the various accelerating schemes that have the potential to produce
ultra-high power electron beams, induction accelerators’? appear to be the most
promising. Induction accelerators are inherently low-impedance devices and thus
are ideally suited to drive high-current beams. The acceleration process is based
on the inductive electric field produced by a time-varying magnetic field.

Quite naturally, induction accelerators are divided into linear®** and cyclic
devices. In linear devices, the accelerating field is localized in the gap, while in
their cyclic counterparts the electric field is continuous along the orbit of the
accelerated particles. Both cyclic and linear devices require the same total
magnetic-flux change to achieve a given energy increment. However, in linear
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74 C. A. KAPETANAKOS ET AL.

accelerators the total change of flux occurs in one transit time, typically in less
than 100 nsec, while in cyclic accelerators the same change occurs over several
thousand revolutions in a typical time of one msec.

As a consequence of the slow acceleration, the accelerated beam must be
confined by the focusing magnetic field over long periods of time and thus field
errors, instabilities and radiation losses impose limitations on the cyclic ac-
celerators. These limitations can be substantially relaxed if the acceleration could
occur rapidly, as in linear accelerators. Therefore, a device that combines the
rapid acceleration of linear accelerators and the compact size of cyclic accelerators
is highly desirable. In this paper, we propose such a hybrid scheme that combines
most of the advantages of linear and cyclic accelerators. This device has been
named REBATRON (Rapid Electron Beam Accelerator).

A rebatron is shown schematically in Fig. 1. The high-gradient localized field
that is responsible for the rapid acceleration is produced by a convoluted parallel
transmission line, although other transmission lines may be more appropriate in
an actual system. Since the acceleration occurs over a few wsec, the constraints
imposed on the vertical field are very stringent. To reduce the inductance of the
system, the vertical field is generated by two coaxial cylindrical plates as shown in
the lower right corner of Fig. 1. The axes of these lines coincide with the major
axis of the toroidal vessel and they are located symmetrically around the minor
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FIGURE 1 Schematic of a rebatron. The accelerating gap is energized by two or more transmission
lines that are symmetrically distributed around the minor axis.
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axis of the torus. The purpose of the gap in the outer plate is to provide a field
with the desirable external field index. The transmission lines change mainly the
local vertical magnetic field, while the magnetic flux through the beam orbit
remains approximately constant.

The mismatch between the beam energy and the vertical field is alleviated by a
strong focusing field. This field is generated by a set of | =2 torsatron windings,
i.e., two twisted wires that carry current in the same direction. In addition to the
transverse components of the field, the torsatron windings provide a zero-order
toroidal magnetic field. The beneficial effect of twisted quadrupole fields on the
beam orbits has been recognized for several years.”® In recent years, the [ =2
stellarator field has been used by Roberson et al. to improve the bandwidth of
the modified betatron in a device named the Stellatron'® and also in the racetrack
accelerator,?' a device similar to the rebatron.

In addition to alleviating the energy mismatch problem, the strong focusing
substantially improves the current-carrying capabilities of the device, in particular
at low . Our studies show that the maximum electron-beam current that can be
confined in a rebatron can be very high. Therefore, it is expected that the limiting
current in a rebatron would be determined from collective instabilities and not
from the macroscopic stability of the beam orbits.

Beam capture in the rebatron, as in other devices that use strong focusing fields,
is very difficult. The reason is that the strong focusing fields make the particle
orbits insensitive to the energy mismatch and thus, small changes in the vertical
magnetic field are not sufficient to move the beam from the injection position near
the wall to the minor axis of the torus. Recently, we have developed two injection
schemes that appear very promising. One is based on the drag force of a resistive
chamber wall**> and the other on the modification of the beam orbit by a
time-varying magnetic field.

During acceleration, when the vertical magnetic field B, exceeds by far the
torsatron field B, the beam dynamics is solely determined by the vertical and
toroidal fields. For most applications of interest B, » B, at the peak of accelera-
tion and thus, beam extraction from the rebatron is similar to that from a
modified betatron.'® There are several extraction schemes presently under inves-
tigation at various levels of development. In the conceptually simplest of these
schemes, near the end of the acceleration, the vertical field increases slower than
its matching value and the beam centroid moves outwards, until it reaches a
region where the external field index n =0. In such a region, the electron ring is
not confined and thus drifts vertically out of the system. As the vertically drifting
ring leaves the torus, it enters a local null-field region and unwinds to a straight
beam.

In this report, we present results from our studies of the beam dynamics in a
rebatron accelerator when the magnetic fields are not a function of time. In
addition, the local vertical magnetic field has been replaced by a time-
independent betatron magnetic field. Our results indicate that for realistic values
of the fields, the bandwidth of a rebatron can be in excess of 1000% . Results with
the local rapidly varying vertical field will be reported in a forthcoming publica-
tion.
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II. THE APPLIED FIELDS

a. Magnetic Fields

In the local cylindrical coordinate system é,, é,,

field components of the | =2 torsatron are given by

where
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The coefficients AL, ALY and C,, are given by the expressions

Asg) = Kém(mxo) Cm9 (4a)
AR =[(Mx0)*Kpm(mxo) = Kppa1(mxo) + (1£4m)mxoK s, 1(mxo)1C,, - (4)
m___2s1n2m6' (40)
2méd
The remaining parameters are defined as follows:
8l
5
Bo=-—1"> (5)
Xo = 2apy, (6a)
x =2ap, (6b)
2w
2 7
=7, (7

where I is the current flowing in the windings, 28p, is the width of the
current-carrying conductor, p, is the radius and L is the period of the windings, r,
is the major radius of the torus, B{* is the external toroidal magnetic field and
L. (x), K,(x), I!(x) and K(x) are the Bessel functions and their derivatives. In a
toroidal device, the period should satisfy the relation

27Tr0
L

where N is an integer. The zero-order fields B, BY and B{ are the field
components produced by the helical windings in a straight (cylindrical) configura-
tion>>>* and the terms proportional to p,/r, are the first-order toroidal correc-
tions. These corrections, as given in Egs. (3), have been obtained for the surface
current density

Jo =0, Jo = (ZSIpO)[l + (p07:,) cos <1>]f(¢ as) and J,=

where f(¢) is a periodic function of ¢ with period m, and

f($) = {(1), for —y<o¢d<vy
, Yy<d<m—v.

The three magnetic field components for s =0 are plotted in Figs. 3a and 3b for
& =0 and ¢ = 7/2 respectively. The various parameters for these plots are listed
in Table 1. At ¢ =0, the radial component of the field is zero. The B, component
increases linearly with p near the minor axis and considerably faster near the
wires. The toroidal correction at p =0 is approximately —36 G. In the results

=N, (®)
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FIGURE 3 Torsatron magnetic field components (a) at ¢ =s=0 and (b) at s=0, ¢ =n/2. In
addition to the torsatron field there is toroidal field B*=—6 kG that is produced by a set of toroidal

coils. (c) magnetic field lines in r, z and p, s planes.
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FIGURE 3 (cont’d)

shown in Fig. 3, in addition to the toroidal field produced by the torsatron
windings, there is a —6 kG field produced by a set of toroidal coils. At p=0,
B,=B+By=—-6+2.5=-3.5kG. It is apparent from these results that the
toroidal field B, does not vary as 1/r. The reason is that B, is a function of s or
the toroidal angle. Figure 3c gives the magnetic field lines in the r, z and p, s
planes. Because of the toroidal corrections, the magnetic axis does not coincide
with the minor axis of the torus, which is located at r = 100 cm. The magnetic axis
is always shifted toward the major axis of the torus, because the field on the minor
axis generated by the axial current flowing on the section of the torus to the left of
the major axis reinforces the field generated by the axial current flowing in the
outside edge of the torus that is located to the right of the major axis.

Equations (1) to (7) are used to compute the magnetic-field components in the
numerical integration of the orbit equations. It has been determined that the first
two non-zero terms in the expansion are sufficient to describe the field in the
region p/a <0.5 with an accuracy better than 95%.

In the analytical work described in Section IV, the toroidal corrections have
been neglected as well as all the terms with m =2. Furthermore, it has been
assumed that 8§« 1. Under these simplifications the torsatron magnetic field

TABLE I

Parameters relevant to the torsatron fields shown in Fig. 3. Only
two terms retained in the series of Egs. (1) to (3)

Torus major radius r, (cm) =100
Windings minor radius p,, (cm) =12
Toroidal chamber minor radius a (cm) =10
o =27/L (cm™Y) =0.1
Field strength factor e, =0.2
Winding current I(kA) =62.37
l =2

Additional toroidal field BS* (kG) =-6




80 C. A. KAPETANAKOS ET AL.

becomes
B, =2Be I5(x) sin [2(¢ — as)], 9)
By =225 e(x) cos [2(6 -~ as)), (10)
B, = B,—2Be,I,(x) cos [2(d — as)], (11)
where BZ*e, = BoxoK 5(x,). For x« 1, Egs. (9), (10) and (11) become
B¢
B,=~ 828"‘ in[2(¢ —as)], (12)
B,~2: 523"‘ cos [2(¢ — as)], (13)
B, = B,. (14)

In addition to the torsatron field, the rebatron accelerator includes a betatron
or vertical magnetic field and a toroidal field, BS*, that is produced by a set of
toroidal coils. The two components of the betatron field are described by the
linearized equations

BzzBZO[l_n(r—rO)/ro], (15)
B, =—B,_nz/ry, (16)

where B, is the betatron field at the reference orbit, i.e., at x =y =0 and n is the
external field index.

The toroidal field produced by a set of toroidal coils is independent of the tor-
oidal angle and therefore varies as 1/r. This toroidal field can be chosen to have
either the same or opposite polarity to the torsatron toroidal field.

b. The Electric Field in the Gap

Consider two cylinders with their axes lying along the same line and separated by
a distance d, as shown in Fig. 4a. Since the cylinder on the left is charged to —V/,
and the cylinder to the right is charged to +V,, the average electric field in the gap
is (E;)=2V,/d. The local electric field is given by the solution of Laplace’s
equation, i.e., V2®=0. For |s|> d/2, the exact components of the electric field are

4V, & sinh (A, d/2)Jo(A,p)e 5!
E=-——22 17
y d ngl )\nafl()\na) ’ ( )
s 4V, & sinh (A, d/2)J,(A,.p)e "
=== 18
? Isl d ngl /\najl(Ana) ( )
Similarly, for |s|<d/2, the two components of the electric field are
4V o ] —A,d/2
B - - Vo [l_ Z olAn)e cosh (/\ns)] ’ (19)
d 2 n=1 a/\njl()‘na)
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FIGURE 4 (a) configuration and (b) field lines of the accelerating electric field.
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where Jy(A,a)=0, a is the radius of the cylinders and J, and J, are Bessel
functions.

The electric-field lines that correspond to the field components given by Egs.
(17) to (20) are plotted in Fig. 4b. These electric fields are a good representation
of the fields produced inside the torus by a transmission line, since in this region
the inductive magnetic field is zero and therefore the potential is described by
VZp=0.

III. NUMERICAL RESULTS

To investigate the confining properties of the torsatron magnetic field, we have
integrated the relativistic equations of motion using Egs. (1) to (7) for the
torsatron magnetic field and Eqgs. (15) and (16) for the betatron field. The
accelerating gap is 2 cm wide and, as shown in Fig. 5, the electric field is limited to
a 0.60-radian wide toroidal sector. For reasons that are discussed later on, the self
fields have been omitted in these runs.

In the first run, the current in the torsatron windings is chosen to be zero.
Figure 6a shows the normalized particle energy (vy) as a function of time and Fig.
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Major Axis
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FIGURE 5 Top view of the torus. The accelerating field is limited to +30 cm around the gap.

6b the projection of the particle orbit in the transverse plane. The various
parameters for this run are listed in Table II. Since ¢, is zero, the magnetic field
configuration is that of the modified betatron. As a consequence of the curvature
drift, the gyrating particle drifts out of the system in about 26 nsec, i.e., in about a
revolution around the major axis. As expected, the guiding center of the particle
moves mainly in the vertical direction, while the particle gyrates around its
guiding center with a frequency corresponding to the local toroidal field.

Figures 7a and 7b show the normalized energy of the particle and its orbit when
approximately —124.7 kA of current flows through the torsatron windings. The
rest of the parameters for this run are listed in Table III. The particle remains
confined for eight revolutions. Figures 8a and 8b show similar results when the
current in the windings is increased to approximately —250 kA. The correspond-
ing torsatron field-strength factor ¢, is —0.8. The remainder of the parameters are
listed in Table IV. In all three runs the betatron magnetic field was held constant
at 118 G. These results clearly demonstrate that the confining properties of the
system are substantially improved by the addition of the torsatron field. The
particle strikes the chamber wall when its v approaches approximately 65. The
total time the particle remains in the system is about 320 nsec, i.e., more than an
order of magnitude longer than when the torsatron field is absent.

Further improvement in the particle confinement is observed when the period
of the windings is reduced or the current in the windings increased. An additional
modest improvement in the confinement of the system is observed when the
betatron field is increased above its matching value. This is shown in Fig. 9. The
betatron field for this run is 236 G and the remainder of the parameters are
identical to those in Fig. 8. The confinement time increased by 20 nsec, i.e., from
320 to 340 nsec. However, when the betatron field increased to 472 G, the
confinement time was reduced to 290 nsec.
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FIGURE 6 (a) vy of particle as a function of time and (b) particle orbit in the r, z plane in the
absence (g, =0) of torsatron field. The various parameters for this run are listed in Table IIL.
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TABLE 1I

Parameters of the run shown in Fig. 6

Torus major radius r, (cm) =100
Winding minor radius p, (cm) =12
Toroidal chamber minor radius a (cm) =10

a =2m/L (cm™?Y) =0.1
Field strength factor ¢, =0
Winding current I (kA) =0

l =2
Additional toroidal field BS* (kG) =-6
Betatron field B, (G) =118
Ext. field index n =0.5
Initial y =70
Initial positions p=¢ =s =0

Initial velocities v, =04 =0, vy=c

IV. THEORETICAL MODEL

To gain a better understanding of the focusing properties of the torsatron fields,
we have developed a theoretical model that is based on linear external fields.
Obviously, these fields are appropriate only near the minor axis of the torus, i.e.,
when 2ap« 1.

The components of the torsatron field in the coordinate system é,, é, é, shown

(a) 36 [

30+

24

GAMMA

6 1 1 1 1 1 1 1 1
o 20 40 60 80 100 120 140 160 180

Time (nsec)

FIGURE 7 (a) v of particle as a function of time and (b) particle orbit in the r, z plane for moderate
(g, = —0.4) torsatron field. The various parameters for this run are listed in Table III.
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FIGURE 7 (cont’d)
in Fig. 2 are
B,, =B, cos ¢ — B, sin ¢ = B g,a[z cos 2ar,0 + (r —r,) sin 2ary6], 21)
N, =B, sin ¢ + B, cos ¢ = B*s,a[(r —r,) cos 2ar,0 — z sin 2ary6], (22)
By, = —Ba, (23)

where —ry0 =s.

TABLE III

Parameters of the run shown in Fig. 7

Torus major radius r, (cm) =100
Winding minor radius p, (cm) =12
Toroidal chamber minor radius a (cm) =10
a=2m/L (cm™) =01
Field strength factor ¢, =-04
Winding current I (kA) =-124.7
1 =2
Additional toroidal field BS* (kG) =—6
Betatron field B, (G) =118
Ext. field index n =0.5
Initial y =7.0
Initial positions p=¢ =5 =0

Initial velocities v, =v, =0, v,=c
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FIGURE 8 (a) y of particle as a function of time and (b) particle orbit in the r, z plane for high
(g, =—0.8) torsatron field. The various parameters for this run are listed in Table IV.
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TABLE IV

Parameters of the run shown in Fig. 8

Torus major radius r, (cm) =100
Winding minor radius p, (cm) =12
Toroidal chamber minor radius a (cm) =10
a=2x/L (cm™Y) =0.1
Field strength factor €, =-0.8
Winding current I (kA) =-250
l =2
Additional toroidal field BS* (kG) =-6
Betatron field B, (G) =118
Ext. field index n =0.5
Initial y =7.0
Initial positions p=¢ =s =0
Initial velocities v, =v, =0, v,~c
In addition, the betatron magnetic field is given by
n(r—ro)
B, = Bzo[l - —-———] , (24)
To
and
Brb = —'nBzoz/ro, (25)
where n is the external field index. The total field components are
B, =B, + B,, (26)
Bz = th+sz’ (27)
By = By — B, (28)
where B indicates any additional toroidal field that may be applied.
The accelerating electric-field components are approximated by
(r=ro) .(mc” rg
B~y To) (29)
2r, e Vg
2
zZ . [mcC”rg
E,=>— 'Y(—— —2) , (30)
To e Vg
2
mc” |
Eg=—4, 31)
€evy

where y = dy/dt, ¥ =d?*y/dt*> and v, is the toroidal velocity, which is assumed
constant.

Using Egs. (26) to (31) for the fields, the equations of motion in the laboratory
frame become
WoW,, . . Y Qe 2
[R cos wyt— Z sin wwt)—(Z—E Z) 7=)\ (1), (32)

R+w3iR+
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FIGURE 9 (a) vy of particle as a function of time and (b) particle orbit in the r, z plane for the same
parameters as Fig. 8 except at a higher betatron field.
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Z+w§Z—M(Zcoswwt+R sinwwt)+(R—lR>_9=0, (33)
2 2y /vy
where
R = 71/2(,,_ ro), 7= ,y1/2
Qg =eBy/mc, Q0= eBzo/ me, wo=0%¢e,/y, w,, = 2av,,
At =— 12 Ve (Ue rOon>
c\c ¢y /)’
w§=1(z)2_1(z>+z(c2> wlon v}
4\y/ 2\y/ y\2vg) vy 1y 15’
and

b () L (1)1 (2 o
4\y/ 2\y/ v \2vq Yro
Equations (32) and (33) become more tractable when transformed to a frame
rotating with angular frequency w,/2. Using the transformation

wi w,t
R= Rcos<2)+Rs (2), (34)
5 gin (@) 4 2 cos (@2
Z——Rsm(2>+Zcos(2>, (35)

Egs. (32) and (33) become

. 2
ﬁ+[w —8w? cos Wt +—— Oww (_u;_w) +< )Qe]
< —Q" +<5———8w smww)z A2cos<w2t>, (36)

Y Y
Oww ﬁvg) 2
2

Y
(%) (%) )2
_( _&> ( — 4 5w?sin @ t>R A?sin (w t>, (37)
¥ 2y vy 2
.\ 2 2 <\ 2 2
L0
4 \y 2 \y 203/ 2r5 4\y 2rg

02 = Yo (9___v_>
ro \' v 2nr,

2 2 2
Z+ [(ol-i-ﬁw COS W, t —
where

and

when |wyw,,/2| > |8w?|, the two coupled equations (36) and (37) can be combined
into a single equation by introducing the complex variable Lb R+iZ. Multiplying
Eq. (37) by i and adding it to Eq. (36) we obtain

b+ Ful+ fald = ifol = A2, (38)
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WoWy,
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Equations (36) and (37) have been solved numerically. After integration, the orbit
is transferred back to the laboratory frame. The results are shown in Fig. 10. The
projection of the orbit in the r, z plane is shown in Fig. 10a, the particle radial
distance from the minor axis as a function of time is shown in Fig. 10b and vy as a
function of time in Fig. 10c. The various parameters for this run are identical to
those listed in Table IV. The particle strikes the wall at about 325 nsec, when its
gamma is approximately 68. These results are in good agreement with those of
Fig. 8 that have been obtained using the more accurate expressions for the
torsatron fields. As will be discussed later, the particle was lost because at y =65
it entered the unstable region that extends from y =65 to y=121.
When v =0, the homogeneous part of Eq. (38) becomes

b+2f,+ 20+ 2215 = 0, (39)

i.e., a fourth-order equation with constant coefficients. The solutions of Eq. (39)

Particle Orbit in The Transverse Plane
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FIGURE 10 (a) particle orbit in the r, z plane; (b) particle radius as a function of time and (c) vy of
particle as a function of time. These results have been obtained from the linear equations (36) and
(37). The results shown are in the Lab. frame. The various parameters for this run are the same with
those of Fig. 8.
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are of the type ¥= fhoei“", where w?, is given by

1( 9)2 00 [< 99)2 <Q§x>2]”2
2=~y ——2) +-5£2 | (0, ——2) +w2e2() | 40
(O 4 w,, v 472 2'Y W, v W€y Qo ( )

when |0?|< |wow,/2|. The particle orbits are stable when o is real, i.e., when

2
wn=(0,-22) - c20:220 (41)
The two roots of (40) are given by
20 Qe
vo= 2l (12 ). @)
ww QO

The function w(y) is plotted in Fig. 11 for three values of B, and B{*. In Fig.
11a B§*=-6 kG, By=5kG and thus By, = —(B$*+ By) = 1 kG. For this value of
toroidal magnetic field and for &, =0.4 and w,/2=3x10%sec”’, Eq. (42) gives
19.96 and —8.2 for the two roots of Eq. (41). Therefore, at y =7 the particle orbit
should be unstable. Results from the numerical integration of the nonlinear orbit
equations for y=0, and y=7 and using the same values for the rest of the
parameters as in Fig. 11a are shown in Fig. 12. As expected, the orbit is indeed
unstable and the particle is lost in less than one nsec.

By reversing the direction of the current in the torsatron wires, B, and e,
change sign and the two roots of Eq. (41) become 50.5 and 78.7. Therefore for
v =7 the orbit is stable. This is in agreement with the results from the numerical
integration of nonlinear orbit equations shown in Fig. 13.

When vy,.<1, the orbits are stable for all values of y. For BJ*=6kG.
B,=5kG and g =—0.4 the two roots of Eq. (41) are —50.5 and —78. For this
case the orbits were found stable for all the values of y considered.

H(Y)

B:'=-6 kG
(a) \ / B,= 5 kG
!
-82\ | J20 b4
|
|
(b) | BY- - 6 kG
| B, = -5 kG
I so\_/ 70 Y
[
I
(c) | 8- 6 kG
| B, = 5 kG
-70\_/-50 7 Y

FIGURE 11 Plot of n(y) given in Eq. (41) for three different combinations of BS* and B,
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FIGURE 12 Particle orbit in the r, z plane for the same parameters as those of Fig. 11a.
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FIGURE 13 Particle orbit in the r, z plane for the same parameters as those of Fig. 11b.
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The numerical and theoretical results are in excellent agreement when the
linearized theoretical model is valid. However, when B$* and B, have opposite
signs and |B%¥|>|B,|, the toroidal field vanishes at some radial distance and the
field lines form magnetic cusps. In this case, the linear theory does not properly
describe the fields and the predictions of the theory are not in agreement with the

numerical results.
When
Q\?(Q2
[w0w2/<w _—) ( 2)]<< 1
Y Y

Equation (40) gives

w}
(@, — Do/ v)(Qo/Y)
wfv+Q§ &_ wiw?
4 v Ty AHew— Q) Qely)

In the laboratory frame, the slow mode ). becomes

(w,/ 2)2[1 + ], (slow mode)

(fast mode)

o ®g

[ T .. — (43)
e

The partlcular solution of Eq. (38) in the rotating frame, for y =0 and a)
small, is \I' R +lZ where

A A Hw, — Doy +wol2 Wl
R, = @Ay red) oo (&> (44)
WoW,, 2
and
s AN (w,—Q 2
2, =My —0dd) o <5"—W—t> (45)
wio, 2
Transforming back to the laboratory frame using the transformation ¢ = Peion2,
we find that the particle orbit is displaced along the horizontal axis by
4 2
Ar= 2 7 (1-Q¢/yw,,). (46)

Figure 14 shows the projection of the particle orbit in the transverse plane for
vy=11, &, =-0.4, B,=11kG, w,=6x%x10%sec™?, r,=100cm, B,,=118 G and
vy = c. For these parameters, Eq. (43) gives a slow period 7, =2u/Q, =62 nsec.
For the same parameters the code gives 7. = 60 nsec. In addition, Eq. (46) gives
a displacement Ar = 1.74 cm, which is identical to the orbit displacement of Fig. 14.

Let us now return to discuss briefly the results of Fig. 10. For the parameters of
the run, Eq. (42) gives vy, =121 and y_=65. When the vy of the particle reaches
65 i.e., at about 300 nsec, it becomes unstable and strikes the wall in one
revolution.

In addition, at ¢t =0 the ratio Q4/w,y = 6.67 and according to Eq. (46) the orbit
displacement is negative. As v increases, (o/yw,, is reduced and when Q¢/yw,, <1
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Particle Orbit in The Transverse Plane
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FIGURE 14 Particle orbit in the r, z plane for an initially mismatched beam and y = 0. The particle
rotated around the equilibrium position four times with a period 60 nsec. The theory [Eq. (43)]
predicts a period of 62 nsec and the nonlinear equations give similar orbits with a period of about
55 nsec.

the orbit displacement becomes positive. At y=46.6, Q¢/yow,,~1 and Ar=0.
According to Fig. 10b, this occurs at ¢=210 nsec, which corresponds to y=47
(see Fig. 10c).

V. SELF FIELDS

An accurate self-consistent determination of self fields of a high-current electron
ring confined in a rebatron is difficult, because the minor cross section of the ring
has, in general, a complex shape that varies along the toroidal direction.

Since we are interested in the macroscopic motion of the ring and therefore on
the self fields that act on the ring centroid, we assume that the ring has a circular
cross section and its particle density is uniform. Neglecting toroidal corrections,
the fields at the center of the beam, which is located at the distance (r—r,) and z

from the minor axis are'®2¢
2 ==
Ei=—-21|e| norol% (r=ro) 47)
a’ r,
12 z
Es;=—2m|e| noro——, (48)
a’r,
r2 z
B;=2m |e| noBoro—3—, (49)
a‘rgy
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and ( )
r2 (r—r,
=2 le| noBofo— >
a ro

(50)

where n, is the particle density, r, the beam radius and a the minor radius of the

perfectly conducting torus.

When v=0, n=3 and the beam energy is matched to the vertical field, the
equation describing the beam centroid motion in the transverse rotating plane is

given by

b+ Fudi+ fall* i = A2,
where f, and f; have been defined under Eq. (38) and

;l=éz_(&>2+&&
L

2 2 v’
where
d,z=v_ﬁ_w_%(@)2
Y212 23 \a/’

and w?=4me’ny/m.
The solution of Eq. (51) when A2=0 is § =Y, §p;e™, where

1 o) 2 \QZ [( Qe) (02 A) wowz]l/z
2:—_— 9 _— 52 —_— _+2+_— .
oi=ilon ) rar) o) (G at) 25

The orbits are stable provided

Q.
Z?‘i'wi?(),

2 2 2 2
A2 % &%] _woww>
[“’* (2) 25 1 -0

Equation (56) can be written as
Qy o o\ [ (Q w>2 ]
i =04 +262 27 Pw Lw 26 Fw) 2=
A=o,+2e (2)(«, 2)+(2) [(v 2) ~e]=0
and its roots are given by
2 (X
@u2) L\y " 2)7%

Substituting Eq. (42) into Eq. (58), we obtained the relation

. w,\* .
)

and

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

Note that when w,, >0, v, > v_ for either sign of (},. We have studied the stability
of the macroscopic beam motion under various conditions. The most interesting
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FIGURE 15 Plot of a(y) of Eq. (57) as a function of ¢2. If the system is stable at t =0, it will
remain stable for any <y that exceeds the initial .

case occurs when y>-+y,. For this case the two roots &2, are positive and
®2,.>d%_>0, as shown in Fig. 15.
In region 1 of Fig. 15 the macroscopic beam motion is stable provided that
. . 0%
wi_zwfz—ﬁ. (60)
Substituting &3 from Eq. (53) and é2_ from Eq. (59) into the left inequality of
Eq. (60), we ﬁnd that

2
(2)(2-L)+ =0, 61)
Yo/ YYo %Yo 20 ro
where
2
vi= (20" 62
Vo

Since y>v,, the inequality in Eq. (61) and therefore the left inequality in Eq.
(60) is always satisfied. The condition y > v, can also be written as

2 (Q
w Y

w

The right inequality in Eq. (60) can be written as

<%)3+£2(%>_120’ (63)

where

2= (__Qe'o )2
\/Eve'Yo
The cubic equation corresponding to the equal sign in Eq. (63) has a positive real
root and a pair of complex conjugate roots. Notice that for y> vy, the inequality

in Eq. (63) is always true. For the parameters of interest £>> 1. In this case, the
positive real root is approximately equal to 1/¢{* and therefore Eq. (63) is valid for
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all yv>, when the initial value of v, i.e. v, satisfies the inequality
YYo= 1/2% or vy, <Q2a?*8c?, (64)

where v is the Budker parameter.

Thus, when y > vy, the macroscopic beam motion is stable provided that Eq.
(64) is satisfied. This is a very lenient condition because for a =10 cm, B, =
10kG, y=7, Eq. (64) gives »=3,000 or I=50 MA.

Under the same conditions, i.e. when y>-+,, the region 2 in Fig. 2 is
inaccessible. The reason is that v3/2rZ, which is the maximum positive value of w?
is less than w?,.

Finally, it should be noticed that Egs. (36) and (37) have been solved under the
assumption |wow,|»8w?> and therefore Eq. (64) is valid under the implicit
assumption that wy# 0.

VI. CONCLUSIONS

We have carried out an extensive numerical and analytical investigation of the
beam dynamics in a rebatron accelerator. Although the analytical work is based
on simple linear approximations for the various fields, the two approaches give
very similar results when these approximations are valid.

Our studies indicate that when self-field effects can be ignored, the normalized
particle energy can be increased from y =7 to y=70, at constant betatron field
before confinement is lost. This implies that the device has a bandwidth that
approaches 1000%. This bandwidth can be further increased by increasing the
current in the torsatron wires.

Even in the absence of space charge, there is a range of parameters [see Eq.
(42)] for which the rebatron is unstable. However, this orbit instability can be
easily avoided by a judicious choice of the various parameters.

As far as orbit stability is concerned, the maximum electron-beam current that
can be confined in a rebatron accelerator is given by Eq. (60) and is impressively
high. Therefore it is expected that the limiting beam current in a rebatron would
be determined from collective instabilities and not from the macroscopic stability
of beam orbits.

Although the bandwidth of rebatron accelerators is very high, the maximum
energy that can be obtained by these devices, with time-independent magnetic
fields, is rather limited. To achieve very high energies (y= 1000), the betatron
magnetic field should be replaced by a local vertical magnetic field that varies
rapidly with time and approximately in synchronism with the beam energy. Such a
fast vertical field can be generated by two coaxial cylindrical lines that carry
current in opposite directions. The axes of these lines coincide with the major axis
of the toroidal vessel and they are located symmetrically around the minor axis of
the torus. These transmission lines change mainly the local vertical magnetic field,
while the magnetic flux through the beam orbit remains approximately constant.
The mismatch between the beam energy and the vertical field is alleviated by the
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strong focusing field. The effect of the rapidly varying vertical magnetic field on
the beam dynamics will be reported in a forthcoming publication.
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